SUPPLEMENTARY MATERIAL

Small RNA-mediated regulation of the *tet*(M) resistance gene expression in *Enterococcus faecium*

Killian Le Neindre^{a,b}, Loren Dejoies^{a,b}, Sophie Reissier^a, François Guérin^{b,c}, Brice Felden^{a†}, Vincent Cattoir^{a,b,c*}

^aUnité Inserm U1230, Université de Rennes 1, Rennes, France

^bService de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France

^cCNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France

This PDF file includes supplementary Figures and Tables:

Tables S1 to S2

Figures S1 to S3

Supplementary Table S1 | Bacterial strains used in the study.

rains Relevant characteristics		Reference
E. faecium		
Aus0004	vanB-positive reference strain, isolated in Australia, 1998	[1]
Aus0004 ^{TR}	Mutant derived from Aus0004 with functional tet(M) (see Figure 1A)	This study
$\Delta ern0030$ -Aus0004 ^{TR}	Aus0004 ^{TR} deleted for <i>ern0030</i> (see Figure 1A)	This study
Aus0004 ^{TR} _pAT29	Aus0004 ^{TR} carrying empty pAT29 vector	This study
Aus0004 ^{TR} _pAT29Ωern0030	Aus0004 ^{TR} carrying recombinant plasmid pAT29 $\Omega ern0030$	This study
$\Delta ern0030$ -Aus0004 ^{TR} _pAT29	$\Delta ern0030$ -Aus0004 ^{TR} carrying empty pAT29 vector	This study
$\Delta ern0030$ -Aus0004 ^{TR} _pAT29 $\Omega ern0030$	$\Delta ern0030$ -Aus0004 ^{TR} carrying recombinant plasmid pAT29 $\Omega ern0030$	This study
Aus0004_pAT29	Aus0004 carrying empty pAT29 vector	This study
Aus0004_pAT29Ω <i>tet</i> (M)	Aus0004 carrying recombinant plasmid pAT29Ωtet(M)	This study
$Aus0004_pAT29\Omega tet(M)-\Delta_{205\text{-}239}ern0030$	Aus0004 carrying pAT29Ωtet(M)-Δ ₂₀₅₋₂₃₉ ern0030	This study
Aus0004_pAT29Ωtet(M)-TGA ₁₇₂₋₁₇₄	Aus0004 carrying pAT29Ωtet(M)-TGA ₁₇₂₋₁₇₄	This study
E. coli		
XL1blue	Strain used for 5'3'RACE mapping and cloning	Stratagene®
EC1000	Strain used for cloning	[2]

Supplementary Table S2 | Plasmids used in the study.

Plasmids	Relevant characteristics ^a	Reference
pGEM-T	High-efficiency TA cloning vector used for 5'3'RACE mapping (Amp ^r)	Promega®

pWS3	Temperature-sensitive pG(+)host9-derived shuttle vector used for gene disruption (Spc ^r)	[3]
pAT29	High-copy-number promoterless shuttle vector used for cloning (Spc ^r)	[4]
pAT29Ωern0030	pAT29 containing <i>ern0030</i> with its native promoter and rho-independent terminator (Spc ^r)	This study
$pAT29\Omega tet(M)$	pAT29 containing both <i>ern0030</i> and <i>tet</i> (M) genes (see Figure 1A) (Spc ^r , Tet ^r)	This study
$pAT29\Omega tet(M)-\Delta_{205-239}ern0030$	$pAT29\Omega tet(M)$ with a 35-nt deletion in <i>ern0030</i> comprising its rho-independent terminator (see Figure 1B) (Spc ^r , Tet ^r)	This study
pAT29Ω <i>tet</i> (M)-TGA ₁₇₂₋₁₇₄	pAT29 Ω <i>tet</i> (M) plasmid with an unique mutation (ATG \rightarrow TGA) in the translation initiation codon of the putative peptide leader (see Figure 1B) (Spc ^r , Tet ^r)	This study

^aAmp^r, ampicillin resistance; Spc^r, Spectinomycin resistance; Tet^r, tetracycline resistance.

Su	pp	lementary	Table S3	Oligonucleotides	used in the study	1
		• • • • • • • • • • • • • • • •				

Name	Nucleotide sequence (5'-3')	Purpose
sRNA0030F1	CATGTGATTCTAAAGTATCCAG	
sRNA0030F2	CTGTATGCTTTGTATACCTATGG	5'3'RACE
sRNA0030R1	AAAGGTATTCTTAAACTGGG	mapping
sRNA0030R2	CTAAGCCCTCCTAAAAAGGACATC	of <i>ern0030</i>
sRNA0030R3	CCCGCTATCAAATTGACAGTT	
KOern0030F1	CTATGAATTCAGCTTTCATGTGGTTGTCCATATAG	
KOern0030F2	TTTTTATGCCCTTTTGGGTTTTTTGAATGG	
KOern0030R1	CCAAAAGGGCATAAAAACTTAAATAATAGCACGTAAGAGC	Knockout deletion
KOern0030R2	GTTCGAATTCCTGTTTGATTACAATTTCGGCAG	of <i>ern0030</i>
KOern0030vF	TTGGAGATTCCTTTACAAATATGC	
KOern0030vR	TTTCCTGCATCAACATGAGC	
KOdfrGF1	AGAAGGAATTCCAAAGGTACAACGAGGACGG	
KOdfrGF2	ATACGCCTTTATAGTGGAGTACTACATTTACGAGATTCG	
KOdfrGR1	CTCCACTATAAAGGCGTATATATGCAAGACGTTGTCTTT	Restoration
KOdfrGR2	GTTCCAGAATTCCTAAAGGCTTGCTCCAGTAC	of <i>tet</i> (M) function
vF-KOdfrG	CATCAACACATCGAGGTCCG	
vR-KOdfrG	CTCCAGAATAAGCTCTATCAATCTTAC	
pCern0030F	GGTGGTGGATCCCAAATATTGGTACATGATTACAG	
pCern0030R	GGTGGTGAATTCGTGATTTTCCTCCATTCAAAAAC	
F-Dloopern0030	ATGCCCTTTTGGGTTTTTGA	Construction of
R-Dloopern0030	AACCCAAAAGGGCATTTTTTATGCATAACCATAGGTATAC	recombinant
R-StopPLtetM	TACAAAGTCAACAGATATTCTCTGGATACTT	plasmids
F-StopPLtetM	TACTGTTGACTTTGTATACCTATGGTTATGC	
R-pCtetM	GGTGGTGAATTCCAAAAAGAGCCGATAAGATGAG	
M13F	GTAAAACGACGGCCAGTG	
M13 Reverse short	CAGGAAACAGCTATGAC	Verification of
pWS3F1	TTTCCCAGTCACGACGTTGT	recombinant
pWS3R1	ACTGACAGCTTCCAAGGAGC	plasmid
pAT29vF	GTAAAACGACGGCCAG	constructions
pAT29vR	CAGGAAACAGCTATGAC	
qPCRsRNA0030F	CATGTGATTCTAAAGTATCCAGAGA	
qPCRsRNA0030R	TGCATAACCATAGGTATACAAAGCA	
qPCRTETMF	CGATTACAGAATTAGGAAGCG	RT-aPCR
qPCRTETMR	GATGTTCACCTTCGTATTTTCC	
adk-F	CCGCACATCTCAACAGGAGA	
adk-R	AGGCCAAGAGCTGTTTCGTT	
T7ern0030F	TAATACGACICACIATAGGGIGACIATITAAAAGGAGITAATAA	In vitro
р рартетм	ATATGUG	transcription
F DCDTETM	GGAGTTTTAGCTCATGTTGATGC	
F-FCKIEIM FODE	CCCTTTTGGGTTTTTGAATGGAG	PT PCP
F-DCRarn0030	GGAGTTAATAAATATGCGGCAAGG	KI-I CK
NRtmRNA	ТСССТАСТСТСАТСТСТСТТТТТС	
NBTetM	CGCTTCCTAATTCTGTAATCGC	
NBern0030*	GGTATTCTTAAACTGGGTACAAAAA	Duch en feu
NRRRSnutPI orn0030	AGGTATACAAAGCATACAGATATTCTCTGG	Probes for
NB5'ern0030	CAGTTTATTTAAGAATACCTTGCCGC	Northern blot
NBdfrG	GGTTCTTCCTACCTAATATTATCGG	
TETMDDINT	CTCCACTCTTATATAATAACC	
IEINIKUNI Drstftm d	CATGTGATTTTCCTCCAT	Toeprint assays
NDSIEIWI-K		

*Probe for *ern0030* used previously [16].

Supplementary Figure S1 | Validation of the Aus0004^{TR} strain by Northern Blot.

Northern Blots were performed on total RNAs extracted from Aus0004^{TR} cells collected at an OD_{600nm} of 2.1 corresponding to the late exponential phase of growth. The RNAs were extracted on cells grown in the absence (-) or presence (+) of tetracycline SIC (equivalent 1/32 of MIC). The detection of transcripts was performed by using *tet*(M)-specific and *dfrG*-specific probes (Supplementary Table S3). tmRNA levels were used as internal loading controls. The data show a representative experiment among three independent biological replicates.

Supplementary Figure S2 | Mapping of the 5' untranslated region (5' UTR) of *tet*(M) by RT-PCR.

(A) Schematic representation of the genetic environment of *ern0030* in *E. faecium* Aus0004 (Genbank accession no. CP003351.1). Black labeled lines (A-G) indicate the regions of interest for amplification. The two primers used for reverse transcription are represented by arrows.

(B) Visualization of PCR-amplified products using cDNAs as matrix (RT +). Genomic DNA was used as positive control and DNAse-treated RNAs as negative control (RT -).

Supplementary Figure S3 | Translational toeprint assays on 5' untranslated region (5' UTR) of *tet*(M).

The cDNAs were synthetized using the TETMPRINT primer that target the RBS of *tet*(M). Concentrations of 70S ribosomes were indicated as follows: R0: 0 nM, R4: 1.9 nM. Concentrations of tetracycline were from 0 to 288 μ M (0 M; 281 nM; 9 μ M; 288 μ M). Positions of toeprints are represented by black triangles according to *ern0030* numbering (Figure 1B). The position A₂₃₃ corresponds to the end of the stem-loop of the *ern0030* rho-independent transcription terminator.

References

- [1] Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V, et al. Comparative Analysis of the first complete *Enterococcus faecium* genome. J Bacteriol 2012;194:2334–41. https://doi.org/10.1128/JB.00259-12.
- [2] Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, et al. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 1996;253:217– 24.
- [3] Zhang X, Vrijenhoek JEP, Bonten MJM, Willems RJL, van Schaik W. A genetic element present on megaplasmids allows *Enterococcus faecium* to use raffinose as carbon source. Environ Microbiol 2011;13:518–28. https://doi.org/10.1111/j.1462-2920.2010.02355.x.
- [4] Trieu-Cuot P, Carlier C, Poyart-Salmeron C, Courvalin P. A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning in *Escherichia coli* and in Grampositive bacteria. Nucleic Acids Res 1990;18:4296.