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Abstract

We propose a physical optics approach to compute the volume radiative properties and surface

reflectivity of porous ceramics composed of a weakly absorbing solid matrix containing low frac-

tions of heterogeneities (pores or particles). Our approach accounts for dependent scattering be-

tween heterogeneities that are small and close to each other compared to the wavelength, and only

requires the 3D microstructure and complex refractive indexes of constituent phases as input. We

performed numerical validation of our models on reference microstructures with known solutions,

and showed that an accuracy of 5% is achieved. We then applied our approach to compute the spec-

tral volume and surface radiative properties of tomography-reconstructed porous alumina samples

of various porosities up to 30%. Microstructure-property relations are extracted from numerical

results, and are compared to several analytical relations in order to assess their applicability in the

studied material.

Keywords: Porous ceramics, Discrete dipole approximation (DDA), Radiative transfer equation

(RTE), Volume radiative properties, Surface reflectivity

1. Introduction

Porous materials that combine attractive thermal and transport properties with good strength-

to-weight ratio are found in many high-performance systems [1–3]: examples span a wide range

of porosities and base materials, and include polymer foams used in building insulation [4], porous
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Nomenclature

First- and second-order tensors (“vectors” and “matrices”) are written in bold face.

Latin
A Dipole interaction matrix
a Radius
B Blackbody radiance
C Cross section
D Target diameter
d Cell size
E Electric field
e Basis vector
f Volume fraction
g Scattering asymmetry
h Target height
I Spectral radiance
j, k Dipole indexes
k Absorption index
ℓ Chord length
L Target length
M Mueller matrix
m Complex refractive index, n + ik
N Number
n Real refractive index; Normal vector
p Parameter
P Polarization
r Distance
T Temperature
u Direction
v, w Target replica indexes
V Target volume
x Position
y Discretization parameter
Z Integer

Greek
α Polarizability
∆ Difference
ε Permittivity
ϕ Scattering phase function
κ Absorption coefficient
λ Wavelength

ρ Reflectivity
σ Scattering coefficient
τ Transmissivity
θ Angle
χ Mie size parameter, 2πa/λ
Ω Solid angle

Superscripts and Subscripts
′ Modified quantity
0 Reference; in vacuo
abs Absorption
amb Ambient
diff Diffuse
eff Effective
ext Extinction
Fr Fresnel
h Hemispherical
inc Incident
m Matrix
p Pore/Particle
sca Scattering
spec Specular
sub Substrate
tr Transport

Operators and accents
∇ Del operator
· Dot product
⟨⟨•⟩⟩ Stochastic mean
|•| Absolute value
•̂ Unit vector

Acronyms
DDA Discrete dipole approximation
FCD Filtered Coupled Dipole
FDTD Finite-difference-time-domain
LDR Lattice Dispersion Relation
RMS Root-mean-squared
RTE Radiative transfer equation
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ceria particles for thermochemical reactions [5], and metal foams used in heat exchangers [6]. In5

particular, ceramics containing low fractions of pores, cracks and particles (see Figure 1) are often

used at high temperatures where radiative transfer plays a major role [7, 8]. At the macroscopic

length scales of interest, radiative transfer in such materials are usually described with the Ra-

diative Transfer Equation (RTE) [1, 3], in which the influence of the micro-scale heterogeneities

are represented by effective radiative properties. Accurate knowledge of the relation between the10

microstructure and the effective radiative properties is thus of paramount importance.

30µm

(a) Sectional view with pores (black) and particles (white).

30µm

(b) Surface view with pores (indicated using arrows).

Figure 1: Scanning electron micrographs showing examples of porous ceramics.

While the effective radiative properties cannot be measured directly and have traditionally

been identified from experimental data [2, 9], theoretical and numerical methods to predict these

properties from the micro-scale morphology have seen significant progress. Past developments

focused on both high-porosity materials (e.g., foams [4, 10], aerogels [11]) and semi-transparent15

solids with low pore and particle fractions [12, 13], since the dominant phase in both cases may

be considered as the host medium for radiative transfer, and the secondary phases as absorbing

and/or scattering heterogeneities. Purely theoretical predictions usually rely on known scattering

and absorption properties of simple isolated geometries (e.g., spheres or infinite cylinders [14]),

and invoke the independent scattering hypothesis [13] to calculate the effective properties of the20

material by summing the contributions of individual heterogeneities. This hypothesis usually fails

when the volume fraction of heterogeneities exceed a few percent [15–20].
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To model dependent scattering effects, Monte Carlo ray-tracing is a popular choice when char-

acteristic length scales of the heterogeneities are larger than the wavelength, and has notably

been performed on tomography-reconstructed or digitally generated porous ceramic microstruc-25

tures [8, 10, 21–24]. However, when the heterogeneities are small and close to each other com-

pared to the wavelength, resolution of Maxwell’s equations via numerical methods [25] is neces-

sary to account for wave effects, though the high computational cost generally limits the geometry

sizes that can be simulated. The discrete dipole approximation (DDA) [26–28] has been used to

compute the scattering and absorption properties by isolated particles or aggregates with complex30

geometry [5, 29, 30], which are often then used to deduce the effective radiative properties under

the independent scattering framework [4, 11, 31–33]. Recently, a hybrid direct-inverse approach

was proposed by Chen et al. [7] for 2D microstructures of zirconia ceramics with porosities of 5%

to 20%: the angular distribution of scattered radiation is first simulated via the finite-difference-

time-domain (FDTD) method, then used to identify the effective radiative properties by iteratively35

solving the RTE on an equivalent homogeneous medium. To our knowledge, direct physical op-

tics methods to obtain the effective radiative properties of 3D microstructures while accounting

for dependent scattering between small heterogeneities have not been implemented.

Note that most past work on low-porosity ceramics [8, 9, 13, 21, 22, 24, 34] assumed optically

smooth material boundaries that reflect and refract specularly according to Fresnel’s equations [3].40

However, the presence of surface asperities generally lead to non-specular boundary scattering

behavior [35, 36], with potential wave effects at wavelengths close to the asperity sizes. While

analytical electromagnetic scattering solutions have been developed for Gaussian or exponential

surfaces [35, 37, 38], numerical methods such as the FDTD with periodic boundary conditions

have recently been applied to simulate the reflectivity of complex 3D microstructures [39, 40].45

The present paper is the first part of a two-part study on the characterization of the infrared

radiative behavior of low-porosity ceramics, outlined in Figure 2. In this paper, we propose a

new approach to predict the volume radiative properties and surface reflectivity of materials com-

posed of a weakly absorbing solid matrix and low volume fractions of pores or particles (around

20%). We determine the effective radiative properties from DDA simulations on tomography-50

reconstructed 3D microstructures, with the complex refractive indexes of the constituent phases as
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input. This accounts for wave effects and dependent scattering when the pores and/or particles are

small and close to one another compared to the wavelegnth. We perform numerical case studies

on several reference microstructures to validate the choice of numerical parameters, then apply

our method to simulate the volume and surface radiative properties of a porous alumina ceramic.55

We then compared our numerical results to several common analytical solutions in order to as-

sess their applicability in the studied material. The determined effective radiative properties are

applied in the second part of our study [41] to radiative transfer modeling of the reflectance, trans-

mittance, and emittance of porous alumina disks. Comparison with experimental data obtained at

temperatures up to 1300 °C allowed validation of the multi-scale numerical method.60

Part IIPart I

Continuum-scale
radiative transfer

model

Reflectance
Transmittance

Emittance

High-
temperature

measurements

Porous alumina

3D microstructure

Complex
refractive index

DDA

Volume radiative 
properties model

Surface 
reflectivity model

Numerical validation 
case studies

Effective 
radiative
properties

Figure 2: Outline of the two-part study.

Section 2 presents the radiative properties of interest and introduces two DDA-based models to

compute these properties on volume elements on the material. Section 3 presents four case stud-

ies on reference microstructures with known solutions, and assesses the influence of key model

parameters on the accuracy of the numerical results. Section 4 describes the acquisition and char-

acterization of the 3D microstructure of the studied porous alumina ceramic, and compares the65

numerically and analytically predicted volume and surface radiative properties.

1.1. Mathematical notation

Tensor notation is used throughout this work, with first- and second-order tensors (commonly

referred to as “vectors” and “matrices” respectively) denoted in bold characters. The spectral
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dependence of energetic quantities and time dependence of electromagnetic fields are implied,70

and not denoted explicitly to improve readability.

2. Effective radiative properties modeling

We first recall the definitions of the effective volume and surface radiative properties of interest

in section 2.1. We then propose a new physical optics approach to model these properties in

section 2.2.75

2.1. Definition of effective radiative properties

At the macro-scale, the heterogeneous material is modeled as an equivalent homogeneous

semi-transparent medium, assumed isotropic with azimuthal asymmetry. The effective refractive

index neff of the equivalent medium may be calculated analytically, for example with the volume-

averaging definition [42]:

n2
eff = n2

mfm +
∑

p

n2
pfp (1)

where n is the refractive index and f is the volume fraction of the matrix (subscript m) and hetero-

geneities (subscript p for pores/particles) respectively.

The influence of the micro-scale heterogeneities on the macro-scale scattering and absorption

behavior is represented through spectral effective properties, illustrated in Figure 3 and defined80

in this section. Note that the spectral dependence of all quantities is not denoted explicitly for

readability.

Within the equivalent homogeneous medium, the spectral radiance I (radiance per unit vacuum

wavelength) in an elementary solid angle dΩ associated with the unit direction vector û is modeled

with the classic radiative transfer equation (RTE) [3]:

û · ∇I(û) = –[σeff + κeff]I(û) + n2
effκeffB(T) +

∫
4π
σeffϕeff(û′, û)I(û′) dΩ′ (2)

where σeff is the effective scattering coefficient, κeff is the effective absorption coefficient, and ϕeff

is the effective scattering phase function, henceforth referred to as the effective volume radiative

6



û û'

ρh(û)

1 − ρh(û)

namb

neff

κeff
σeff

ϕeff

Figure 3: Schema of the equivalent homogeneous medium with its effective radiative properties.

properties. Note that ϕeff is normalized such that:

∫
4π
ϕeff(û, û′) dΩ′ = 1 (3)

Since azimuthal symmetry is assumed, ϕeff(û, û′) = ϕeff(θ) where θ is the angle between û and û′.

We next assume that the heterogeneous material is placed in an ambient medium with refractive

index namb < neff, separated by a sharp and non-absorbing boundary with outward-pointing unit

normal vector n̂. Light incident on this boundary potentially undergoes complex interactions due

to roughness effects [35]. In this work, we focus on the the reflective behavior of the material

surface under illumination from the surrounding medium, represented by the bidirectional surface

reflectivity ρ(û, û′) where û and û′ are the directions of incident and scattered light respectively:

ρ(û, û′) ≡

∫
∆Ω′

Isca(û′) dΩ′
∣∣∣û′ · n̂∣∣∣∫

∆Ω
Iinc(û) dΩ |û · n̂|

, û · û′ < 0 (4)

where ∆Ω is a small solid angle about the direction û. The directional-hemispherical surface
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reflectivity under external illumination ρh(û) is then calculated as follows:

ρh(û) =
∑

û·û′<0

ρ(û, û′) (5)

2.2. Proposed physical optics approach

To take into account wave effects and dependent scattering within the porous ceramic, we pro-85

pose a numerical approach that consists of solving Maxwell’s equations on 3D microstructures

using the Discrete Dipole Approximation (DDA) [26–28], then calculating the effective radiative

properties from the DDA results. We first recall the key governing equations of the DDA (sec-

tion 2.2.1), then describe our proposed model configurations to compute the volume and surface

radiative properties (sections 2.2.2 and 2.2.3 respectively). We then end this section with an anal-90

ysis on the main sources of uncertainty in our proposed approach (section 2.2.4).

2.2.1. Discrete dipole approximation (DDA)

The DDA, based on the volume integral form of the macroscopic Maxwell’s equations, allows

calculation of scattering and absorption by a dielectric object (henceforth referred to as the target)

of arbitrary geometry [25, 26, 43, 44]. In this work, the formalism by Draine and Flatau [27, 28]95

is used. The DDA approximates the target as an array of N point dipoles on a regular cubic grid

with cell size d. The ambient medium is considered transparent with refractive index namb. The

complex refractive index mj = nj + ikj of each dipole is assumed isotropic in this work.

The target is illuminated by a monochromatic plane wave Einc of wavelength λ in the ambient

medium, propagating in the direction û. Each dipole acquires a dipole moment Pj in response to

the local electric field Ej:

Pj = αj · Ej (6)

where αj is the polarizability matrix of the dipole j, usually of the form α(mj, λ, d). The polariz-

ability prescription is generally chosen on a case-by-case basis based on the problem studied (see100

the review by Yurkin et al. [45]). For our problems, we chose the Lattice Dispersion Relation [46]

based on our sensitivity study in section 3.

Given αj of every dipole, Purcell and Pennypacker [26] showed that Pj may be obtained by
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solving the following linear system of 3N complex equations:

Einc,j = α
–1
j · Pj +

N∑
k=1

Ajk · Pk (7)

where Ajk is a complex matrix describing the influence of the dipole k on the electric field at

dipole j. Expressions of Ajk for isolated and periodic targets are given in references [27] and [28]

respectively.105

We resolved equation (7) in double precision using the open-source code DDSCAT (version

7.3.3, published on 10 July 2019 [27, 28, 47]), which solves for P iteratively with various complex

conjugate gradient methods [48, 49]. As radiative heat transfer usually considers unpolarized light,

DDA computations were performed for two orthogonal incident polarizations and the results were

averaged. Key absorption and scattering characteristics such as cross-sections and Mueller matrix110

elements are then calculated from P in DDSCAT, as detailed in references [27, 28, 43, 47].

The next two subsections present our proposed configurations to compute the volume radiative

properties (σeff, κeff, and ϕeff) and the bidirectional surface reflectivity ρ(û, û′) of porous ceramics.

2.2.2. Volume radiative properties

Inspired by the approach of Coquard and Baillis [50], we propose to calculate the effective115

volume radiative properties (scattering coefficient σeff, absorption coefficient κeff, and scattering

phase function ϕeff) by considering the interaction of light with a spherical volume element of the

material of diameter D, as illustrated in Figure 4.

The spherical target, composed of the matrix and pore/particle phases (with complex refractive

indexes denoted mm = nm+ ikm and mp = np+ ikp respectively), is illuminated by a monochromatic120

plane wave traveling in the direction û in a non-absorbing surrounding medium for which we set

the refractive index as namb = nm.

While we aim to model the extinction of light by scattering and absorption within the target

volume, edge effects exist due to truncated pores/particles on the target boundary distorting the

scattering behavior, and the mismatch between mm and namb causing spurious reflections off the125

target boundary. To keep these edge effects to a minimum, we restrict our model to materials with
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Ambient medium

Pore/Particle

Matrix

namb = nm

np+ikp

nm+ikm

D

Iinc(û)

Isca(û')

θ

Figure 4: Computation of effective volume radiative properties from a spherical volume element of the material.

a weakly absorbing matrix phase (low km) having a significantly higher volume fraction than the

pore/particle phases, and use targets much larger than the size of the heterogeneities as well as the

wavelength of interest.

After calculating the scattering cross-section Csca, absorption cross section Cabs, and first prin-

cipal Mueller matrix element M11 of the spherical volume element via the DDA for isolated tar-

gets [27, 43], the effective volume radiative properties are then calculated as follows [50]:

σeff =
Csca

V
(8)

κeff =
Cabs

V
(9)

ϕeff(θ) =
M11(θ)∫

4π
M11(θ) dΩ

(10)

where V is the total volume of the spherical target (including pores, if any) and θ is the angle130

between û and û′.

2.2.3. Bidirectional surface reflectivity

We consider that only heterogeneities from an optically thin region close to micro-scale rough

surface contribute to macro-scale surface reflection. As such, we propose simulating a semi-

infinite layer of thickness h ≪ 1/(σeff+κeff) by applying periodic boundary conditions to a cuboidal135

volume element of the rough surface, illustrated in Figure 5a. The volume element is assumed

aligned to the reference frame {ê1, ê2, ê3} with ê1 perpendicular to the surface. The dimensions
10



of the volume element along the principal directions are denoted h, L2, and L3 respectively. The

top surface is illuminated by a monochromatic plane wave traveling in the û direction from the

ambient medium of refractive index namb.140

Ambient medium

Pore/Particle

Matrix

namb 

np+ikp

nm+ikm

Periodic replicas

Substrate
nm+iksub

h

hsub

L

e1

e2
e3

Iinc(û) Isca(û')

(a) Simulated configuration.

With absorbing substrate:

Without absorbing substrate:

(b) Role of the absorbing substrate.

Figure 5: Computation of the bidirectional interface reflectivity from a semi-infinite layer of the material atop an
absorbing substrate, via application of periodic boundary conditions to a cuboidal volume element of the material.

A fraction of light entering the heterogeneous layer and reaching the bottom surface of the

top layer is generally reflected upwards, which is undesirable as it leads to spurious multiple re-

flections as illustrated in Figure 5b for the case of a homogeneous top layer. To eliminate this

phenomenon, we propose adding an absorbing substrate to the bottom of the heterogeneous layer.

With appropriately chosen substrate properties (refractive index nsub, thickness hsub, and absorp-145

tion index ksub, see details in Appendix A), the interface between the top layer and the substrate

becomes practically non-reflecting everywhere, save for the few locations where pores/particles

are present. All light reaching the bottom surface of the top layer would then be transmitted into

the substrate and absorbed.

For the proposed bilayered periodic volume element, DDSCAT calculates the so-called gen-150

eralized Mueller matrix from which the bidirectional reflectivity ρ(û, û′) may be easily calculated

(see Draine and Flatau [28]).
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2.2.4. Uncertainty analysis

We identify and comment on the model parameters that represent the most important sources

of uncertainty in the proposed approach. These parameters will be chosen and validated through155

convergence and sensitivity studies in section 3.

Uncertainty relating to cell size. In the DDA, the quantities and fields in the vicinity of each point

dipole are assumed constant, which leads to discretization errors. Shape errors also arise from

meshing non-cubic geometries with a regular cubic grid [45]. Both errors generally decrease with

decreasing cell size d, though this leads to higher computational cost as N scales approximately160

with d–3 [25, 27, 45].

In our present case, as we work with tomography-reconstructed microstructures, the input ge-

ometry has already been discretized into cubic voxels during the image acquisition process. Per-

forming grid refinement by voxel subdivision (see illustration in Figure 6) thus reduces discretiza-

tion errors only while maintaining the shape constant, which should improve grid convergence165

behavior.

Original
geometry

Initial
discretization

Refinement

shape errors ↗
discretization errors ↗

discretization errors ↘

Figure 6: Shape and discretization errors in tomography-reconstructed geometries: true geometry, initial voxelization,
and voxel refinement.

Past studies usually consider the discretization parameter y:

y = |m|d
2π
λ0

(11)

where λ0 = λnamb is the vacuum wavelength. Satisfactory results for the cross sections have been

reported for y < 1 [27, 45], although y < 0.5 may be required if directional scattering quantities are
12



of interest [28]. We will determine appropriate values of y for our materials through convergence

studies in section 3.170

Uncertainty relating to polarizability model. The DDA requires the choice of a polarizability

model α, which remains an open question: while early work used the well-known Clausius-

Mosotti relation [26], many improvements have been proposed over the past few decades [44].

Performance of the different polarizabilities (in terms of grid convergence rate, accuracy at a given

discretization, computational speed, etc.) depend on target geometry and refractive index [29]175

among other factors, and are usually assessed on a case-by-case basis through application on ref-

erence microstructures. We will justify our choice of prescription model through sensitivity studies

in section 3.

Uncertainty relating to volume element size. For random microstructures, the volume element

should be large enough to minimize edge effects, as well as ensure that the target microstructure180

and radiative behavior are truly representative of those of the material. Past work usually consider

representative volume elements (RVEs) for which the simulated effective properties vary little

from one sample to another [24, 51], thus allowing determination of the effective properties of the

continuum with good precision from a single RVE.

However, it has been shown [52, 53] that the RVE size can be prohibitively large in random185

porous media, and that statistical effective properties may instead be deduced from computations

on a large number of smaller, non-representative volume elements. This is exacerbated in the

present approach by the computationally demanding nature of the DDA. We show in sections 3.1.2,

4.2 and 4.3 that while the RVE is never attained in the present case, microstructure-property rela-

tions may still be deduced from numerical results with good accuracy.190

3. Numerical validation case studies

In this section, we simulate the radiative characteristics of reference microstructures with

known solutions, and study the influence of several model parameters (previously discussed in

section 2.2.4) on the accuracy of our results. This serves to demonstrate and numerically validate

our proposed modeling approach before it is applied to the study of a real material in section 4.195

13



For each type of model, two reference microstructures of comparable composition and com-

plexity to porous multiphase ceramics are considered:

1. Volume radiative properties modeling on isolated spherical volume elements;

• Scattering and absorption by a multilayered sphere with an absorbing matrix phase

(section 3.1.1);200

• Scattering coefficient of a transparent solid containing random monodisperse non-

overlapping spherical pores (section 3.1.2);

2. Reflectivity modeling using periodic boundary conditions on cuboidal volume elements;

• Reflectance of a periodic ordered opal structure (section 3.2.1);

• Specular interface reflectivity of a homogeneous semi-infinite surface (section 3.2.2).205

The influence of cell size d and volume element size V are assessed through convergence

studies on these microstructures. For the polarizability α, we compared two prescriptions that

we deemed the most appropriate based on the review by Yurkin and Hoekstra [44]: the Lattice

Dispersion Relation (LDR) by Gutkowicz-Krusin and Draine [46] and the Filtered Coupled Dipole

(FCD) prescription by Piller and Martin [54].210

3.1. Volume radiative properties modeling

3.1.1. Multilayered sphere with an absorbing matrix phase

We first consider the scattering and absorption behavior of a multilayered sphere for which

exact solutions can be obtained with Mie theory [14, 55]. Figure 7a illustrates the radii and com-

position of the different layers, chosen such that the solid matrix phase m has a volume fraction215

of fm ≈ 0.70, while the pore (1) and particle (2) phases have fractions f1 ≈ 0.18 and f2 ≈ 0.12

respectively. The complex refractive indexes m of the three phases at selected wavelengths are

given in Table 1. The refractive index of the ambient medium is set to namb = nm following the

configuration defined in section 2.2.2.

As discussed in section 2.2.4, shape errors in tomography-reconstructed geometries are usually220

introduced during image acquisition only, and further voxel refinement only reduces the discretiza-

tion errors. These errors are studied separately through two discretization techniques:
14



1

1
m

2
m

R = 0.9 2.7 3.93.3 5.1 µm

(a) Radii and composition. (b) Rough initial discretization with cell size d0 = 300 nm.

Figure 7: Schema of the multilayered sphere. The matrix phase (m) is represented in gray, while the pore (1) and
particle (2) phases are represented in black and white respectively.

λ0 (µm) mm = nm + kmi m1 = n1 m2 = n2 + k2i
1 1.645 + 6.880 × 10–7i 1.000 2.079 + 1.428 × 10–6i
2 1.632 + 1.239 × 10–6i 1.000 2.068 + 1.208 × 10–6i
3 1.611 + 1.613 × 10–6i 1.000 2.048 + 1.092 × 10–6i
4 1.578 + 1.201 × 10–5i 1.000 2.020 + 4.538 × 10–6i
5 1.534 + 2.017 × 10–4i 1.000 1.982 + 7.110 × 10–5i
6 1.473 + 1.340 × 10–3i 1.000 1.933 + 5.458 × 10–4i
7 1.392 + 6.907 × 10–3i 1.000 1.870 + 2.489 × 10–3i
8 1.291 + 2.259 × 10–2i 1.000 1.800 + 1.016 × 10–2i
9 1.161 + 3.529 × 10–2i 1.000 1.707 + 6.246 × 10–3i
10 0.961 + 5.397 × 10–2i 1.000 1.581 + 8.728 × 10–3i

Table 1: Complex refractive indexes m for the matrix (m), pore (1) and particle (2) phases of the multilayered sphere
at selected vacuum wavelengths λ0.

• A “roughly discretized sphere” (see sectional view in Figure 7b) obtained by first applying

an initial discretization of d0 = 300 nm to the multilayered sphere , then subdividing each

voxel as many times as necessary to obtain the desired final cell sizes d. This keeps the225

initial shape constant, allowing the study of discretization errors independently of shape

errors. Three final cell sizes were considered: d = 75 nm, 60 nm, and 50 nm, corresponding

to maximal discretization parameters y of 0.98, 0.78, and 0.65 respectively at λ0 = 1 µm.

• A “finely discretized sphere” obtained by applying a fine initial discretization without fur-

ther refinement (d0 = d = 50 nm). This allows the study of shape errors in addition to230

15



discretization errors.

Figure 8 shows the reference scattering and absorption cross sections from Mie theory, and the

errors in the DDA results obtained on the roughly discretized sphere using different polarizabil-

ities and cell sizes. For vacuum wavelengths below 4 µm, relative errors in the scattering cross

section are generally low, indicating a limited influence of shape errors. On this wavelength range,235

the LDR generally gives equal or lower errors than the FCD, with results that are practically in-

dependent of cell size. On the other hand, high relative errors in the absorption cross section are

observed on this range, but they are merely a consequence of the extremely low absorption, and

are thus of little concern.
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Figure 8: Scattering (left) and absorption (right) cross sections of a multilayered sphere: reference Mie solution (thick
black lines) and errors in DDA results obtained on a roughly discretized sphere of initial cell size d0 = 300 nm, using
the Lattice Dispersion Relation [46] (LDR, △) and Filtered Coupled Dipole [54] (FCD, ◦) polarizabilities. Results are
shown for three final cell sizes: d = 75 nm (dotted lines), d = 60 nm (dashed lines), and d = 50 nm (dash-dot lines).
For the scattering cross section, additional results obtained with a finer initial discretization of d0 = d = 50 nm are
also given (∗ connected with thin lines).

At vacuum wavelengths of 4 µm and higher, DDA results obtained on the roughly discretized240

sphere are essentially independent of polarizability and cell size. The absorption cross section

shows excellent agreement with the Mie solution. However, the scattering cross section differed

by as high as 22% due to shape errors. Indeed, with the finely discretized sphere (d0 = d = 50 nm),

the discrepancy in the scattering cross section becomes lower than 5% on the whole wavelength
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range. Similar conclusions can be drawn from Figure 9, in which the Mueller matrix element M11245

at λ0 = 2 µm obtained with the LDR are compared to the Mie solution. The results on the roughly

discretized sphere appear insensitive to cell size, with discrepancies practically disappearing with

the finely discretized sphere, indicating a strong influence of shape errors especially on backwards

scattering.
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Figure 9: Mueller matrix element M11 of a multilayered sphere at a vacuum wavelength of λ0 = 2 µm: reference Mie
solution (thick black line) and DDA results obtained on a roughly discretized sphere of initial cell size d0 = 300 nm
using the Lattice Dispersion Relation [46] (LDR, △) polarizability. Results are shown for three final cell sizes: d =
75 nm (dotted lines), d = 60 nm (dashed lines), and d = 50 nm (dash-dot lines). In addition, results obtained with
a finer initial discretization of d0 = d = 50 nm are also given (∗ connected with thin lines). Note that the angle
0° corresponds to forward scattering and 180° to backward scattering, and that scattering patterns are plotted on a
logarithmic scale, both in the main graph and the inset.

From our results, we conclude that the accuracy of DDA modeling on non-cuboidal geometries250

is mainly influenced by shape errors rather than discretization errors, highlighting the importance

of a fine initial discretization (or imaging resolution in the case of tomography-reconstructed ge-

ometries). For such geometries, using the LDR polarizability model at y ≤ 0.81 should provide

numerical results accurate to within 5%.

3.1.2. Transparent solid with random spherical pores255

We next simulate the volume radiative properties at λ0 = 1 µm of a transparent solid matrix

(nm = 1.718 = namb) containing monodisperse non-overlapping spherical pores (np = 1) of radius

17



ap = 0.9 µm, equivalent to a Mie size parameter of χp = 2πap/λ = 9.71. The base microstructure

of nominal porosity fp = 0.08 is generated through random sequential adsorption. The scattering

coefficient of the material is then computed from spherical subvolumes of the base microstructure260

according to the method presented in section 2.2.2. The LDR [46] polarizability prescription and

a discretization of d = 75 nm (y = 0.81) were chosen based on the conclusions of the previous

validation study.

As discussed in section 2.2.4, due to memory constraints, it is impossible to perform DDA

calculations on a single volume element large enough to be considered a RVE while maintaining265

a sufficiently fine discretization. We aim to demonstrate here that it is possible to estimate the

statistical effective properties of the material from a large number of smaller, non-representative

volume elements, without recourse to classic RVE-based approaches [24, 51].

We considered volume elements with diameters ranging from D = 6.6 µm to D = 13.5 µm.

For each volume element size, between 27 and 125 samples were extracted from the base mi-270

crostructure. On the left of Figure 10, the scattering coefficient of each volume element is plotted

as a function of its porosity and diameter. As expected, the porosity and scattering coefficient

vary significantly between volume elements of the same diameter D due to the sub-RVE sizes

considered.

Nonetheless, we observe that the relation between the porosity and the computed scattering275

coefficient is quasi-linear, and converges well with increasing volume element size D. The plot

on the right of Figure 10 shows the evolution of the scattering coefficient at the nominal porosity

fp = 0.08, evaluated through linear laws fitted our to numerical results, for D ≥ 10.2 µm. The

uncertainty arising from microstructural variability, estimated from the root-mean-squared (RMS)

error of the linear regression and represented by error bars, also stabilizes at ±5% beyond that280

threshold.

We also compared our results in Figure 10 to the independent scattering solution (equation (12)):

σeff = CMie
sca (nm, χp)

fp
4
3πa

3
p

(12)

where CMie
sca is the scattering cross section of a single pore given by Mie theory [14, 55]. Discrep-
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Figure 10: Scattering coefficient at λ0 = 1 µm computed from spherical volume elements containing a transparent
solid matrix with monodisperse non-overlapping spherical pores. (a) Simulated results as a function of porosity. Each
point represents DDA results for a single volume element of diameter D. The independent scattering solution (black
line) is also given. An example target with D = 10.2 µm is featured in the inset, with only the pores shown. (b)
Convergence of simulated scattering coefficient at fp = 0.08 with D (points), compared to the independent scattering
solution (line).

ancies between our numerical results and the independent scattering solution are mainly due to

edge effects (notably the presence of truncated pores at the boundary), which generally diminish

with increasing D. The presence of pores close to each other within the volume element may285

also contribute to discrepancies; nevertheless, as the mean distance between pores [56] is large

(about 7 µm ≈ 12λ), our converged numerical results remain close to the independent scattering

solution [20].

Our results show that despite the sub-RVE sizes of the volume elements considered, converged

microstructure-property relations may still be deduced from computations on a large number of290

sufficiently large volume elements. For example, in the present case study, convergence is consid-

ered to be achieved at D = 10.2 µm. Appropriate statistics, such as the RMS error of the regression,

allow estimation of the uncertainty due to microstructural variability. The post-processing strat-

egy demonstrated in this case study will be applied in section 4.2 to the case of the tomography-

reconstructed porous alumina sample.295
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3.2. Reflectivity modeling

3.2.1. Periodic ordered opal structure

We next simulate the normal-hemispherical reflectance of a semi-infinite ordered opal struc-

ture. The periodic unit cell, composed of alumina spheres 1 µm in diameter arranged in a hexag-

onal close packed lattice such that the porosity is fp = 0.24 (see Figure 11), has been described300

by Liu et al. [39] who also provided reference results via finite-difference-time-domain (FDTD)

computations. Note that unlike the FDTD method which requires the simulation of a 2 × 2 tessel-

lation of unit cells for convergence [39], in DDA computations [28], only one unit cell needs to be

simulated.

We first perform a grid convergence study by applying different levels of initial discretization305

without further refinement (d = d0). In addition, we also compared two polarizability prescriptions

(LDR [46] and FCD [54]). Results for selected wavelengths are plotted as a function of discretiza-

tion parameter y in Figure 11a. We observe a smooth grid convergence behavior for wavelengths

of λ0 = 1.5 µm and above, while for shorter wavelengths, a much higher sensitivity to cell size and

polarizability is observed. A low discretization parameter y of between 0.15 and 0.09 depending310

on wavelength is required for grid convergence, of the same order as grid sizes used by Liu et al.

[39]. Note that this is much stricter than the y < 0.5 criterion that Draine and Flatau [28] proposed

for DDA simulations on homogeneous thin slabs, likely due to the more complex microstructure

in the present case. Converged results for both the LDR and FCD polarizabilities are practically

identical.315

We also compared results obtained with d = 12.5 nm (i.e., y ≤ 0.18 with the maximum at

λ0 = 0.76 µm) to reference results by Liu et al. [39] in Figure 11b. Excellent agreement is found,

especially on the wavelength range λ0 ≥ 1.5 µm where the reflectance varies smoothly with wave-

length. At λ0 < 1.5 µm, sharp peaks and dips in the reflectance are observed and are due to

resonance effects from the highly ordered microstructure. Shape errors due to discretization can320

thus have a large impact on this wavelength range, which explains the discrepancies at certain

resonance peaks between our results and the reference as well as the slow grid convergence.

We thus conclude that for both the LDR and FCD polarizabilities, the DDA gives accurate

results for the reflectance of the ordered opal structure with a discretization of y ≈ 0.15 for wave-
20



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Discretization parameter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

-h
em

is
ph

er
ic

al
 r

ef
le

ct
an

ce

FCD
LDR

1.1µm

1.3µm

1.5µm

2.0µm

0   ========== 1.0µm

(a) Grid convergence results for selected wavelengths.

0.5 1 1.5 2 2.5 3

Vacuum wavelength (µm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

-h
em

is
ph

er
ic

al
 r

ef
le

ct
an

ce

FCD (d=12.5nm)
LDR (d=12.5nm)
Liu et al. (2019)

(b) Comparison with results by Liu et al. [39].

Figure 11: Spectral normal-hemispherical reflectance of an ordered opal structure [39] simulated with the DDA with
the Lattice Dispersion Relation [46] (LDR, △) and Filtered Coupled Dipole [54] (FCD, ◦) polarizability prescriptions.
Converged results obtained with d = 12.5 nm are compared to reference results by Liu et al. [39] (∗), with the
corresponding periodic unit cell illustrated in the inset.

lengths above 1.5 µm, although a much finer grid (y ≤ 0.09) may be needed for grid convergence325

at shorter wavelengths due to resonance effects. Note however that the extreme sensitivity to shape

errors is a particularity of the ordered opal structure where resonance effects dominate at certain
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wavelengths, and should be less of a problem for tomography-reconstructed random porous ce-

ramics.

3.2.2. Homogeneous semi-infinite surface330

Our final case study aims to assess the accuracy of the surface reflectivity computed accord-

ing to the method proposed in section 2.2.3. Recall that this involves simulating a semi-infinite

top layer representing the studied surface, sitting atop an absorbing substrate with appropriately

chosen properties to simulate non-reflecting boundary conditions (see Appendix A). We consider

the case of a smooth, homogeneous, and transparent top layer of refractive index nm = 1.718 sur-

rounded by vacuum (namb = 1), illuminated at normal incidence. The model should thus predict

the normal interface reflectivity given by Fresnel’s equations [3, 57]:

ρh(û) = ρFr(û) =
(

nm – namb

nm + namb

)2

(13)

We performed a grid convergence study for different top layer thicknesses h, using the LDR [46]

and FCD [54] polarizabilities. Results are shown in Figure 12. The variation of reflectivity with the

discretization parameter y is well-described by a second-order polynomial as observed by Yurkin

et al. [45], thanks to the absence of shape errors. The FCD gives higher errors at equal cell sizes

compared to the LCD, and the results are also more sensitive to cell size.335

We observe that using the LDR polarizability with a discretization of y < 0.4 is sufficient to

give results within 5% of the target value, regardless of the top layer thickness h. It should be

noted that due to slight imperfections in the proposed implementation of non-reflecting boundary

conditions (see Figure A.18b), a small discrepancy of about ±2.5% may persist even with much

smaller discretizations.340

3.3. Summary of validation studies

Through convergence and sensitivity studies in this section on reference geometries, we were

able to establish guidelines for the choice of model parameters, namely the polarizability α, cell

size d, and volume element size V . The accuracy of our models were also estimated. Key take-

aways are summarized below:345
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Figure 12: Normal-normal reflectivity of a homogeneous semi-infinite surface simulated from a thin layer of thickness
h atop an absorbing substrate: DDA grid convergence results for different h and polarizability prescriptions (Lattice
Dispersion Relation, LDR [46] and Filtered Coupled Dipole, FCD [54]), compared to the target reflectivity from
Fresnel’s equations [3] with a ±5% error band.

• The influence of shape errors was shown in section 3.1.1 to be non-negligible when sim-

ulating non-cubic shapes. For to tomography-reconstructed microstructures, the resolution

during the imaging process should thus be as fine as possible. Further grid refinement is

then performed by voxel subdivision.

• Complete grid independence required extremely fine discretizations (e.g. y < 0.09 for the350

ordered opal structure in section 3.2.1) regardless of polarizability model. However, this

level of discretization is impractical as it severely limits the volume element sizes that can

be simulated.

• Using the Lattice Dispersion Relation (LDR [46]) polarizability, numerical results accurate

to within 5% of reference solutions were obtained with a discretization of y < 0.81 for the355

computation of volume radiative properties, and y < 0.4 for reflectivity simulations.

• The Filtered Coupled Dipole (FCD [54]) polarizability generally gave less accurate results

for the studied materials and microstructures at constant cell size.
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• DDA computations on representative volume elements (RVE) of random materials are usu-

ally prohibitively expensive. Nevertheless, our results in section 3.1.2 show that convergence360

of the statistical radiative properties may still be achieved through computations on a large

number of volume elements smaller than the RVE.

4. Application to a porous alumina ceramic

We now apply our numerically validated models to compute the room-temperature effective

radiative properties of a tomography-reconstructed porous α-alumina ceramic for selected wave-365

lengths between λ0 = 1 µm and λ0 = 7 µm. The material and its microstructure are first described

in section 4.1. Results of volume radiative properties modeling and surface radiative properties

modeling are then presented and discussed in sections 4.2 and 4.3 respectively.

4.1. Material and microstructure

The studied material is a high-purity porous sintered alumina ceramic, composed of 99% α-370

alumina by mass. The median grain diameter is 2.9 µm before sintering. Judging by the high purity

and large grain sizes, grain boundary scattering may be neglected [58]. As such, the solid matrix

is modeled as isotropic and homogeneous, and its refractive index nm and absorption index km

are calculated by applying the averaging relation of Pajdzik and Glazer [59] to room-temperature

optical measurements on birefringent alumina monocrystals [60]. Table 2 lists nm and km for the375

wavelengths λ0 of interest. The pore phase is composed of air (np = 1 and kp = 0).

λ0 (µm) nm km

1.0 1.718 1.362 × 10–41

1.5 1.712 8.119 × 10–21

2.0 1.704 7.223 × 10–14

3.0 1.680 4.251 × 10–9

4.0 1.644 3.434 × 10–7

5.0 1.594 2.775 × 10–5

6.0 1.527 2.375 × 10–4

7.0 1.435 1.942 × 10–3

Table 2: Refractive index nm and absorption index km of the polycrystalline alumina matrix at 295 K at selected
vacuum wavelengths λ0.
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Figure 13: Tomography-reconstructed porous alumina ceramic with physical dimensions of 60 µm × 60 µm × 60 µm
and a resolution of 0.3 µm per voxel. The alumina phase is in white while the voids are the air-filled pores.

X-ray tomography (RX Solutions EasyTom Nano) was performed on a small ceramic sample

at the MATEIS laboratory (Villeurbanne, France). Image processing with the Fiji software [61]

provided a 60 µm × 60 µm × 60 µm 3D binary reconstruction of the material with a voxel size of

d0 = 0.3 µm, shown in Figure 13. The nominal porosity of the ceramic is fp = 0.12, determined380

from the volume fraction of the void phase voxels. The characteristic pore size was estimated

through the pore phase mean chord length [56] as ⟨⟨ℓp⟩⟩ = 1.8 µm.

The low values of km and fp in the studied porous ceramic agree with the hypotheses behind

our proposed approach in section 2.2. The material data in Table 2 and the image in Figure 13

was used as input data for the numerical models. The tomography-reconstructed microstructure385

is converted into a dipole array by placing one dipole at the center of each voxel, eventually after

one or more voxel subdivisions (see Figure 6) to ensure a sufficiently fine discretization.

4.2. Results of volume radiative properties modeling

We compute the volume radiative properties for the wavelengths listed in Table 2 according to

the method described in section 2.2.2. We used the LDR [46] polarizability with a discretization390

parameter of y < 0.81, which our convergence studies in section 3.1.1 suggested would give

results accurate to within 5%. This required cell sizes of d = 75 nm for λ0 < 2 µm, d = 150 nm for

2 µm ≤ λ0 < 4 µm, and d = d0 = 300 nm for λ0 ≥ 4 µm.
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DDA computations were performed on non-overlapping spherical volume elements of equal

diameter D sampled from the reconstructed microstructure. The values of D were chosen to fulfill395

the criteria D > ⟨⟨ℓp⟩⟩ and D > λ0. To keep computational demands within reasonable limits, we

also limited the volume element size to D ≤ 200d (N ≤ 4.2 million dipoles, requiring ≤ 20 CPU-

hours of iterative resolution). The number of volume elements range from 1 to 125 depending on

the chosen value of D. The porosity fp and mean pore phase chord length ⟨⟨ℓp⟩⟩ [56] of each volume

element are also computed.400

Per the strategy outlined in section 3.1.2, numerical results are compared to the predictions of

several analytical models, and used to extract microstructure-property relations.

4.2.1. Effective absorption coefficient

Figure 14 shows the effective absorption coefficient κeff computed with the DDA for wave-

lengths λ0 = 6 µm and 7 µm. Results for volume elements of different diameters D are compared,405

with the number of non-overlapping samples ranging from 64 at the smallest diameter to 1 for

D > 30 µm.
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Figure 14: Effective absorption coefficient as a function of porosity computed with the DDA on volume elements of
different diameters D (shown as different symbols) for wavelengths λ0 = 6 µm and 7 µm, compared to the analytical
relation for matrix absorption proposed by Dombrovsky et al. [12] (equation (14), thick lines).

We also compare the results to equation (14), initially proposed by Dombrovsky et al. [2, 12]
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for porous ceramics with low solid phase absorptivity :

κeff =
4πkm

λ0
fm (14)

For λ0 = 6 µm at which km = 2.375 × 10–4, an excellent agreement between the numerical

DDA results and the model of Dombrovsky et al. [12] is observed regardless of the volume element

size D, with a RMS deviation between the analytical and numerical results of 4.5% at D = 15 µm410

(64 samples) and 1.8% at D = 30 µm (8 samples). Equally good results were also observed for

smaller wavelengths at which km are several orders of magnitude lower; they are not represented

in Figure 14 to preserve legibility.

On the other hand, for λ0 = 7 µm at which km = 1.942 × 10–3, the analytical model very

slightly overestimates κeff. This is because scattering by heterogeneities modify the path lengths415

traveled by light in the matrix and thus the amount of light absorbed, which is neglected by the

model of Dombrovsky et al. [12] leading to deviations at high enough matrix absorptivities. These

deviations remain very small in the present material and wavelength, with a RMS value of 5.0%

over 8 samples of D = 30 µm and 6.9% for the single D = 60 µm sample. We thus consider the

use of the model of Dombrovsky et al. [12] justified for the considered wavelengths.420

While wavelengths greater than λ0 = 7 µm are beyond the scope of this study, we note that the

accuracy of this analytical model is expected to further degrade on this range, since the absorptivity

of alumina increases while approaching the Christiansen wavelength (≈ 10 µm) at which it exhibits

blackbody-like behavior [60].

4.2.2. Effective scattering coefficient and phase function425

Figure 15 shows, on the left, the variation of effective scattering coefficient σeff with porosity

computed with the DDA on volume elements of different sizes D, and on the right, the scattering

phase function ϕeff for different values of D averaged over volume elements of porosity fp =

0.12 ± 0.01. Results at wavelengths λ0 = 2 µm and λ0 = 7 µm are given. The number of non-

overlapping samples ranging from 125 at the smallest diameter to 1 for D > 30 µm.430

The independent scattering solution for monodisperse spherical pores (equation (12)) is also
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given with the pore radius estimated from the nominal mean chord length:ap = 0.75⟨⟨ℓp⟩⟩ =

1.38 µm [62]. The influence of a variation of ±17% in ap, reflecting the uncertainty in the mean

chord length, is also shown.

For the scattering coefficient σeff, results suggest that despite the huge simplifications to pore435

morphology in the proposed independent scattering solution, good results may be obtained for

extremely low porosities (fp < 0.05). However, deviations appear at higher values of fp due to

dependent scattering. In addition, results appear very sensitive to volume element size D, with

poor convergence. This is likely due to forward-scattering interference effects [16, 18, 19], which

can be seen from the sharp lobes in the scattering phase functions ϕeff at scattering angles close to440

0°. This phenomenon becomes more pronounced with increasing volume element sizes due to the

higher number of scattered wavelets, leading to poor convergence behavior.

In radiative transfer theory, as the forward-scattered intensity may simply be treated as un-

scattered radiation [19, 23], we invoke the transport approximation, which models a material with

scattering coefficient σeff and anisotropic phase function ϕeff as an isotropically scattering material

of transport scattering coefficient σtr [63]:

σtr = σeff(1 – gsca) (15)

where gsca is the asymmetry parameter defined below:

gsca =

∫
4π
ϕeff(θ) cos θ dΩ′ (16)

Figure 16 shows the values of σtr for all the considered wavelengths obtained on some of the

largest volume element sizes. We observe significantly better convergence with increasing volume

element size D: results for larger values of D by and large fall within the dispersion observed for445

smaller values of D. This supports our hypothesis that the poor convergence of σeff and ϕeff with

respect to D is mainly due to the constructive interference of forward-scattered radiation. It can

also be noted that the independent scattering solution for σtr describes the DDA result fairly well

at wavelengths of λ0 ≤ 1.5 µm, while at larger wavelengths it still fails beyond fp > 0.05.
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Figure 15: Left: Effective scattering coefficient as a function of porosity computed with the DDA on volume elements
of different diameters D (shown as different symbols) for wavelengths λ0 = 2 µm (top) and 7 µm (bottom). Right:
Scattering phase function ϕeff, averaged over volume elements of porosity fp = 0.12 ± 0.01 and normalized such
that ϕeff(0) = 1, for different volume element sizes. DDA results are compared to the independent scattering model
applied to clusters of spherical pores of uniform radii ap (equation (12)). The influence of a slight variation about the
nominal ap = 1.38 µm is shown (thick lines vs. dotted lines).

Our results also show that σtr may be described fairly well at low porosities by the second-order

polynomial function below:

σtr(fp, λ0) = p1(λ0)fp + p2(λ0)f 2
p (17)

Values of p1 and p2 for the considered wavelengths are given in Table 3. The confidence interval of450

the proposed correlations, determined from their RMS deviation with respect to the DDA results,
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Figure 16: Effective transport scattering coefficient as a function of porosity computed with the DDA on volume
elements of different diameters D (shown as different symbols) for wavelengths λ0 between 1 µm and 7 µm. Converged
results are fitted with a second-order polynomial function (thick dash-dotted lines), and compared to the independent
scattering model applied to clusters of spherical pores of uniform radii ap (equation (12)). The influence of a slight
variation about the nominal ap = 1.38 µm is shown (thick continuous lines vs. thin dotted lines).

reflects the microstructural variability and ranges from 20.8% at λ0 = 1 µm to 9.8% at λ0 = 5 µm.

4.3. Results of surface reflectivity modeling

We consider the porous alumina surface to be optically smooth everywhere [34] except where

pores are present, and modeled it by applying periodic boundary conditions to cuboidal volume455
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λ0 (µm) p2 (m–1) p1 (m–1) D (µm) N fp,max RMS deviation (%)
1.0 –7.9752 × 105 4.1620 × 105 12.0 125 0.31 20.8
1.5 –5.6131 × 105 3.2047 × 105 12.0 125 0.31 17.6
2.0 –6.9006 × 105 2.8421 × 105 19.8 27 0.20 12.0
3.0 –5.5285 × 105 2.4132 × 105 19.8 27 0.20 12.1
4.0 –4.3028 × 105 2.0015 × 105 19.8 27 0.20 13.1
5.0 –5.1739 × 105 1.8200 × 105 24.0 8 0.17 9.8
6.0 –4.0644 × 105 1.3940 × 105 24.0 8 0.17 12.5
7.0 –1.7899 × 105 7.6655 × 104 24.0 8 0.17 10.9

Table 3: Coefficients of second-order polynomial correlations describing the transport scattering coefficient σtr as
a function of porosity fp (see equation 17), extracted from DDA computations on N spherical volume elements of
diameter D. The correlations are obtained on the domain 0 < fp < fp,max. The root-mean-squared (RMS) difference
between the numerical results and the proposed correlations are also given.

elements of dimensions h × L × L sampled at random from the reconstructed material. As the

DDA with periodic boundary conditions is computationally much more expensive, fewer volume

elements of smaller size were used compared to volume radiative properties modeling. Knowing

the extreme sensitivity of directional quantities towards fine microstructural characteristics [39], a

large statistical dispersion in numerical results is expected.460

Since determination of microstructure-property relations from DDA results would prove tricky

given these constraints, we seek instead to compare the DDA results to the predictions of several

simpler analytical models. The case of normally incident light with λ0 = 2 µm is considered. DDA

computations are performed with the LDR polarizability and a cell size of d = 60 nm correspond-

ing to y = 0.321. The substrate parameters are chosen as hsub = 4.2 µm and ksub = 0.09 following465

the method in Appendix A. With these model parameters, the uncertainty in the simulated reflec-

tivity is estimated to be 8.6%. The goal is to use the DDA results to orient the choice of analytical

surface reflectivity model.

In Figure 17, DDA results for the normal-normal (ρspec) and normal-hemispherical (ρh) reflec-

tivity obtained for volume elements of different dimensions are shown. The symbols ◦, △, and □470

represent volume elements of width L = 5.1 µm and thicknesses h = 0.9 µm, 1.5 µm, and 2.1 µm

respectively, while ⋄ represent volume elements of L = 6.3 µm and h = 1.5 µm. Large dispersions

are observed in the numerical results, not only due to the high microstructural variability between

the small, non-representative volume elements, but also due to wave effects such as resonance
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(observed as reflectivity peaks in several of the smaller samples with higher porosity).475
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Figure 17: Normal-normal (ρspec) and normal-hemispherical (ρh) reflectivity for λ = λ0 = 2 µm as a function of
porosity. DDA results obtained on volume elements of various thickness h and width L (symbols) are compared to
analytical models based on the geometrical optics approximation (lines).

The three analytical models selected for comparison with DDA results are presented below,

with ρFr denoting the specular reflectivity obtained from Fresnel’s equations [3] using the solid

phase complex refractive index (mm = nm + ikm):

“Model A” assumes perfectly smooth surfaces that reflect specularly, an assumption commonly
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used in past work on radiative transfer in low porosity media [8, 21, 22, 24, 34]:

ρh = ρspec = ρFr (18)

“Model B” assumes an infinitesimally thin surface layer, perfectly permeable where pores are

present and smooth elsewhere. Reflection is therefore also perfectly specular, and is propor-

tional to the solid phase volume fraction fm:

ρh = ρspec = fmρFr (19)

“Model C” assumes a smooth solid surface with pores modeled as locally smooth cavities, which

produces diffuse reflection where pores are present on the surface, and specular reflection

elsewhere. Diffuse reflection is assumed isotropic and modeled by the incident-cosine-

weighted average reflectivity [63, 64]. This gives the following expression for ρh:

ρh = ρspec + ρdiff = fmρFr + fp

∫
û′·n̂<0

2ρFr(û′)
∣∣∣û′ · n̂∣∣∣ dΩ′ (20)

where n̂ is the normal vector pointing outwards from the surface.

Despite the large dispersion in numerical results, some clear trends may still be identified.480

For one, reflection is clearly non-specular with a clear decrease in normal-normal reflectivity

(ρspec) with porosity, which renders Model A inapplicable. On the other hand, for the normal-

hemispherical reflectivity (ρh), between Models B and C, Model C is clearly more appropriate.

These observations are supported by the RMS deviations between each model and the DDA re-

sults obtained on different volume element sizes, listed in Table 4. Among the three analytical485

models proposed to model the surface reflectivity, Model C indeed gives the best agreement with

the DDA results, with a maximal RMS deviation of 27% on ρspec and 22.6% on ρh.
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Number h L RMS deviation in ρspec (%) RMS deviation in ρh (%)
of samples (µm) (µm) Model A Models B and C Model A Model B Model C
172 ◦ 0.9 5.1 23.21 19.96 12.07 93.13 17.74
136 △ 1.5 5.1 36.04 27.00 18.98 92.75 17.83
99 □ 2.1 5.1 31.74 26.16 18.14 93.24 22.61
62 ⋄ 1.5 6.3 37.71 26.68 14.40 93.51 22.58

Table 4: Root-mean-squared (RMS) deviations between the normal-normal (ρspec) and normal-hemispherical (ρh)
reflectivity at λ0 = 2 µm computed with the DDA on volume elements of different thicknesses h and widths L, and
predictions of three analytical models based on the geometrical optics approximation.

5. Conclusion

We proposed a numerical approach to predict the effective radiative properties of porous ce-

ramics from physical optics computations on 3D microstructures via the discrete dipole approxi-490

mation (DDA). Our approach is targeted at porous ceramics composed of a weakly absorbing solid

matrix containing low volume fractions of small pores or particles. The tomography-reconstructed

microstructure and the complex refractive index of each phase were used as input.

Case studies on reference microstructures were performed to determine the optimal model

parameters. We showed that an accuracy of 5% was achieved with the Lattice Dispersion Re-495

lation [46] polarizability prescription and a discretization parameter y < 0.81 for the volume

radiative properties model, and y < 0.4 for the surface reflectivity model. We also highlighted the

importance of a fine imaging resolution for tomography-reconstructed microstructures due to the

strong influence of shape errors.

We then applied our models to compute the volume and surface radiative properties of a500

tomography-reconstructed porous alumina ceramic with a nominal porosity of 12% and a mean

pore size of 1.8 µm. While conventional approaches based on the representative volume element

(RVE) are inapplicable, we showed that computations on a large number of small volume elements

can provide converged microstructure-property statistics. These were used to validate and/or ex-

tract analytical microstructure-property relations for the studied porous alumina. The uncertainty505

due to microstructural variability was estimated via the root-mean-squared (RMS) deviation be-

tween the DDA results and the analytical relations.

Our simulated absorption coefficient κeff showed good convergence behavior, and confirmed
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the applicability of the analytical model by Dombrovsky et al. [12] for the considered wavelengths.

On the other hand, the simulated scattering coefficient σeff and phase function ϕeff converges poorly510

with volume element size due to strong forward-scattering interference effects. By considering

the transport scattering coefficient σtr = σeff(1 – gsca) instead, results converge much better with

increasing volume element size, and can be described with a second-order polynomial function

of the porosity. The independent scattering solution computed from the mean pore chord length

agrees well with simulated data for porosities below 5%.515

The non-specular surface reflectivity of the porous alumina for 2 µm wavelength radiation at

normal incidence was also modeled and used to assess the suitability of several simple analytical

models. The model in closest agreement with simulated data considers rays incident on the solid

phase to be reflected specularly according to Fresnel’s equations, and rays incident on the pore

phase to be diffusely reflected with the reflectivity given by Siegel and Spuckler [64].520

In the next part of our study presented in our companion paper [41], the determined radia-

tive properties are applied to radiative transfer simulations of the reflectance, transmittance and

emittance of thin porous alumina samples. Comparison with spectroscopic measurements allows

us to validate the numerical methodology notably the physical optics approach proposed in this

work. The validated approach would be of great interest to future work on microstructure-based525

prediction of the radiative behavior of high-performance porous ceramics.
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Appendix A. Non-reflecting boundary conditions on semi-infinite layers using an absorbing

substrate

The bidirectional surface reflectivity model proposed in section 2.2.3 considers reflection from540

a semi-infinite layer of the heterogeneous material (with a dominant matrix phase of complex

refractive index mm = nm + ikm) illuminated from the top. Non-reflecting boundary conditions

are applied to the bottom surface by the addition of an absorbing substrate of thickness hsub and

refractive index msub = nsub + iksub. This appendix explains how the amount of light reflected off

the boundary between the top layer and the substrate depends on the substrate properties, and how545

an appropriate choice of said properties can be made to minimize this reflection.

Interface reflection [3], labeled as 1O in Figure A.18a, occurs due to the mismatch in refractive

indexes on both sides of the interface. To minimize the mismatch between the top layer and the

substrate, we set nsub = nm and limit the absorption index ksub of the substrate to small values (less

than 0.1).550

Some of the light entering the substrate may experience one or multiple reflections off the

bottom surface of the substrate in contact with the ambient medium before traveling back to the

top layer. This source of reflection is labeled as 2O in Figure A.18a. For a given ksub, the substrate

thickness hsub should thus be as large as possible to maximize absorption, with memory constraints

limiting the number of dipoles and thus the thickness that can be simulated.555

This undesired reflection at the boundary between the top layer and the substrate may be esti-

mated from the reflectance of a semi-infinite substrate of refractive index msub and thickness hsub,

placed between an infinite upper layer of refractive index mm and an infinite bottom layer of refrac-

tive index namb and illuminated from above (same configuration as in Figure A.18a). Analytical

solvers of Maxwell’s equations for multi-layered systems, such as the Python “Transfer Matrix560

Method” package [57], can be used to simulate such a configuration. Figure A.18b plots the nor-

mal boundary reflectivity at λ0 = 1 µm as a function of absorption index ksub for three different

substrate thicknesses hsub, with nm = 1.718 = nsub, km = 0 and namb = 1. For a given thickness,
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Figure A.18: Simulation of non-reflecting boundary conditions by the addition of an absorbing substrate: the substrate
properties determine the amount of reflection at the boundary between the top layer and the substrate.

we see that the boundary reflectivity initially decreases with increasing absorption index as the

reflection from source 2O diminishes, but then reaches a minimum and increases as the reflection565

from source 1O becomes more significant. Furthermore, the results suggest that there exists a sin-

gle combination of ksub and hsub that minimizes the boundary reflectivity, which corresponds to

ksub = 0.09 and hsub = 2.1 µm among the investigated combinations.

A limitation to this method lies in the fact that the optimal combination of substrate parameters

varies with incidence angle. In simulations involving heterogeneous materials, light arrives at570

the bottom surface of the top layer at a wide range of incidence angles that is difficult to know
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beforehand. Simplifying assumptions (e.g., near-normal incidence) are therefore required when

choosing the substrate parameters.

References
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