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Identification of real translational and rotational displacements of six-axial shakers
with only six measured linear accelerations

Yvon Briend1,∗, Eric Chatelet1, Régis Dufour1, Franck Legrand1, Sophie Baudin2

Abstract

Qualification tests on the vibrations of on-board equipment depend on the ability of the shaker used to reproduce as
precisely as possible the excitation profiles stipulated by standards, given that real operational conditions are generally
multiaxial. Using a set of six measured linear accelerations the original method proposed permits determining real six-
axial shaker displacements combining three translations and three rotations. Thus, this method, named REDEAT (REal
Displacement from Experimental Acceleration with inverse Technique), is useful for introducing these real displacements
in the numerical simulation in view of experimentally validating the dynamic behavior model of on-board equipment.
Moreover, the REDEAT method evaluates the deviation between real and intended forced displacements. Its principle
resides in solving a system of nonlinear time-differential equations expressed, by resorting to numerical integration com-
bining Newmark and Newton-Raphson schemes. In order to overcome the classical divergence issue inherent to the use
of numerical integration, data processing tools are employed, consisting of the application of successive high pass filters
and window functions. The REDEAT method is applied to a hydraulic 6-DOF shaker equipped with accelerometers and
gyroscopes, through a combination of two harmonic rotations and a full 6-DOF random motion. In addition, the influence
of the method’s parameters and of the six input accelerograms chosen from twelve is investigated.

Keywords: 6-DOF shaker, Inverse problem, Nonlinear problem, Multi-axial excitation, Random motion, Experimental
technique

1. INTRODUCTION

In the field of vibratory testing, the qualification of on-board equipment requires taking its real vibration environment
into account. Therefore, in order to make the vibration environment as realistic as possible, six degrees-of-freedom (6-
DOFs) excitation tests are now preferred to mono-axial tests. The control of the multi-axial shaker must be as reliable
as possible. This can be highlighted by the introduction of certain sections on multi-axial excitation in the standards
applicable to mechanical equipment qualification (see for instance method 527 of MIL-STD-810G or method 421 of
AECTP 400). Indeed, with respect to mono-axial excitation, it initially permits fully representing any arbitrary motion
observed under operating conditions. Secondly, it may reduce the duration of the vibration testing, for instance in fatigue
life tests or highly accelerated life tests (HALTs), since a multi-axial stress state may be more harmful for the system
than a mono-axial one. In this context, the use of multi-axial shakers and research on this topic has tended to increase
in the last few years [1–5]. Several solutions are thus being proposed to replace the classical Gough-Stewart platform
[6, 7], such as multi-axial tables [8–11] and 6-DOF shakers [12]. Such devices are already able to produce a wide variety of
excitation profiles such as sine, random, impact and even the replication of arbitrary signals over wide frequency ranges
and amplitudes, with simultaneous translations and rotations. These systems are generally equipped with accelerometers
and/or LVDT and driven by targeted accelerations or displacements, considered as references that a closed loop solution
tries to reach, using successive and iterative corrections. The real motion measured can be more or less representative
of the targeted one, depending on the quality of the correction algorithms, the calibrations of the sensors and their
locations, measurement noise, the shaker’s performance and linearity, etc. Thus, computing the error between measured
and reference accelerations is the first step when qualifying the reliability of the test. Nevertheless, this is generally
not enough to figure out the real perturbations producing the remaining error. Indeed, other tools are often required
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to determine the real motion of the shaker, that is to say assessing the time variation in the multi-degrees-of-freedom
(MDOFs) of the shaker occurring during the vibration testing. This time information is essential in order to know, for
instance, the real amplitudes of the motion, the likely phase between the 6 DOFs and the evolution of the instantaneous
axis of rotation.

Several solutions already exist to assess the position, orientation and velocity of a rigid solid, such as the inertial
navigation system (INS) [13], also called inertial measurement unit (IMU) [14]. An extensive review of this subject has
been published recently by Nilsson and Skog [15]. The sensors used are generally a combination of several accelerometers
and gyroscopes in order to obtain the three translations and the three rotations of the structure. Gyroscopes are essential as
soon as any rotation occurs but they suffer from several drawbacks such as high cost, high energy consumption, considerable
weight, high bias drift, low shock resistance, low dynamic range, and large volume. In this context, many works have
been carried out in the last decades to develop IMU using accelerometers only, rather than resorting to gyroscopic sensors.
These types of solution are called Gyro-Free or Non-Gyro Inertial Measurement Unit [16, 17]. It is possible to dispense with
gyroscopes to obtain the translational accelerations and angular velocities of a rigid-body. Nevertheless this implies that
the equations to be solved are necessarily composed with time unknowns and their time-derivatives, namely differential
equations. Thus, a classical approach would be to integrate these equations numerically; however, this is troublesome in
practice owing to experimental imperfections such as the presence of noise, calibration errors, cross-sensitivity, etc. which
generally result in considerable drifts over time when obtaining the displacements. Regarding this point, there are several
ways of dealing with these drawbacks. The first and oldest one consists in arranging the accelerometers in a very specific
configuration (position and orientation), so as to remove the troublesome terms with time-derivative dependency. This was
first proposed in the late 1960s by Schuler et al [18], who analyzed several configurations of six and nine accelerometers
to obtain the motion of a vehicle, for which some of them were shown to be unstable. Later, the six accelerometer
configuration was shown to be unreliable by Padgaonkar et al [19] owing to the inherent errors in the measurements.
They suggested another specific configuration based on nine accelerometers, which likewise removed the time-derivative
dependency in the equations. The applicability of the method was demonstrated with both theoretical and experimental
results. More recently, other configurations have been proposed [16]. Nevertheless the aim is always to find the optimal
location and orientation of the sensors, which may not be suitable given the singular shapes of certain rigid-bodies.

Another way to treat the differential property of the equations with a more arbitrary sensor configuration is to consider
that the unknowns and their time derivative are completely independent algebraic variables. If only the translational
accelerations and the angular velocities are to be sought, there are then twelve unknowns to determine [20–23], what
will be described in Section 2. In this context, there must be at least twelve mono-axial accelerometers, resulting in an
accelerometer array. Nevertheless, a sign ambiguity linked to the quadratic terms in angular velocity always remains.
This approach was chosen, for instance, by Cardou et al [20] which still resorted to time integration to remove sign
indeterminacy for each time step. The feasibility of their method was validated with an experimental test rig using
gyroscope data with random and harmonic motions. Likewise, Madgwick et al [22] proposed a similar method, tested
on a two-axial pendulums instrumented with ten tri-axial accelerometers. The resulting redundancy was then treated by
either averaging the accelerometer information or by using the pseudo-inverse method with a least-square solution. Zou
et al [24] likewise used a redundant array of eight dual-axial accelerometers located in a cylindrical configuration so as
to build a 6-DOF sensor. In order to both avoid the need for too many redundant accelerometers and overcome the sign
ambiguity of the angular speed, some authors preferred to use Unscented Kalman filters. Among others, Schopp et al [21]
demonstrated experimentally the efficiency of this method on a 3D rotation table. Later, Edwan et al [23] proposed a
similar solution which was tested on simulated data with harmonic motions. However, even with these solutions, at least
twelve sensors are still needed.

If only six mono-axial accelerometers must be used with a quite arbitrary spatial location, there is no choice left but to
perform the numerical integration of the equations of motion. Consequently, it is necessary to know precisely the initial
conditions of the system and to overcome the inherent drift obtained with the measurements. Without powerful signal
processing tools, this task may quickly appear to be unsuitable owing to the considerable errors accumulated with time, as
shown by Giansanti et al [25] with a biomechanical application. In their experiments with a vehicle on a track, Onodera
et al [26] chose to apply a high pass filter after integration combined with an optimal sensor calibration. The relatively
good agreement between their method and the gyroscope reference on a 25 s transient motion highlighted the efficiency of
the filter. However, it is legitimate to wonder if the latter remains adequate for other types of motion and for sensors with
poorer characteristics. Miles [27] used a high-pass filter at each step of the FFT-based integration process to remove the
divergence. This method permitted obtaining the angular displacements in the transient excitation of an offshore supply
vessel and a semisubmersible platform at a scale of 1:40. The results were validated with an optical tracking system
composed of five cameras. Nevertheless, the translational DOFs were not assessed, and no information was available
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regarding the possible side effects associated with successive high pass filters.
The aim of the present paper is to propose a new technique to accurately determine the complete rotational and

translational displacements of any 6-DOF shaker, without inertial or kinetic knowledge. This method, called REDEAT
(REal Displacement from Experimental Acceleration with inverse Technique), first permits having the most reliable base
displacements that can be introduced into the model for predicting the dynamic behavior of on-board structures. Thus,
the numerical and experimental correlation can be enhanced. Secondly, it can also help to improve the shaker driving
process, for instance, thanks to better knowledge of the actual position of the instantaneous axis of rotation. Since most
of these devices are driven in closed-loop mode using accelerometers data as feedback, it is expedient to use the same
accelerometers to obtain the measured motion, instead of resorting to other expensive and limited instrumentation such
as gyroscopes or additional accelerometers. For this reason, it was decided to use acceleration data only. In contrast
with the previous works cited above, the solutions are given in terms of six displacements rather than three translational
accelerations and three angular velocities, using only six accelerograms corresponding to sensors in an arbitrary spatial
configuration, and without the use of Kalman filters. The problem is solved by numerical integration combined with
efficient data processing tools that consist in applying successive high-pass filters and window functions defined through
three parameters. This solution is tested on a hydraulic shaker with multi-axial harmonic and random motions, and
validated through additional instrumentation such as other accelerometers and gyroscopes. Emphasis is placed on pure
rotational motion, the importance of the filtering process, the computational cost and the sensor configuration.

2. THEORY

2.1. Kinematics of a 6-DOF rigid-body

Defining the motion of a rigid-body requires two frames of reference. The first one R0(O0, ~X0, ~Y0, ~Z0) is considered to
be the Galilean frame and the second one R(O,~x, ~y, ~z) the moving frame which is fixed to the shaker. The full rotational
motion of R with respect to R0 can be defined by the Euler angles, so that R is obtained through three following successive
rotations: the precession angle α1 around ~Z0 creating a first intermediary frame R1(O0, ~X1, ~Y1, ~Z1) with ~Z1 = ~Z0, the

nutation angle α2 around ~X1 creating a second intermediary frame R2(O0, ~X2, ~Y2, ~Z2) with ~X1 = ~X2, the intrinsic rotation

angle α3 around ~Y2 creating the frame R with ~Y2 = ~y, as illustrated in Fig. 1.
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Figure 1: Definition of the two frames of reference by using the Euler angles

In the same way, these angles are implicitly time-dependent. At this point, it is possible to link the set of vectors from
one frame of reference with respect to the other one with the following orthogonal transformation: ~X0

~Y0

~Z0

 = [PR0→R]

~x~y
~z

 (1)
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with

[PR0→R] =

cos(α1) cos(α3)− sin(α1) sin(α2) sin(α3) − sin(α1) cos(α2) cos(α1) sin(α3) + sin(α1) sin(α2) cos(α3)
sin(α1) cos(α3) + cos(α1) sin(α2) sin(α3) cos(α1) cos(α2) sin(α1) sin(α3)− cos(α1) sin(α2) cos(α3)

− cos(α2) sin(α3) sin(α2) cos(α2) cos(α3)

 (2)

an orthogonal rotation matrix such that [PR0→R]
−1

= [PR0→R]
T

= [PR→R0
].

The instantaneous angular velocity vector ~ΩR0

R , characteristic of the rotation of the moving frame R with respect to
R0, can be defined using the three Euler angles mentioned above according to:

~ΩR0

R = α̇1
~Z0 + α̇2

~X1 + α̇3
~Y2 (3)

By performing a scalar dot product between the vectors of R and the vectors ~Z0, ~X1 and ~Y2, ~ΩR0

R can be expressed in R
such that:

~ΩR0

R =


ω0
x

ω0
y

ω0
z


R

(4)

where

ω0
x = −α̇1 cos(α2) sin(α3) + α̇2 cos(α3) (5a)

ω0
y = α̇1 sin(α2) + α̇3 (5b)

ω0
z = α̇1 cos(α2) cos(α3) + α̇2 sin(α3) (5c)

are respectively the components of the instantaneous angular velocity vector in ~x, ~y and ~z, which are given directly by
a gyroscope that would be fixed in R. In this sense, they will be used instead of (α̇1, α̇2, α̇3) to validate the REDEAT
method proposed for the rotation problem.

The translational motion of R with respect to R0 is defined through the motion of the origin O of R in R0 by the

vector
−−→
O0O such that:

−−→
O0O =

X0

Y0

Z0


R0

(6)

where X0, Y0 and Z0 are the displacements of O along the axes ~X0, ~Y0 and ~Z0 respectively.
By using this specific kinematics, it is now possible to fully describe any 6-DOF motion taking place. There are

two ways of achieving this: the first one consists in decomposing the motion of any point into a sum of a translation
motion and a rotation motion with a constant radius; the second one consists in assuming a pure rotational motion with
a time-varying radius related to the instantaneous axis of rotation, that goes to infinity if there are only translations.
The technique proposed uses the former option which is the most intuitive and straightforward one. To this end, let the
in-plane example of Fig. 2 be considered, consisting of a 2D-translation and a 1D-rotation of an arbitrary point A fixed
in R, defined by the constant coordinates (xA, yA, zA) in R. The rotation acts at an angle α1 and a constant radius C,

around the axis ~Z0 of R0 passing through O so that
−→
OA = C~x. Meanwhile, the motion of O is free in R0 and defined by

the vector
−−→
O0O. The displacement of A in R0 can be found as:

−−→
O0A =

−−→
O0O +

−→
OA =

X0

Y0

Z0


R0

+

xAyA
zA


R

=

X0

Y0

Z0


R0

+ [PR0→R]

xAyA
zA

 (7)

where, for this example, XA = X0 + C cos(α1), YA = Y0 + C sin(α1) and ZA = Z0 = 0 are the coordinates of A in R0.
In this way, the 6 DOFs of any point fixed to the shaker can be defined as the three translations X0, Y0 and Z0 along

the axes of R0 and the three rotations (α1, α2, α3) around the axes (~Z0, ~X1, ~Y2) all passing by the origin O of R. In the

case of simultaneous translations and rotations, the instantaneous axis of rotation, directed by the vector ~ΩR0

R of Eq. (3),
no longer passes through O but rather on a varying point that can be found only by assessing the linear velocities of
several points fixed in R.
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Figure 2: In-plane motion of a point A with a rotation of angle α1 and radius C and a translation of X0 and Y0

2.2. Direct and inverse problem

As stated in Section 1, 6-DOF shakers can be driven by means of accelerometric data used as feedback within a closed
loop correction algorithm. Hence, a possible approach to create a targeted multi-axial motion of the shaker is to define
the time variations of the 6 DOFs detailed in Section 2.1 when the moving frame R is fixed to the shaker, and then to
compute the targeted accelerations that must be detected by the accelerometers fixed to the system. These accelerations
may be used afterwards as the references to be reached by the closed loop algorithm. This will be called the direct problem
as represented in Fig. 3 where γi stand for these targeted accelerations.

Kinematic model

𝑋0
𝑌0
𝑍0
𝛼1
𝛼2
𝛼3

𝛾1
𝛾2
𝛾3
𝛾4
𝛾5
𝛾6

Direct problem

Inverse problem

Figure 3: Principle of the direct and inverse problems

In order to obtain these targeted accelerations, the first step consists in deriving the position of the corresponding
accelerometers twice with respect to time in relation to the Galilean frame of reference R0. Let an arbitrary mono-axial
accelerometer located in A in Fig. 2 with the coordinates (xA, yA, zA) in R be considered as an illustration. Its position
with respect to R0, given by Eq. (7), is then derived twice with respect to time. The resulting acceleration must be
expressed back in the moving frame R since the accelerometer and its direction are fixed in R. Consequently, the targeted
linear acceleration ~γ detected by the accelerometer turns out as:

~γ = [PR0→R]
T



Ẍ0

Ÿ0

Z̈0


R0

+
[
P̈R0→R

]xAyA
zA

+ ~g

 (8)

where the notation (̈.) denotes twice the differentiation with time. Vector ~g = −g ~Z0 is the gravitational acceleration which
has been added since it may contribute to the actual acceleration detected by the accelerometer if the latter is designed for
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low frequency values or in the case of large rotations. The acceleration of Eq. (8) is actually composed of three components
in (~x, ~y, ~z) while the sensing direction of the sensor is only directed along one of these axes or along a fixed combination
of them. Hence, only one row of Eq. (8) or a linear combination of the three rows is used for a mono-axial accelerometer.
The same principle can be applied for the other sensors and the resulting six accelerations are finally used as references
for the closed-loop algorithm working for instance in time waveform replication.

In practice, the real motion will not be perfectly similar to the targeted one. This may originate from several sources
of errors such as the sensors (cross sensitivity, imperfect calibration, measurement noise), the shaker (nonlinear responses,
likely elastic deformation within the operational frequency band, displacement limitations) and the closed-loop algorithm
(imperfect characterization of the shaker’s transfer functions, bad tolerances or poor corrections for the convergence). In
order to evaluate the differences between the targeted and the real motions, it is relevant to perform what is called the
inverse problem shown in Fig. 3 the aim of which is to use the measured accelerations to obtain the real time variation
of the 6 DOFs of the system. This is done by using Eq. (8) once again for which the acceleration ~γ is now given data
of the problem, namely the experimental acceleration, and in which the 6 DOFs are the unknowns. If no link is made
between the variables and their time derivatives, this equation will contain twelve unknowns: (Ẍ0, Ÿ0, Z̈0) the translational
accelerations and (α1, α2, α3, α̇1, α̇2, α̇3, α̈1, α̈2, α̈3) the angular displacements, velocities and accelerations present in the

matrices and [PR0→R] and
[
P̈R0→R

]
. The latter matrix will not be explicitly described here owing to its great complexity.

However, it contains trigonometric functions of the angular displacements multiplying either quadratic terms in angular
velocities or linear terms in angular accelerations, which make the equation nonlinear. On the other hand, if the angular
DOFs are considered related, the problem is reduced to six unknowns which may be either (Ẍ0, Ÿ0, Z̈0, α̈1, α̈2, α̈3) or
(Ẍ0, Ÿ0, Z̈0, α1, α2, α3) depending on the user’s preference. In the present paper, the second choice is retained to simplify
the expression of the discretized problem detailed in the following section. Therefore, by using the information of six
sensors, the inverse problem consists in solving the following differential nonlinear system of equation:

fi(Ẍ0, Ÿ0, Z̈0, α1, α2, α3) = γi i ∈ 1..6 (9)

where γi = ~γi.~ni with ~γi the 3D acceleration vector of the point where the accelerometer i is located, ~ni the direction of
the accelerometer i and “.” the dot scalar product.

2.3. Solving of the inverse problem - time integration loop

By looking at Eq. (8), it can be seen that the translational part does not depend on the accelerometer. Thus, a good
strategy is to uncouple the problem by removing the translational variables. This will be denoted as the rotation problem
and can be achieved by subtracting the accelerations of two accelerometers i and j having the same direction ~ni = ~nj and
located at two different positions. Then, using Eq. (8), we obtain:(

[PR0→R]
T
[
P̈R0→R

]
~Ui,j

)
.~ni = γi − γj (10)

where

~Ui,j =

xAi
− xAj

yAi
− yAj

zAi − zAj

 (11)

is a time-independent vector that depends only on the choice of the sensors and their location. By doing this, both transla-
tional and gravitational accelerations are canceled. The next step consists in determining the angular variables. Therefore,
numerical integration is needed and the well-established Newmark approximation with constant-average-acceleration [28]
is used here to discretize Eq. (10). However, for the sake of simplicity, this approximation is applied directly to the matrix[
P̈R0→R

]
instead of the angular accelerations (α̈1, α̈2, α̈3) and angular velocities (α̇1, α̇2, α̇3) present in this matrix. Thus,

at the next unknown time iteration t + ∆t where ∆t is the time step, the matrix is related to the previous known time
iteration t by: [

P̈R0→R

]
t+∆t

= a0

(
[PR0→R]t+∆t − [PR0→R]t

)
− a2

[
ṖR0→R

]
t
− a3

[
P̈R0→R

]
t

(12)

with a0 = 1
α(∆t)2 , a2 = 1

α∆t , a3 = 1
2α − 1 and α = 0.25. Then, by substituting the Newmark approximation of Eq. (12) in

Eq. (10) defined at time iteration t+ ∆t, we obtain:(
[PR0→R]

T
t+∆t

(
a0 [PR0→R]t + a2

[
ṖR0→R

]
t

+ a3

[
P̈R0→R

]
t

)
~Ui,j

)
.~ni = a0

~Ui,j .~ni − (γi,t+∆t − γj,t+∆t) (13)
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This equation is nonlinear in (α1,t+∆t, α2,t+∆t, α3,t+∆t) that compose the matrix [PR0→R]
T
t+∆t, because of the trigonometric

functions (see Eq. (2)). In the case of small displacements, the matrix could eventually be linearized to obtain a linear
problem. However, for the sake of completeness, the general case with arbitrary displacements, and hence the nonlinear
problem, is addressed in this paper. The numerical scheme used to solve it is the Newton-Raphson scheme [28]. Thus,
from Eq. (13) the following residual ri,j = ri,j(α1,t+∆t, α2,t+∆t, α3,t+∆t) is built such that:

ri,j =

(
[PR0→R]

T
t+∆t

(
a0 [PR0→R]t + a2

[
ṖR0→R

]
t

+ a3

[
P̈R0→R

]
t

)
~Ui,j

)
.~ni − a0

~Ui,j .~ni + (γi,t+∆t − γj,t+∆t) (14)

with the subscripts (i, j) that denote the acceleration γi and γj of the mono-axial accelerometers Ai and Aj , respectively.
Since there are three unknowns, three equations are necessary. Consequently, two more sets of two accelerometers must
be used like for Eq. (14), each set with one specific direction, so as to obtain the following residual vector:

{
R
}

=

ri1,j1ri2,j2
ri3,j3

 (15)

which must be canceled to find the solution of the nonlinear problem. The subscripts (i1, j1, i2, j2, i3, j3) are integers used
to choose among the accelerograms available. This choice is based on how to make the problem solvable. For instance,
(i, j) must correspond to two accelerations in the same direction, but for different positions (i.e. i 6= j). Moreover, an
optimal configuration of accelerometer positions will facilitate enhancing both the condition number of the matrix to be
inverted and the accuracy of the results. This is analyzed in more detail in Section 4.2.

The next step of the Newton-Raphson scheme is to compute the tangent matrix [T ] by deriving the residual vector
{R} of Eq. (15) with respect to each of the angular displacements at unknown time iteration t+ ∆t such that:

[T ] =

[
∂R

∂αt+∆t

]
(16)

and to iterate over r with: α1

α2

α3


(r+1)

t+∆t

=

α1

α2

α3


(r)

t+∆t

−
(

[T ]
(r)
t+∆t

)−1 {
R
}(r)

t+∆t
(17)

where the superscript r is the Newton-Raphson iteration parameter. Once the convergence is obtained, the angular
accelerations and velocities can be computed afterwards at time t+ ∆t by using the following Newmark approximations:α̈1

α̈2

α̈3


t+∆t

= a0

(α1

α2

α3


t+∆t

−

α1

α2

α3


t

)
− a2

α̇1

α̇2

α̇3


t

− a3

α̈1

α̈2

α̈3


t

(18a)

α̇1

α̇2

α̇3


t+∆t

=

α̇1

α̇2

α̇3


t

+ a6

α̈1

α̈2

α̈3


t+∆t

+ a7

α̈1

α̈2

α̈3


t

(18b)

with a6 = (1− δ)∆t, a7 = δ∆t and δ = 0.5 [28].
Without loss of generality, the first iteration r = 1 can be initialized with the solution obtained at the previous iteration

of time t. Regarding the Newmark process, the initial conditions must be as reliable as possible to avoid divergence of
the algorithm. A simple idea consists in starting the acquisition when the system is at rest where all the accelerations,
velocities and displacements are nil. In this way, the Newmark scheme is initialized with nil conditions. Provided noise in
the measurements is sufficiently low, these initial conditions are the most reliable ones.

Once the angular displacements, velocities and accelerations are calculated at each time step, the translational variables
can be computed; this will be denoted the translation problem. To this end, the translational accelerations can be isolated
from Eq. (8) so that: 

Ẍ0

Ÿ0

Z̈0


R0

= [PR0→R]~γi −
[
P̈R0→R

]xAi

yAi

zAi

− ~g (19)
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It can be seen in this last equation that the accelerations in the three directions must be known at the same location.
This may be obtained with a tri-axial sensor or with three mono-axial sensors. Some of these accelerations may have
already been used for the previous rotation problem, in order not to exceed the maximum number of six accelerograms
to be used. It should be recalled here that if the sensors cannot capture low frequencies or static components and if the
angular displacements remain small it may be necessary to cancel the gravitational acceleration in Eq. (19).

Finally, the translational displacements (X0, Y0, Z0) remain to be computed by a double integration of the translational
accelerations (Ẍ0, Ÿ0, Z̈0), which can be done for instance with another Newmark approximation, as in Eqs. (18).

2.4. Data processing for convergence requirement

As stated in Section 1, the main issue associated with the use of numerical time integration to obtain the complete
motion of the system is the likely divergences that occur owing to several reasons such as the noise in the measurements,
the calibration sensor bias, the uncertainties of the sensor locations, the imperfect knowledge of the initial conditions, etc.
In some rare cases, divergence behavior may be canceled after the completion of the steps described in Section 2.3. This
is the case when there are static components in the acceleration or non-zero mean, leading to a quadratic time divergence
of the type x(t) + C2t

2 + C1t where C2 and C1 are arbitrary constants and x(t) is the real time variation of one of the
6 DOFs. By applying a high-pass filter, the spurious part C2t

2 + C1t can be easily removed and x(t) can be isolated
provided the latter does not contain any frequency below the cut-off frequency of the filter. Unfortunately, in most cases,
this first divergence when acting with the rotation DOFs quickly induces a second divergence in the variation of x(t) that
cannot be corrected afterwards. That is why the high-pass filter has to be applied earlier and several times within the
time loop of the numerical integration described in Section 2.3 for each angular DOF. A radical solution is to apply it
at each time step of the time integration process as described by Miles [27]. However, this author did not mention the
likely side effects related to the filtering and how to deal with them. Furthermore, successive filtering may not only result
in drastically increasing the computational cost, but it can also greatly reduce or increase the original signal if the same
parts of the signal are filtered several times.

The alternative proposed in the present paper is to apply high-pass filters with cut-off frequency fc, which is the
first parameter of the REDEAT method, however not for each time step but rather at every t0 where t0 is the second
parameter. The latter is a time duration that will depend on the spectral content of the signal. This is performed in
combination with the use of a sine window function defined by the third parameter t1, at the beginning and the end of
the DOF time-variation already computed, in order to remove likely side effects of the filter.

To better illustrate this approach, let the following example be addressed. A mono-axial rotation of α2 = A2 cos(2π10t)
with A2 = 1◦ is imposed on the system, regardless of the center of rotation. This sinusoid is modified at the beginning
of the signal so that it slowly reaches its final full amplitude and consequently it has a smooth transition from 0 ◦ to 1 ◦.
The parameter t0 is set arbitrarily to 0.5 s. In order to determine the real motion, the algorithm described in Section 2.3
is employed and stopped at an arbitrary instant of time t∗ = 5.615 s. As mentioned above, an undesired divergence in the
original signal occurs since filtering has not been applied, that is to say since t = t∗ − t0 = 5.115 s, see Fig. 4a. The first
step of the data processing consists in multiplying the original signal α2(t) by a window function W (t) of half-sine type
and variable length defined in the following way:

W (t) = W1(t).W2(t) (20a)

W1(t) =

 1
2

(
1 + cos

(
π t
t1

+ π
))

∀t ∈ [0; t1]

1 ∀t > t1

(20b)

W2(t) =


1 ∀t ∈ [0; t∗ − t1[

1
2

(
1 + cos

(
π t−(t∗−t1)

t1

))
∀t ∈ [t∗ − t1; t∗]

0 ∀t > t∗

(20c)

where t1 is likewise a time duration that must respect 0 < t1 < t0. In this example, t1 is set to 0.2 s as seen in Fig. 4b.
Next, a high-pass filter of cut-off frequency fc, 4 Hz in this example, is applied to the resulting signal to obtain the
modified signal of Fig. 4c where the divergence has been removed. Owing to the windowing, only the interval of time
t ∈ [t∗−t0; t∗−t1] must be kept. Then, the time integration loop must restart at the time instant t = t∗−t1 (here 5.415 s),
until the next time instant t = t∗ − t1 + t0 distant from t0 where the data processing will once again be applied, etc. By
going backward in time, some parts of the signal must be recomputed several times. This consequently increases the time
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Figure 4: Data processing within the time integration loop

cost. Nevertheless, it permits having enough new data to be filtered and for every time instant in the signal to be filtered
only once. The purpose of the window function is for the signal to present the same value at its two extremities and thus
reduce the likely side effects created by the further filtering process, especially when using a very low cut-off frequency.
Therefore, the signal tends to nil values before applying filtering even with the accumulation of errors due, for instance,
to poor knowledge of the initial conditions or measurement noise. Because of this window, static non-zero components in
the rotations must be avoided, for instance by defining the orientation of the Galilean frame R0 to be same as R at rest.

By construction, the algorithm will stop performing this data processing at each time instant t∗ = t∗(p) = p(t0−t1)+t0
where p is a natural integer starting at 0. Depending on the choice of the parameter t0 and t1, it is possible that this
window W does not reach unitary value for the first iteration of p. This does not happen only if t1 > t∗ − t1, i.e. for

any p > ps =
⌈

2t1−t0
t0−t1

⌉
. Moreover, since the results of the inverse problem are kept only in t ∈ [t∗ − t0; t∗ − t1], it is

recommended to start the measurements at least t∗(ps)− t0 = ps(t0− t1) s before the motion of the system actually starts.
Firstly, this ensures that no essential accelerometric information is lost and secondly it guarantees nil initial conditions
that are essential for the inverse problem to succeed.

The choice of parameters fc, t0 and t1 depends on the situation to be analyzed and thus they will have to be adjusted.
For example, fc must necessarily be lower than the minimum frequency of interest in the real motion of the system, but
it must be high enough to efficiently remove all the likely divergence of the inverse problem. This will be effective only if
the successive filters are also applied often enough, thus with a low value of the second parameter t0. However, the latter
must be high enough in order to have sufficiently new computed data to processed afterwards, namely several periods in
the case of harmonic motion. Finally, the last parameter t1 will both control the length of the half-sine window function
and the given amount of data retained at each new iteration of the filtering application. It is legitimate to define t1 as
close as possible to t0 to ensure a smooth return to nil value, but this automatically increases the computational cost since
more signal has to be recomputed. The influence of these three parameters is investigated further in Section 4.1.

To ensure more efficient solving, it is recommended to use this data processing on every angular displacement and its
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respective angular velocity and acceleration during the time integration loop. In some cases, some discontinuities may
appear in the solutions, where the original signals are substituted by their filtered ones at the transition t = t∗ − t0.
Generally, this effect is more noticeable on the angular displacements whereas it may be drowned in the noise of the
angular accelerations. To overcome this issue, a good way is to recompute the angular velocities and displacements by two
additional successive integrations from the angular accelerations, for instance with a classical trapezoidal scheme, once the
time loop finished and the whole signals obtained. Moreover, other high pass filters may be applied to the whole signals
between these two time integrations, to ensure that no divergence can emerge back.

Finally, after all the angular variables have been computed and processed, the translational accelerations can be
obtained through a new time loop with Eq. (19). In the same way as for the rotations, once the new loop is finished,
the translational velocities and displacements may be computed from the translational accelerations with two successive
trapezoidal time integrations combined a with high-pass filter on the whole duration of the signal.

As a complementary remark, it may also be relevant to filter the accelerograms used as inputs, prior to the inverse
problem algorithm. On the one hand this helps to limit the study to a specific frequency range and, on the other hand,
to anticipate any 0-Hz static components responsible for divergence issues. Nevertheless, special care must be taken when
large rotations occur, in which case centripetal acceleration may exhibit non-negligible static components that must be
accounted for. More details on this topic are given in Section 3.4.

For the sake of completeness, the different steps described in Sections 2.3 and 2.4 are summarized in the flowcharts of
Fig. 5 and Fig. 6 corresponding to the rotation and translation problems, respectively.

3. EXPERIMENTAL VALIDATION

3.1. Presentation of the experimental setup

An experimental investigation is carried out to validate the technique proposed. The device used is the 6-DOF hydraulic
long stroke shaker from Team Corporation® presented in Fig. 7a, which is a cube with an edge of 0.8128 m able to provide
accelerations up to 10 g within a frequency range of [0-250] Hz. Its motion is generated by the simultaneous displacement
of three orthogonal pairs of hydraulic cylinders that can produce three translations and three rotations of the very stiff
steel yellow fairing (which is considered perfectly rigid within the operational frequency band). To this fairing is attached
the moving frame of reference R, represented in red in Fig. 7b. The position of this frame will depend on the test to
be performed. That is to say, it varies according to where the instantaneous axis of rotation (passing through O in the
case of rotational motion only) is to be located. Thus, to define the position of O a point C fixed to the shaker is used,
irrespective of the test, located at the center of the upper face of the cube. The orientation of R will however always
remain the same, with its axes directed toward the normal of each face of the shaker.

The shaker is driven by accelerometric data that are part of a closed loop algorithm. The latter compares the reference
and measured accelerations after each iteration and corrects the motion accordingly afterwards. To obtain a specific
motion defined in terms of six targeted displacements, a first direct problem (see Fig. 3) is applied to compute the
targeted accelerometric data sent to the closed loop algorithm. The experimental accelerations corresponding to the real
motion are then measured and used in this paper to solve the inverse problem and thus determine the real motion of the
system. Nevertheless, the reliability of this inverse problem must first be certified in order to ensure that the differences
between the targeted and calculated displacements do not originate from errors related to the inverse problem but rather
from real physical phenomena. Since it is experimentally more convenient to use on-board sensors, this validation is
performed with accelerometers and gyroscopes instead of sensors measuring displacements. In this context, since the
solution of the inverse problem gives the six displacements of the system, the idea is to use them as the inputs of a second
direct problem as shown in Fig. 3, to obtain the “numerical” linear accelerations and angular velocities to be compared
with the experimental ones provided by other sensors not already used in the inverse problem. In order not to create any
confusion between the three different sets of data involved, specific adjectives are used throughout the further sections:
targeted for the motion and accelerations that are to be reproduced by the shaker, calculated for the data related to the
solution of the inverse problem, and real for the data related to physical and measured phenomena.

Thus, the shaker is instrumented with three sets of sensors. The first one is composed of four tri-axial PCB ICP®

356A15 accelerometers located at the four vertices of the upper face (rows 1 to 4 of Table 1), with sensitivity of 100
mV/g. They are used exclusively for the inverse problem. Although there are more data than required for the latter to
work, only six accelerograms among the twelve available of Table 2 will be used in every case as this is a requirement
of the present paper. The tri-axial information will be useful to investigate the influence of the sensor’s direction and
position, which is described in Section 4.2. The second set of sensors is composed of six mono-axial PCB ICP® 333B40
accelerometers located by pairs on three orthogonal faces (rows 5 to 10 of Table 1), with a higher sensitivity of 500 mV/g.
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Figure 5: Block diagram of the numerical and data processing to obtain the 6 DOFs - Rotation problem

They are used exclusively for both driving the system (first direct problem) and the validation (second direct problem).
The collection of data related to these tri and mono-axial accelerometers is done by a DataPhysics acquisition system,
permitting synchronous time acquisitions with sampling up to 42 kHz. A third set of sensor is used, composed of four
Delsys® Trigno IM providing both tri-axial accelerations and tri-axial gyroscopes (rows 11 to 14 of Table 1). They are
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Figure 6: Block diagram of the numerical and data processing to obtain the 6 DOFs - Translation problem

used exclusively for the validation step. Since the latter were originally designed for sports monitoring and biomedical
applications, the connections are ensured through Wi-Fi and consequently the sampling frequency is relatively low, that
is to say 147 Hz. The accelerations and angular velocities provided with these sensors are respectively up to 16 g and
2500 ◦/s.

For all the further cases, the Galilean frame of reference R0 initially has the same orientation as R, namely the
rotations do not have static values when the system is at rest. Regarding all the experimental validations, unless explicitly
mentioned, the sampling frequency is fe = 1024 Hz and all the accelerograms used as inputs of the inverse problem are
pre-filtered with high-pass and low-pass cut-off frequencies of 450 Hz and 1.5 Hz, respectively. Besides, the gravitational
participation has been removed since the piezo-electric accelerometers used cannot deal with low frequencies and the
variations of angle involved are too low. All the computations were performed on a Windows 10 environment using a
i7-6820HQ CPU with 2.70GHz.

3.2. Harmonic motion with two combined rotations

For the first validation case, a two-axial sinusoidal rotation of the system is defined around the axes ~Z0 and ~Y2 defined
respectively by the angular displacements α1(t) = A1 cos(2πf1t+ϕ1) and α3(t) = A3 cos(2πf3t+ϕ3) with A1 = A3 = 0.1 ◦,
f1 = 16.875 Hz, f3 = 11.25 Hz, ϕ1 = 180 ◦, ϕ3 = 137 ◦ and t the time parameter varying in [0; 16] s. With these two
frequencies involved and even with the combination of their harmonics of type |pf1 ± qf2| where (p, q) are any set of
natural integers, this case is periodic with a frequency of 5.625 Hz. The origin O of R, through which the instantaneous
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Figure 7: Experimental setup

Sensor ID Sensing direction x [m] y [m] z [m]
T1 x, y, z -0.4064 0.4064 0
T2 x, y, z -0.4064 -0.4064 0
T3 x, y, z 0.4064 -0.4064 0
T4 x, y, z 0.4064 0.4064 0
M1 z -0.2094 0.1194 0
M2 z 0.1864 -0.1164 0
M3 x 0.4064 -0.2350 -0.5461
M4 x 0.4064 0.2350 -0.5461
M5 y 0 0.4064 -0.1400
M6 y 0.4064 0.4064 0
D1 x, y, z 0 0.4064 0
D2 x, y, z 0 0.4064 0
D3 x, y, z 0 -0.4064 0
D4 x, y, z 0 -0.4064 0

Table 1: List of sensors used and their coordinates in R with respect to the center C of the upper face of the shaker

axis of rotation must pass, is shifted from C in ~x by 0.0714 m and 0 m in the other axes, as shown in Fig. 7b. The origin
O0 of R0 is defined so as to be coincident with O, therefore the translations have nil static values. This motion is sent to
the closed loop driving algorithm and the experimental accelerations are collected to solve the inverse problem. The three
parameters of the latter are defined as fc = 1.5 Hz, t0 = 0.3 s and t1 = 0.2 s. It can be noted that fc is chosen far enough
from the minimum frequency involved here and that t1 < t0. The accelerograms used for the rotational part of the inverse
problem according to Eq. (15) and Table 2 are i1 = 1, j1 = 4, i2 = 3, j2 = 6, i3 = 3 and j3 = 12. It must be emphasized
that only 5 accelerograms are used since i2 = i3. The choice of these five accelerograms has not been done arbitrarily
but is the result of a previous research devoted to reducing the average condition number of the matrix [T ] of Eq. (16),
which is in this case equal to 1.00013. More details about this matrix are given in Section 4.2. Regarding the translation
problem which requires the tri-axial acceleration at the same location, and given the accelerograms already used for the
rotations, both accelerograms 2 and 5 of Table 2 could be used to solve Eq. (19). Here, the former was chosen arbitrarily.
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Accelerogram
number

Sensor
ID

Direction

1 T1 x
2 T1 y
3 T1 z
4 T2 x
5 T2 y
6 T2 z
7 T3 x
8 T3 y
9 T3 z
10 T4 x
11 T4 y
12 T4 z

Table 2: Numbering of the accelerogram to be used in the inverse problem

Since it is a rotational motion, the first obvious validation is done the gyroscopes from Delsys®. In addition, tangential
acceleration is detected by the accelerometers, then the second validation is made with the mono-axial accelerometers from
PCB® which provide better quality than those from Delsys®. The results are compared in the time domain with time
history responses and in the frequency domain by applying Fast Fourier Transform to the periodic part of the test only
(between the beginning and the end of the shaker’s motion). For the sake of clarity, only a small part of these curves
is shown in the time domain, but at the end of the test where the error accumulation is expected to be greater. The
Fourier transforms are normalized by the length of the signal and plotted in dB with 1 ◦/s and 1 g as the dB references.
In this example, comparisons are made with the main angular velocities and linear accelerations involved, namely ω0

y, ω0
z

(components in ~y and ~z of the frame R of the angular velocity vector of Eqs. (5)) and γ~x (acceleration in ~x of the frame
R), respectively with sensors D1 and M3 of Table 1 in Fig. 8 and Fig. 9. In view of these first results, it can be emphasized
that the REDEAT method is highly reliable, in both the time and frequency domains, and both translation and rotation.
However, slight discrepancies may be noted, especially in the angular velocities. This can be explained with the lower
quality of the gyroscopes employed with respect to the tri-axial accelerometers used in the inverse problem. In particular,
spurious frequency peaks appear due to aliasing that are not present in the inverse problem results due to the preliminary
application of low-pass filters and the higher sampling frequency. Furthermore, noise is much more significant with the
gyroscopes as can be seen in the spectral responses of Fig. 8. Regarding the linear accelerations, outstanding agreement
is observed between the two results and the noises are relatively similar. Only a small difference can be noted with the
presence of one spurious frequency peak predicted by the inverse problem around 28 Hz. Nevertheless their amplitudes
remain acceptable. The computational cost required to performed the whole inverse problem described in Section 2.3 and
2.4 was only 105 s for a measurement length of 17677 (17.26 s for the sampling of 1024 Hz used).

Once the proposed technique has been validated, the calculated results of the inverse problem can be considered
representative of the real physical motion of the shaker. Thus, it is of great interest to assess the error between the
targeted motion and the real-calculated experimental motion. Therefore, the 6 DOFs (X0, Y0, Z0, α1, α2, α3) of the shaker,
are shown in Fig. 10a and Fig. 10b. The targeted translations are not presented since they are all nil, as defined by the
conditions of the test. Only the beginning and a small part of the signals are presented here in order to better distinguish
the different curves and show the transient part when motion starts. These results demonstrate that the targeted motion
is globally faithfully reproduced, especially for the rotation of angle α1. The rotation of angle α3 is, in contrast, slightly
lower than expected, yielding 0.09 ◦ instead of the 0.1 ◦ imposed. Regarding the other DOFs that should be nil, an extra
rotation of angle α2 is present, which represents up to 20 % of the other rotation references. Moreover, three translations
also act with a maximum value of 0.102 mm in ~X. Therefore, the actual instantaneous axis of rotation no longer coincides
with the targeted one, especially for the instants of time when only translational velocities remain (α̇1 = α̇2 = α̇3 = 0).
However, even in this case, this level of additional translation may appear insignificant when considering in terms of
accelerations, which are responsible for inducing additional forces on an on-board structure installed on the shaker. If
pure rotation is wanted, which is the case here, what matters is to ensure that the participation of these translations
in acceleration is sufficiently lower than the linear accelerations normally produced by the rotation on key locations of
the on-board structure tested. For instance, the ratio in RMS (Root Mean Square) of Ẍ0 with respect to the previous
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Figure 8: Comparison between calculated and real (with gyroscope D1 of Table 1) angular speeds for harmonic motion in the time and
frequency domains
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Figure 9: Comparison between calculated and real (with accelerometer M3 of Table 1) linear accelerations in ~x of R for harmonic motion in
the time and frequency domains

acceleration shown in Fig. 9 is only 13.42 %. This can be reduced for other directions and locations. Of course, the
cross-sensitivity of the sensors to the transverse directions may also introduce bias in this evaluation.
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Figure 10: Comparison between targeted and calculated motions

3.3. 6-DOF random motion

In order to highlight the accuracy of the REDEAT method with any possible case, a second test consisting in complete
multi-axial motion with 6-DOF random motion is addressed. To this end, since no specific motion is desired, no first
direct problem is run to obtain targeted accelerations to be sent to the driving system process. Instead, random time
signals defined by the same white noise are sent directly to the shaker, generating the random displacement of the six
hydraulic actuators. The spectral content of this white noise is defined through a Power Spectrum Density (PSD), which
is nonzero in [4-40] Hz and nil everywhere else. The duration of the random signal is approximately 27s. In contrast
with the previous sinusoidal combined rotations test, the location of O is of no importance in this random test, hence
it is defined so as to be coincident with C. Likewise for O0 for the system at rest. The three parameters of the inverse
problem are kept as with the previous case, at fc = 1.5 Hz, t0 = 0.3s and t1 = 0.2 s. Once again, fc has been chosen far
enough from the minimum frequency of 4 Hz involved here. The choice of the accelerograms used for the rotation and
translation problems remain the same as before. Thanks to the 6-DOF motion, a complete validation can be established
by comparing all the angular speeds (ω0

x, ω
0
y, ω

0
z) and the linear accelerations (γ~x, γ~y, γ~z) detected in R by specific sensors

fixed to the shaker. This is done respectively with the three gyroscopes of sensor D1 and accelerometers M3, M5 and M1
of Table 1. Acquisition is done before the motion starts and after it stops, so that the actual measurement duration is 30
s. The calculated results are compared with the measured data in the time domain with time history responses and in
the frequency domain by computing the PSD of the response during the random part of the test only, i.e. between 1 s
and 28 s. These PSDs are plotted in dB/Hz with 1 ◦/s and 1 g as the dB references.

Even for a complete multi-axial motion with a random profile, excellent prediction capabilities of the REDEAT method
can be noted through the comparisons shown in Fig. 11 and Fig. 12. Once again, greater differences are seen with the
gyroscopes, owing to their lower sampling, aliasing and higher noise. Regarding the accelerometers, the signals are
extremely similar, even for low acceleration values and at low frequency despite the technology used. The computational
cost required for this case was only 167 s for a measurement length of 30721, which can be considered as satisfactory.

3.4. Simulated case with larger rotations

The main drawback of the 6-DOF shaker used previously is that it cannot produce large angular displacements. This
restricts the solving of the inverse problem to a linear system of equations. An alternative proposed to demonstrate
its accuracy even for nonlinear problems is to impose larger rotations on a simulated version of this 6-DOF shaker. To
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Figure 11: Comparison between calculated and real (with gyroscope D1 of Table 1) angular speeds for random motion in time and frequency
domains
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Figure 12: Comparison between calculated and real (with accelerometers M3, M5 and M1 of Table 1) linear accelerations in ~x, ~y and ~z of R
for random motion in time and frequency domains

this end, a specific targeted motion is sent to the direct problem illustrated in Fig. 3 and the accelerations detected by
theoretical accelerometers, located at the same locations as those described previously and listed in Table 1, are computed.
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In order to be more representative of real experimental conditions, a Gaussian white noise is added to these accelerations.
Then, the resulting accelerograms are sent to the inverse problem to obtain the corresponding calculated 6 DOFs. The
main advantage of this approach is that the real solution in displacement is known since it is that which is used as the
input for the direct problem, namely the targeted motion. Hence, the validation of the inverse problem can be performed
directly in terms of displacements instead of angular velocities or accelerations as in the experimental cases of Sections
3.2 and 3.3.

The case study comprises a two-axial harmonic rotation, defined around axes ~Z0 and ~X1 with angles α1 = A1 cos(2πtf1+
ϕ1) and α2 = A2 cos(2πtf2 + ϕ2), such as A1 = 50 ◦, A2 = 40 ◦, f1 = f2 = 1 Hz, ϕ1 = 57 ◦ and ϕ1 = 91 ◦. These low
frequencies were chosen intentionally, so as to limit the angular and linear accelerations that could be quite significant
for this value of amplitude, and thus remain in an experimentally viable framework. The origin O of R is shifted from C
by 0.114 m, 0.0285 m and -0.33 m along the axes ~x, ~y and ~z, respectively. Moreover, nil static translational values are
considered so that O0 and O are theoretically coincident. The time varies in [0-19.6] s with a time step of ∆t = 1/1024
s. The noise added to the accelerograms is defined by a Gaussian random process with zero-mean and a standard value
deviation of 0.0045 g, typical of that exhibited by the tri-axial accelerometers of Table 1. In addition, the sinusoidal
motion is modified to simulate a smooth start-up and stop of the system and thus avoid infinite angular accelerations.
This is done by multiplying the angles α1 and α2 with a window function similar to that in Fig. 4b, built such that it is
unitary for t ∈ [4; 15] s and nil for t ≤ 3 s and t ≥ 16 s. Meanwhile, the sinusoids are delayed by 3 s, so that the cosine has
phases ϕ1 and ϕ2 when the motion starts at t = 3 s. The value of the three parameters of the inverse problem are chosen
as fc = 0.3 Hz, t0 = 3 s and t1 = 2.8 s. These parameters were adjusted according to the aspect mentioned in Section
2.4. In particular, t0 was chosen high enough to account for several periods of the excitation and t1 must be relatively
close to t0 in order to avoid any jump between two successive time iterations typical of nonlinear problems and which
produces extreme divergences in numerical solving. The accelerograms used for the inverse problem are the same as in
the previous experimental cases. The computational time consumed was about 167 s for this case, with a measurement
length of 20068.

The results in terms of the angular displacements (α1, α2, α3) and the translational displacements (X0, Y0, Z0) are
shown in Fig. 13 and Fig. 14, respectively. Once again, since the targeted (X0, Y0, Z0) are nil, the corresponding curves
are not shown. It is noteworthy that the rotations of angle α1 and α2 are well predicted, in both amplitude and frequency,
especially in the periodic part of the test. However, a slight discrepancy may be pointed out when the motion starts and
ends. The other rotation of angle α3 does not exceed the value of 2 ◦ which is relatively reasonable with respect to the
other ones. Likewise, the translational displacements are quite small, remaining below 2.1 cm, which is considerably lower
than the overall displacements undergone by any rotating part of the system for such large rotations. All these errors can
first be explained by the noise added to the accelerograms. But the main source of error actually comes from the proximity
of the cut-off frequency fc of the high-pass filters at the frequency of 1 Hz involved in the rotations. For such cases, a
delicate compromise has to be found between a high value of fc that permits efficiently removing as many low frequencies
(responsible for divergence due numerical integration) as possible or a low value that permits filtering far away from the
frequencies of the excitations involved. In the present case, fc = 0.3 Hz appeared the best choice. In cases for which the
frequencies of excitations are even lower, it might be difficult to find a satisfactory value for fc and thus converge toward
a reliable solution. This might represent one drawback of the REDEAT method.

Figure 13: Comparison between calculated and targeted angular displacements for large rotations

If large rotations are required experimentally, special care must be taken. Indeed, in this case, centripetal accelerations
may exhibit 0-Hz components of the same order as the main frequency of the tangential accelerations. For example,
for a mono-axial rotation of α1 = A1 cos(2πtf1) with A1 = 50◦ and an arbitrary radius R, the centripetal acceleration
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Figure 14: Comparison between calculated and targeted (nil) translational displacements for large rotations

−R(α̇1)2 has a 0-Hz static component that represents about 0.44% of the f1-Hz component of the tangential acceleration
Rα̈1. While for small rotations it is relevant to orient the accelerometers in the tangential direction where accelerations
are dominant, in larger rotations this might produce bias error due to the inherent cross-sensitivity of the sensors. In
addition, it is important to use sensors that can yield 0-Hz components in order to preserve the full accelerometric data.
Of course, these constant accelerations must not be removed prior to the inverse problem with a high-pass filter.

4. INFLUENCE OF IMPORTANT PARAMETERS

4.1. fc, t0, t1 and window function

As described in Section 2.4, the inverse problem proposed in the present paper includes three parameters. Each one
has its own role and thus needs to be adjusted. To illustrate this, the experimental random test of Section 3.3 is reused,
with the same parameters, unless otherwise specified. First, the influence of the cut-off frequency fc in the inverse problem
solution is addressed. To do this, several values are defined between 0 Hz and the minimum frequency of 4 Hz of the DSP,
such as fc = [0.1; 0.5; 1; 2; 3] Hz, while t0 = 0.3 s and t1 = 0.2 s. Owing to the better quality of the accelerometers, only the
accelerations are used as a basis for comparison. Moreover, only sensor M3 which shows the highest errors is displayed in
order to lighten the figure. Since differences are more visible in the spectrum, only the DSP of the responses is presented
here in the low frequency range of [0-11] Hz. The corresponding curves are presented in Fig. 15. It can be seen that
most of the effects are noted in low frequency. As expected, for the lowest value of fc, the calculated solution provides a
significant biased estimation below 1 Hz, since the divergence has not been efficiently removed. The low frequency portion
can be considered satisfactory from fc of 1 Hz. Above 4 Hz, it is demonstrated that a cut-off frequency higher than 3 Hz
already starts underestimating the frequency range of interest of the DSP. Therefore, for this case a good compromise can
be found between fc = 1 Hz and fc = 2 Hz.
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Figure 15: Influence of the cut-off frequency of the successive high-pass filters

In order to reduce the time costs, the successive high-pass filters can be employed fewer times by increasing the value
of t0, to the detriment of the accuracy of the solution. Once again, only the accelerations are used for the comparison,
however for the three sensors M3, M5 and M1 of Table 1. Nevertheless, since the discrepancy is sometimes hardly
visible in both the time and frequency domains, the influence of t0 is assessed through the following error indicator
ε =RMS(ref − sol)/RMS(ref), where RMS is the Root Mean Square value of the time series, ref is the accelerometer
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signal and sol is the solution of the inverse problem. These RMS values are computed on the random part of the motion,
between t = 1 s and t = 28 s. In this way, several values of t0 are tested, such as t0 = [0.3; 1; 2; 3; 4; 5; 10] s, while fc = 1.5
Hz and t1 = 0.2 s. The results are presented in Table 3. The first comment to be emphasized is that the error indicator
ε may seem relatively high, even for low values of t0 around 0.3 s, where the tendency appears to converge. This can be
explained by several reasons. Firstly, the reference used here has its own bias, due to measurement noise, cross-sensitivity
and calibration bias, making it an imperfect reference basis. Secondly, the six accelerograms used in the inverse problem
are also obtained from sensors each one having its own bias. Thus, even for the best optimized values of fc, t0 and t1 and
good agreements such as that shown in Fig. 12, it is normal to remain with an ε of this order. That being said, on looking
at Table 3 it can be highlighted that, as expected, the accuracy of the REDEAT method deteriorates as the successive
filters are applied less frequently. Nevertheless, keeping the same value of t1 = 0.2 s efficiently reduces the computational
cost. This cost presents some large gaps, for instance from t0 = 0.3 s to t0 = 1 s or from t0 = 2 s to t0 = 3 s. This is
due to the integer number of time returns in the algorithm of Fig. 5 (namely when t is substituted for t− t1), which is a
piecewise constant function of t0. This cost also seems to converge toward an asymptotic value, around 74 s. This is the
time cost normally required to solve the rotation problem of Fig. 5 directly, without moving backward in time. In view
of these results, a good compromise between accuracy and time cost could be obtained for t0 = 1 s. Finally, it should
be emphasized that the error indicator ε is higher in ~x (M3) than the other one, because it is the direction with less
acceleration, as seen in Fig. 12, thus subject to more noise error.

t0 [s] 0.3 1 2 3 4 10
ε M3 [%] 21.41 21.44 24.69 33.77 121.98 216.96
ε M5 [%] 13.22 13.25 15.95 21.88 79.44 127.95
ε M1 [%] 10.80 10.81 11.13 11.98 39.96 65.85

Time cost [s] 167 84 83 76 75 74

Table 3: Influence of the second parameter t0 on ε =RMS(ref − sol)/RMS(ref)

Finally, the last parameter to be investigated is t1, which controls both the length of the half-sine window function
and the interval of time to be retained at each successive filter application. As for fc, the influence of this parameter is
mostly seen at low frequency and only the acceleration along ~x with M3 is analyzed. Thus, four values of t1 are tested,
such as t1 = [0.01; 0.1; 0.2; 0.25] s, while fc = 1.5 Hz and t0 = 3 s. In addition, the inverse problem is also solved without
the use of W (t), to emphasize the effect of the window function. The results are presented in Fig. 16. The corresponding
computational cost for t1 = [0.01; 0.1; 0.2; 0.25] s are 76 s, 98 s, 167 s and 346 s, respectively. As expected, not resorting to
the window function provides bad predictions at low frequency. The conclusion is the same for the low value of t1, below
0.1 s. In contrast, when t1 is closer to t0, the results improve significantly and seem to converge toward the reference,
except for the very low frequencies below 0.25 Hz. For higher frequencies, however, above 5 Hz, the results are quite
similar and become closer as the frequency increases. It can be concluded that increasing the value of t1 improves the
accuracy of the REDEAT method, to the detriment of the computational cost which are more than doubled from t1 = 0.2
s to t1 = 0.25 s.
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Figure 16: Influence of the third parameter t1
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4.2. Influence of accelerometers directions and positioning

As the 6-DOF shaker is equipped with four tri-axial accelerometers fixed in one plane, their twelve accelerograms
numbered in Table 2, are available to solve the inverse problem. Nevertheless, as it is a prerequisite of the paper proposed,
only six accelerograms are used, which leaves a lot of possibilities. Clearly, all the configurations are not all suitable,
because, for instance, not all the accelerograms must be oriented all along the same direction. It is therefore expedient
to seek which are the best configurations and thus assess the influence of the direction and position of the sensors on the
results calculated by the inverse problem. Only the rotation problem described in Section 2.3 and illustrated in Fig. 5
is treated here since it is that most subject to divergence issues. Therefore, it is necessary to choose three subtractions
of two accelerograms having the same orientation and belonging to different sensors. These three subtractions need not
necessarily represent all three directions (~x, ~y, ~z), as shown by the configuration used in Sections 3.2 and 3.3 which uses
only subtractions in ~x and ~z. Moreover, the same accelerograms can be used several times. Choosing subtractions of
two accelerograms having the same direction from the twelve accelerograms, and eliminating the redundant subtractions
results in a large number of lists of nine-linearly-independent subtractions. One of them is presented in Table 4. It should
be mentioned that, as only three subtractions are required for determining the three rotations (α1, α2, α3), 84 combinations
of three subtractions are possible in each list of nine-linearly-independent subtractions.

Subtraction
number

Accelerograms
subtractions

1 T1x - T2x (1-4)
2 T1y - T2y (2-5)
3 T1z - T2z (3-6)
4 T1x - T3x (1-7)
5 T1y - T3y (2-8)
6 T1z - T3z (3-9)
7 T1x - T4x (1-10)
8 T1y - T4y (2-11)
9 T1z - T4z (3-12)

Table 4: An example of a list of nine-linearly-independent-subtractions, three subtractions must be extracted from them for the rotation
problem (the numbers in parenthesis refer to Table 2)

As mentioned in Section 2.3, a major initial factor for the success of the algorithm is to ensure a low condition
number of the tangent matrix [T ] of Eq. (16). This number, which can be computed as the ratio of the maximum
singular value of the matrix to the minimum one, represents how sensitive the errors in the results are to the errors in the
inputs of the problem. Thus, its variation with respect to the choice of the accelerograms helps to make a preliminary
choice from these 84 combinations of three subtractions. A good way to achieve this goal is to analyze the algorithm
stability when the system is at rest, namely when there are no angular displacements, velocities or accelerations. In the
latter case, the rows of the tangent matrix [T ] simplifies as a0

[
−(yi − yj) 0 (zi − zj)

]
, a0

[
(xi − xj) −(zi − zj) 0

]
or a0

[
0 (yi − yj) −(xi − xj)

]
when the direction related to the corresponding subtractions is in ~x, ~y or ~z, respectively.

The indexes (i, j) are two integer subscripts from 1 to 12, denoting the two accelerograms corresponding to one subtraction
in Table 4, and (xi, yi, zi) and (xj , yj , zj) are the coordinates in R of the two corresponding accelerometers (see Eq. (11)).
Given that the four tri-axial accelerometers are in the same plane normal to the ~z axis, then (zi − zj) is nil for any
(i, j). Thus, it is clear that, when [T ] has two rows with a sensor direction in (~x, ~x), (~y, ~y) or (~x, ~y), it will not have full
rank and thus not be invertible. It may have full rank for arbitrary values during motion but the condition number will
remain relatively high. Therefore, in this specific planar configuration, at least and only two of the three rows required
must be related to a sensor direction in ~z. Hence, from the initial 84 possible combinations of three subtractions, only
12 fulfill this condition. They are shown in Table 5 with their respective condition number of [T ] without motion. It can
be seen that they are of the same order and all reasonably low. Furthermore, 4 combinations have the minimum possible
condition number of 1, whereas for the 8 others it is 2.618. This is due to the fact that for the latter, one subtraction of
two non-neighboring sensors is used in ~z (the subtraction number 6 associated to sensor T1 and T3 here), which makes
the tangent matrix more complex. Hence, combination 2 of Table 5 was chosen in the experimental validation since it is
one of four that provides the best condition number, at least at rest and thus irrespective of the test or the quality of the
sensors measurements.
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In contrast, depending on the motion to be characterized and the quality and position of the sensors, one of these 12
combinations can turn out to be optimal. It will no longer be found by assessing the condition number which, although
varying with time, remains of the same order regardless of the motion. This choice will be based more on the accuracy
with which the motion is predicted. Regarding the previous numerical/experimental comparisons of Sections 3.2 and 3.3,
any other combination of Table 5 gives relatively similar results, since all the tri-axial accelerometers are from the same
model (thus with same experimental bias), symmetrically positioned and the displacements remain small. This means
that a quite arbitrary configuration of the sensor locations and directions can be used.

For the case of large rotations in Section 3.4, it appears that combinations 4, 5, 6, 7, 10 and 11 are unstable, owing
to a divergent prediction of α2. The common feature of these combinations is to be composed with one accelerogram
subtraction from two non-neighboring sensors T1 and T3 either in ~x or ~y. Thus, this accelerogram subtraction, which is
normally only sensitive to the rotation of angle α2, is also sensitive to the rotation of angle α1 due to their simultaneity
and the coordinates of T1 and T3, creating uncertainty. In contrast, all these unstable combinations become stable and
the results are satisfactory as soon as the motion is composed only of the rotation of angle α2. This shows that, for large
combined rotations at least, it is preferable to set up the sensors so that each pair monitors only one rotation. Whatever
the case, it will be expedient first to numerically simulate the motion under test and solve the inverse problem as done in
Section 3.4 to state whether the location of the sensors is suitable (i.e. with stable and accurate results), before fixing the
accelerometers onto the 6-DOF shaker.

Combination
number

Subtraction
combination

Accelerograms
subtractions

Initial cond.
number

1 (1,3,6) (T1x-T2x,T1z-T2z,T1z-T3z) 2.618
2 (1,3,9) (T1x-T2x,T1z-T2z,T1z-T4z) 1
3 (1,6,9) (T1x-T2x,T1z-T3z,T1z-T4z) 2.618
4 (3,4,6) (T1z-T2z,T1x-T3x,T1z-T3z) 2.618
5 (3,4,9) (T1z-T2z,T1x-T3x,T1z-T4z) 1
6 (3,5,6) (T1z-T2z,T1y-T3y,T1z-T3z) 2.618
7 (3,5,9) (T1z-T2z,T1y-T3y,T1z-T4z) 1
8 (3,6,8) (T1z-T2z,T1z-T3z,T1y-T4y) 2.618
9 (3,8,9) (T1z-T2z,T1y-T4y,T1z-T4z) 1
10 (4,6,9) (T1x-T3x,T1z-T3z,T1z-T4z) 2.618
11 (5,6,9) (T1y-T3y,T1z-T3z,T1z-T4z) 2.618
12 (6,8,9) (T1z-T3z,T1y-T4y,T1z-T4z) 2.618

Table 5: Suitable combinations of three subtractions of Table 4 for the rotation problem

5. DISCUSSION

The slight discrepancies between the results of the REDEAT method and the experimental ones can originate from
several sources of error. Firstly, the sensors considered as a reference for the comparison may be biased or have a poorer
quality than expected. This is for instance the case of the gyroscopes used in Section 3.2 and 3.3 that present noise as
well as aliasing issues due to low sampling frequency. Likewise, some errors can be assigned to the inherent imperfections
associated with the accelerometers used as inputs of the inverse problem, such as noise, uncertainty on positioning and
orientation, calibration bias, etc. If only six accelerograms are used, then the problem is perfectly determined and there
will always be a solution despite the errors in these inputs. In order to locate and quantify the source of error, there is no
choice but to resort to additional accelerograms and solve the problem for different input configurations. Furthermore, if
the sensors present high cross-sensitivity, the latter can eventually be accounted for in the inverse problem algorithm to
limit error propagation. Running some simulated cases as that in Section 3.4 can also help to understand the deviation of
the solutions when introducing some known defects in the fictitious accelerometers, such as calibration bias in amplitude
or in phase.

Secondly, there are deviations related to the definition of the three parameters (fc, t0, t1) of the REDEAT method.
As seen in Section 4.1, a compromise may be made between accuracy and computational time consumption. Overall, the
main discrepancies between the experimental results and those of the REDEAT method reside in low frequency, where
the divergence related to double integration has the greatest effect. This can be troublesome for motion in this specific
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range, but possibly irrelevant for a random excitation with a spectral content such as that in Section 3.3. Moreover and
as expected, this mainly concerns the sensors subject to the lowest acceleration levels (e.g. sensor M3 in Fig. 12).

Finally, the remaining discrepancies may be tracked to the choice of the sensor locations and orientations. In particular,
this can significantly affect the condition number of the matrix to be inverted in the inverse problem. The further this
number is from one, the higher the number of numerical errors added to the experimental errors previously mentioned. It
is therefore essential to reduce this as much as possible, at least in the static state, as detailed in Section 4.2.

6. CONCLUSION

An original approach combining numerical integration and data processing was proposed to determine the real dis-
placements of multi-axial excitation shakers. This is of particular relevance to obtaining the real time variation of the 6
DOFs that must be used as inputs in any case of numerical/experimental comparison of an on-board structure. Moreover,
it helps to quantify the error between a targeted motion required for a given test and the real motion reproduced by the
device. As shown by the different tests that were carried out, the REDEAT method gives relatively accurate results, either
for harmonic or random motion, and small or large displacements, with low computational cost. The three parameters fc,
t0 and t1 were adjusted to enhance the predictions of the REDEAT method. Likewise, the position and orientation of the
sensors played an important role. It was shown in the present paper that only six accelerograms are necessary, obtained
from sensors located in the same plane. Although this technique was successfully applied to a 6-DOF shaker, it is clear
that it can also work for systems with fewer degrees of freedom such as tri-axial tables.

One of the limits of the REDEAT method is the difficulty of using it for tests with very low spectral contents, in
which case a delicate compromise must be found between removing the divergence issue from the algorithm while not
filtering the minimum frequency of the test. Another drawback is that the REDEAT method works only when the initial
conditions are known. In this sense, it is relatively well adapted when the measurements are started before the shaker
begins moving, but of little use when recording starts during the motion. Furthermore, the numerical integration involves
post-processing time cost that may prevent its suitability for real-time applications.
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