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Abstract

A new family of probability distributions is defined and Bayes es-
timation, Fisher information, Shannon entropy, an information differ-
ential metric and a James estimator are studied. Tliis family is an
extension of some families considered in statistics. Also some proce-
dures to obtain the moment and maximum likelihood estimâtes are

given.

1 Introduction.

The purpose of this paper is to define a new family of compound probability
distributions and to stated some theorctical results and procedures of this
family. This family of probability distributions is an extension of the families
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of distributions considered by Ilolla and Bhattacharya (1968) and Luceno
(1992). Also our famiiy of distributions is intended, as in Luceno (1992),
as a tool which could allow data analysis to be performed in the original
scale. This famiiy is found by cornpounding two distributions and has the
normal, the gamma, the exponential and the double exponential distributions
as limiting cases.

Let us suppose that X is a continuons random variable having a normal
distribution with mean £ and variance r2 and that £ is a continuous random
variable with a probability density function given by

p8|A"+1 /

Wm-m 41
cxp(-Ai(£ - v)) , if £>v
exp(-A2(u - 0) , if £<v

(i)

where 0 < 0 < 1, rj = 1 — 0, Ai > 0, A2 > 0, Ai + A2 > 0 and n is a positive
integer. We note that for n = 0 we get the probability density famiiy given
by Luceno(1992).

Cornpounding these two distributions, a new famiiy is found whose prob-
ability density function f{x) and cumulative distribution function F{x) are
given for any real x. Further, in this part sonie properties for #(£) and
/(£) are given. For example Bayes estimation, Fisher information, Shannon
entropy and Burbea-Rao information differential metric are studied. Our
results are defined relative to $(•) , the standard normal cumulative distri-
bution function, and \kn(-) a transform of order n relative to standard normal
distribution function. For this transform $„(•) some récurrence properties
are stated. If n = 1 we obtain the transform $(•) which appear in Raiffa and
Schlaifer (1961) and De Groot (1970, pp.246).

The définition of \Pn transform and some important properties of this
transform are described in Section 2. Many interesting properties of prob-
ability density function g(£) are presented in section 3. Thus for #(£) we
obtain the moment generating function, the mean, the variance, the semi-
variance, the central moments, the relations for skewness and kurtosis, the
Fisher information matrix for some parameters, the information differential
metric (Burbea and Rao (1982)) and Shannon entropy (Guia§u (1987)). In
Section 4, the compound probability density function /(#), the cumulative
distribution function F(x), the moment generating function, the skewness
and the kurtosis are stated. Also the posterior distribution of £ and Bayes
estimation of £ based on an observation x frorn a normal distribution with
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raean £ and variance r2, under a prior density g(£) and quadratic loss func-
tion is given in Section 4. The moment and ma,ximum likelihood estimâtes
of some parameters can be found using standard algorithms presented in
Section 5. Using a resuit of Ahmad, Giri and Sinlia (1983), in Section 6, a
James estimator for proportion 0 is given. Finally, certain useful results are
included in three appendices.

2 transform

In this section we define the \kn transform and some properties of are
given. Also in Appendices A and B some récurrence relations are stated.

Let n be a positive integer and y?(*) tlie standard normal density function.
We put

OO

'J'n(s) = f(t ~ S)nlp(t)dt
S

for any real s.
We note mal $„(£) > 0 for any L and lim \kn(s) = +oo. According to

Appendix A we hâve that is a derivable function and according to Lemma
2A, \&n(s) = — ra\&n_i(s), for any n > 1 and s real. Also for any real s and
n > 1 , according to Lemma IA, we hâve

^n+i(s) = —s^n(5) + n^n_i(s).
Further on other relations concerning 4/n are given by Lemmas 5A, 6A, 7A
(Appendix A) and the following

Theorem 2.1 We hâve:

a) 4>n(-) is a convex and a decreasing function;
b) 4/n(s) > (<) E (-i)fc(ï)s/fa»-fc ’ ^ n is oc^ (even);
c) lim MM = 0 I

5—VOO v 7

d) lim [^n(<s) - E = 0 >s-+ oo k—0 v '
where a* is defined in Lemma 3A (Appendix A).

Proof. a) According to Lemma 2A (Appendix A) we hâve

^n(5) £ 0 aild - n(n - 1) * ®»-2(a) > 0-
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For b) and d) we hâve in view that
oo S

\I/n(«s) — J (l — s)nip(t) dt — J (t — s)n(f(t) dt
—OO —oo

and further we use Lemma 3A (Appendix A).
Relation c) is immédiate.

Remark 2.1 According to Johnson and Kotz (1970), in Fisher (1930)
OO

defined the IIhn functions, IIhn(s) = (ri!)-1 f (t — s)n cxp(—t2/2)dt . Thus

Hhn(s) = (n!)-1(27r)1/2 • $„(s).

3 Properties of random variable £.
Let us suppose that £ lias a probability density function defined by g(£) given
by (1). The moment generating function of £ is given by m^(t) =
Using Lemma IB and Lemma 2B (Appendix B) we obtain

= 0
Ai

Ai — t
exp (tv)

for —A2 < t < Ai.
The mean and variance of £ are given by

H - E^(() g m£(0) = v + (n + - rjX^1]
far^féj = hM - fi)2 = mj'(0) - (m£(0))2 = lofrjfîÿ

= (??- + l)(n + 2)[0Af2 - 7/Aj2] - (n -f 2)2[0Af1 - r/A21]2
where rj = 1 — 0, and a2)/1(£) == Eç(£ — fi)2.

The k - th moments of £ about a given constant a is otk>a(£) = üs^(£ — aY•
Using (1) , the moments about v are given by <**:,«(£) — — rjX^fc].
Now by Lemma 3C ( Appendix C) we obtain the formula for central moments
°f £ jj k

+

j
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k

ts

We remark that //o(£) = 1 JW$ fh(0 — 0 • Because
//2(£) F {n + l)(n d- 2)[0A1 2 — J]A2 ] — (n + 2) [0Aj — t/A2 ] ,

BÉÉÉ = (n + 3)(n + 2)(n + l)[0Af3 — rj\23] — 3 (ra + 2)(n + l)2-
•[^A^1 — r/AJ1] • [OXf2 — rjX2 2] + 2(n + 1)3[0A11 — t/A2 1]3 ,

g4(0 = (n + 4)(ra + 3)(n + 2)(n -f ^[^Aj 4 — //A2 4] — 4(n + 3)-
•(n + 2)(n + l^i^Ajf1 — gX21][^A13 — r/A2 3] + 6(n + 2)(n + l)3-

■[OXf1 - 7}X21]2[0Xf2 - 7]X22] - 3(n + ffi®;! ~ ^/Aj1]4 7

weobtain the skewness and the kurtosis «3(£) = /^s(0 (/^(O) ^ an<^ a4(0 =

ïkfM(^2(O)”2 “ 3 respectively.
In the following we consider Fisher information relative to some param-

eters of g(£) , Shannon entropy of g(£) and information metric relative to
|Ig

a). Fisher information. If 0 , Ai , A2 and n are known we obtain Fisher
information for v . According to Saporta (1990, pp.291) we can write

I(v)= -Et (£^\ng{Q) = n } r/A£+1(n!) |(jSjjâr 2 exp (-A2(v - 0) d£+V 7
—OO

OO

+n f 0A?+1(n!)_1(£ - u)n~2 exp (-Ai(£ - v))d£ = (n - l)-1^ + 0X\]
V

When 6 , A2 , v and n > 2 are known tlien Fisher information for Ai is
I{\i) = 0(n + l)Ar2.

Generally, if n is a given constant and a = (ai,a2,a3) where ai = 0
, a2 = Ai , a3 = A2 , where n is known, using Lemma 2B (Appendix B) we
obtain /(a) , the Fisher information matrix for a , I(a) = —E

/(<*) =

/ (0(1-0))
0

\ 0

-1 0

0{n + l)Ar2
0

0 \
0

(1 — 6)(n + l)Aj2 /
Thus we hâve the metric tensor field components (Burbea and Rao, 1982)
C11 — (0(1 ~ 0)) 7 £12 — C]3 = C21 — c23 — C31 — £32 = 0, e22 = 0(n +
1)Ai 2, C33 = (1 — 0)(n + 1)A2 2.
Hence, the information metric ds2 = Cijdaidaj, may be expressed as

i,j=1

ds2 = {6(1 - O))'1 (dO)2 + 0(n + l)A^2(dAi)2 + (1 - 0)(n + 1)A2 2(dA2)2

f
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b). Shannon entropy. According to Guia§u (1978), Shannon entropy of
OO

#(£) is ÆÜ). = - f f^ms we liave
—OO

H(sii = - j - £)nexP(~Mv - £)) • [In (7/^rr) + nln(v - £)
— OO

m ~ _ /bii ~ v)ncxp (“Ai^ -v)) •
V

‘tln (^^ir) + nln(£ - v) - M£ -
Using Lemma IB and Lemma 2B (Appendix B), Lemma 3A (Appendix A)

OO

and the relation r'(i) = f zl~l ln z • exp(t)dty where T'(t) is the dérivative of
o

gamma function r(£), we obtain

II(g) = n + 1 + ln(n!) - (77 ln 7j + 0 ln 0) - ^77 ln A2 + 0 ln Ai + j
where 77 = 1 — 0. If 0 —» 1 we obtain the Shannon entropy for gamma
distribution. Further 011 if n = 0 we obtain the exponential case.

We see that g(£) given by (1) is a mixture of two gamma distributions
,each having different intervals as ranges of variation. Plucinska (1966) used
two generalized gamma distributions, one for négative and one for positive
values of the argument, to construct a new class of distribution functions.
Mixtures of such distributions are used in Plucinska (1967).

4 The compound distribution. Dérivation
and properties.

By compounding the distribution of £, given by probability density function
#(£), and X given by a normal distribution witli mean £ and variance r2, by
Lemma 3B (Appendix B) we obtain

f(x) = 9 ■ (27rr2) 1/2 • • Ll(x, Ai, v, r) + 77 • (27rr2) x/2' • • L2(x, A2, v)
where

Li(x, Ai,v,r) M r"+1(27r)1/2exp (-Air^ï) - exp |-*=* + A,r)
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L2(x,X2,v,t) = T"+1(2x)‘/2exp (A2t^) -exp (^) • *„ + A2r)
We put = exp(u;2/2) , hn(u,co) = expfuu;) • \Ün(u + u>) , ü>i = Axr
; w2 = \2r . Thus we get the probability density function

/(*) = (n!r)-' [Ou>î+'K(^)hn(~^,«,) + ^K(w2)hn(Y-^%w2] (2)
for — oo < x < oo.

The cumulative distribution function F{x) is given, for any —oo < x < oo
by

x—v

F(x) = / tfl f hn{—u,u\) du +
— OO —oo

j—v

+7]w2+1(n\)-1K(u)2) ' f hn(u,cv2)du.
— OO

According to Lemma 2A (Appendix A) we hâve
X — V x—V
t r

J hn(u,u>2) du = u;^1 exp (^u;2) StÉ g* + w2) + nu2x J hn„i(u,u)2) du
—00 —00

for n > 1, with

and

f ho(u,co2) du = f exp(uu2)^0(u +u>2)du =
— OO —OO

= tuj1 exp(^u;2) • - u2) + u2' exp(-u;2/2) • $(^)

/ Ki^-u^x) du = -cj1 1 exp (-^cui) (-^ +
-OO \ / \ /

X — V

. r

-fntoi f An-i(~w,u;i) du

(3)

for n > 1, with

f h^-u.uj^du - -Wj 1exp(-£75itui) •
-OO

+Wr1exp(-a.?/2)-$(^)

- wi)+ (4)
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If Un / hn(u,uj2) du , for n > 0, by (3) we obtain uq and by Lemma
IC (Appendix C), for n > 1, we get

Un — 0203 ' ’ ■ 0n ’ [0Luo + A(ai + OL2/02 + <*?,/{0203) + ' * ’ + <Xn/{0203 * ’ Ai)]
where A = u2l exp(^u>2), «n = + a>2) >and

r

Also if u'n gi f hn{—u, a>i) du, for n > 0, by (4) we get Uq, and by Lemma
— OO

IC (Appendix C), for n > 1, we get

U'n — MBr • • * Pn * ÉÉi + AsSit + a'2l02 + «3/(0203) 4 H «n/(0203 ' " 0'n.
where A' = 1 expf-^wi), or'n = 4/n(-~ + u>i) ,and 0'n = nu>^ L

Thus we obtain the following formula for cumulative distribution function
®|§|

F(x) = 0<^-rK(ul)u'n + r)<^-r—K(<jj2)un.ni ni

For n = 0 we obtain the cumulative distribution function F{x) obtained
by Luceno (1992). For n = 1 we hâve

u\ = -wf1 exp(-^wj) + «,) + -WWÿk + “>,)] +
liM* ‘il®. - «r2 - wi) ,

and

ui = UJ21 exp(^u>2) fM + ^2) - + u2)${-^ - u;2)] +
(u.|/f(4))_1 + a;2-2exp(^a>2)$(-^ - w2) .

The moment generating function and the moments of X can be obtained
as in Luceno (1992), using the properties of conditional expectation Rao
(1973, pp. 86-98). Thus the moment generating function of X is given by,
according Luceno (1992, pp. 406) mx{i) — m^(^) • exp(i2r2/2), i.e. X is the
sum of two independent random variables, the first £, and the second one
having a normal distribution with mean zéro and variance r2. Using m^{t)
given by section 3, we obtain

rnx{t) = V +0
71+1”

• exp(tv + t2r2/2)
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for — A2 < t < Ai.
Using Section 3, the mean and tlie variance of X are given by

E(X) = E((EX(A/0) = £<(0 = f. = u + (n + 1) [tfAr* - i)Aj']
MA) = Var(X) = Var((Ex(X/0) - Et{Varx(X/())

= VmSi + ^(r2) = Kar^(0 + r2 n

= (n + l)(n + 2) \0\X2 - î/AJ2] (n + l)2 [^Af1 - r/Aj1]2 + r2.
The central moments of X are given by (Appendix C)

[fr/2] / /, \

»(ai = e -1)” •fi ■ w-«(o
where [k/2]

is cvcn
, and /ij(<^) is the central moment

k/2 if k
(k — l)/2 if A: is odd

of order j of £ and is defined by Lernma 3C (Appendix C). Also we hâve
H3(X) = and p4(X) = //4(£) + 6tV2(£) + 3r4, where /i2(£),
and //4(£) are given in section 3.

The skcwness and kurtosis satisfy the équations (Luceno (1992))

xt'1
a4(A) = a,(f)[MO/M*)f

where a3(£) and a4(£) are defined by section 3. Thus the following relations
liolds

MA'))4 MA))-3 = MO)4 MO)-3

Remark 4.1 The compound family of distribution lias five parameters,
namely 0, Ai,A2,v and r2. Sometimes is désirable to restrict this set of
parameters. For example, if 0 = 0 (or 0 = 1) the family has only three
parameters because rj = 1—0, and then this skewness and kurtosis are

négative and positive respectively.
Remark 4.2 If 0 = rj and Ai = A2, a difFerent family with three pa-

rameters is found for which 0:3 and <23 are easily to be obtained.
Generally, for n fixed, when the available information permits it, we con-

sider as in Luceno (1992) a set of covariates ci,...,Cfc and a new set of pa-
rameters 6i,...,8p affecting the location parameter u, in the following way:
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v = gn(Si,Sp; ci,Ck), wliere gn is a known function. This équation would
be a predictor that could be used togetJier with a link function spécifie for
the characteristic of the distribution to be estimated.

Remark 4.3 From the computational point of view, the probability
density function and the cumulative distribution function dépend on \kn for
wliich Lemma 5A is useful. For <£>(•), the standard normal density function,
very good approximations are known. Thus the quantiles of X and the log-
likelihood function for a given sample, are easily computational. Also see
Remark 5.4.

Remark 4.4 If n = 0 we obtain the family of compound probability
distributions defined by Luceho (1992).

Remark 4.5 If 0 = rj and n = 0 we obtain a symmetrical family of
probability distributions studied by Ilolla and Bhattacharya (1968). Also in
this case, in Holla and Bhattacharya (1968), an expression for the distribution
of the sum of k independent random variables eacli having this compound
distribution is given.

Remark 4.6 We note that for n — 0 and 0 = r/, with Ai ^ A2, the
relation (1) described the probability density functions whicli are sometimes
used (see McGill (1962)). The case Ai = A2 correspond to double exponential
distribution (Johnson and Kotz (1970)).

5 Bayes estimation.
The posterior distribution of £, /(£|a;) = #(£)/(æ|£)//(x), where f(x|£) is a
normal density function with mean £ and variance r2, g(£) is defined by (1)
and f(x) is defined by (2), is given by

WfjP
g K+1 •exp(Alr2/2) exp(Ai (v-x)) (^-t>)n j|>M«

nWr22n'f(x) •exp([^—(x—Aj r2 )]2 / (2t2)) ’ ^
A”•exp(A2T2/2)exp(A2(a;—t)))-(t>—^)n if M

* n!Vr227r-/(x)'exp([^—(X+A2T2)]2/(2r2)) ’ ’

(5)

We note that the family (1) is a family of pieeewise conjugate priors of
order 2 (Meeden (1992)) relative to the mean of normal distribution with
given variance. See Dalal and Hall (1983) , Diaconis and Ylvisaker (1984)
and Meeden (1992) for some elicitation procedures using pieeewise conjugate
priors. From standard decision theory, e.g. Berger (1980), the Bayes estimate
of £ based on observation x from N(£,r2) under a prior density g(£) given
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by (1) and quadratic loss function is given by the mean m{x) of /(£|æ), the
posterior distribution of £. Using (5) and Lemma3B (Appendix B) weobtain

m(x)=um<it=• (/w)-‘
['T1î;n+i(—+ Ait) + vtyn(—-f- Air)]

. T7(^r)n+1<=xP((^2r)2/2) / ryw,
' nlr exp(À2T-—-) \J V //

[r$„+1(^ + A2t ) — + A2r)].

Using Berger(1980, Theorem 3 ,pp.l22), we get that this Bayes estimate
m(x) is admissible. . Also m(x) is the régression function of £ on X (Ca-
coullos and Papagiorgiou (1984)).Recently, Diebolt and Robert(1994) présent
approximation methods which evaluate the posterior distribution and Bayes
estimators by Gibbs sampling, relying on the missing data structure of the
mixture model.

6 Moment and ML estimâtes.

The estimation of the parameters of finite mixture distributions has recently
considered. Mixture models provide an interesting alternative to nonpara-
metric modelling, while being less restrictive than the usual distributional
assumptions. The maximum likelihood estimâtes (ML estimâtes) of the pa-
rameters can be found using a standard algorithm for minimizing or maxi-
mizing a function of several variables. For the convergence of the algorithm,
some good starting values for the parameters are necessary. In Radhakr-
ishna et al (1992) an attempt to dérivé the moment and ML estimators of
the parameters of two-component mixture is made.

In the following we consider these techniques to dérivé moment and ML
estimators of the parameters Ai, A2, 0, v and r2.

a) Moment estimators of the parameters.
Let p'j be the jth row moment of X about the origin. Thus we consider

the lirst sample moments and equate them to the corresponding population
moments to obtain the moment équations for the five parameters Ai, A2, 0, v
and r2.

Let rrij, 1 < j < 5, be the First five samples moments. The moment
équations to be solved simultaneously for Ai, A2, 0, v and r2 are hj(u>) = 0,
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for 1 < j < 5, where /ij(o;) = m — mj and u = (Ai, A2,0,u,r2)T (here T
denot.es the transpose).

This System of équations can be solved using Newton-Raphson or the
method of steepest descent. By these procedures we obtain the solution in
the following way. Using the Newton-Raphson method we hâve

u>*+1 = u* - (W(u/))T * , * 1 0,1,2,...
where eu0 is the zeroth approximation, h = (/tj,...,/?.5)T and W{u)x) is the
Jacobian matrix calculated at a;*. For the method of steepest descent we
hâve

= a;1' - ou • h(^) , * = 0,1,2,...
where

(A(a>»), VF (a;1) ( W(a;‘))T A(u/))
a* ~

(VF(w*) ( W(u>*'))T h(w*'), VF(ùF) (W(u;*))T h^))
with ( , ) for inner product.

A procedure is terminated as soon fis the noriri of u/ is less tlian a pre-

assigned srnall positive quanti ty e.

b) ML estimators of the parameters.
In the following we dérivé ML estiinator of vector u . Let ffifofifointiffl

be a random sample of size m draw from X. Tlien the likelihood function
m m

is given by L — J] f{xi) and log-likelihood function is logL = X) log f(x{)
i=1 t=l

, where we note that / is a mixture of two probability density functions,
f(x) = Ofi(x) -f i//2(x), with

hP) = fi(x\u) = f^--if(AiT) • hn(—Air) »

/2W = f2(x|w) = ^Tn-"A"(A2r) • /t„(^,A2r) .

We put u*(u>) = /(a:,-), 1 < i < m, and itj(tu), 1 < j < 5, the dérivatives
of u*(u>) with respect to the component of order j for vector tu, respectively.
Thus the ML équations to be solved are given by

ÔJogi » üiM = n
m

l<j<5 .
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Because /i and f2 are not dépendent of ail parameters, this System bave a

spécial form. Detailed expressions of xiïAoa) are omitted.
Solving simultaneously these équations, using for example one of the it-

erative techniques of Newton-Raphson or thé method of steepest descent
presented above, we obtain ML estimâtes of the vector parameter u .

Remark 6.1 For the calculation of ML estimators, also the EM algo-
rithm (Dempster et al (1977)) is it appropriate to be apply. Thus on this line
is it important to bear in mind the Newton-Raphson version and the method
of scoring presented, for example in Titterington et al (1985).

Remark 6.2 The information matrix can be obtained by evaluating the
Jacobian matrix W at ML estimators of the parameters and changing the
sign of ail the éléments. Further, by inverting the information matrix we get
the approximate asymptotic variance-covariance matrix of the estimators.

Remark 6.3 An analysis of models with fully categorized data (in-
complété data) can be givcn. In this case the data are represented as
{x,-, i = 1,2, ...,m} = i = 1,2,..., m] , where each zt- = (^j)i<j<,
is an indicator vector of length q with 1 in the position corresponding to
the appropriate category and zéros elsewhere. For the likelihood function
corresponding to (æi,...,xm) see Titterington et al (1985, pp.84).

Remark 6.4 When computing the log-likelihood function, the value of
ln 4/n(s) should be evalualed iteratively. Using Lemina 2A we hâve

tün+i =wn + ln[—s - ffi|j
where wn(s) = ln^n(s) and w'n(s) = ^(l(s)/\I,n(s). Here w'n(s) is approxi-
mate by (wn(s -f A) — wn(s)) • A-1, for small A > 0.

Because log-likelihood function takes the form log / = log(Ofi + 77y2),
for 0 £ (0,1), the computations should proceed as in Luceno (1992), in
order to avoid rounding errors. Thus ln/ = ln(0/i) + ln[l + (flfi/Ofi)])
7//2/0/1 = exp[ln(7//2) — \n(0fi)] where ln(^/i) and are evaluated
directly using wn.

Remark 6.5 Also when the predictor v = <jfn(£i, •••, ^p, ci, •••, Cfc) (see
Remark 3.2) is given, it is possible to used a parametric estimation procedure
defined in Luceno (1992, pp.379).

Remark 6.6 Often it is convenient to restrict the values of the param-
eters in some spécifie way depending on the characteristics of the data (see
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Remarks 3.1 and 3.2). For example 0 = 0 ; 0 = 1; 0 = rj and Ai = A2. In
these cases the moment estimâtes and ML estimâtes follow easily.

7 An James estimator for proportion 6.
Mixtures of distributions hâve received considérable attention in recent years
due to the fact that practical problems involving mixtures arise in biology,
engineering, fisheries, medicine, social sciences (see Choi and Bulgren (1968)
and McDonald (1971)) .James (1978) proposed certain estimators based on
some rapid measurements like (i) the number of observations smaller than a
fixed point m ,(ii) the number of observations smaller than n2 and greater
than ni , (iii) the sarriple mean (using the rnethod of moments). Although
estimators of 0 based on (i), (ii) and (iii) havebeen previously considered by
McDonald (1971), Odell and Basu (1976), James (1978) discussed the choice
of m in (i) and (ni,n2) in (ii) and efficiencies of these estimators relative

/\

to the maximum likelihood estimator 0 of 0 . In this section we obtain an

estimator based on (i) through minimax criterion. According to Ahmad et al
(1983) we adopt the criterion that an estimate 0 = 0(xi,æ2, ...,xm) of 0 in a
class of estimators 0 is optimum if it minimizes the supremum witli respect
to 6 of the asymptotic variance of 6 over 0. Here we consider the problem of
estimating the proportion 0 in (2) when Ai ,A2 and v are known and n = 1 ,

on the basis of independent observations from f(x).
Let xi,x?, ...,xm be a sequence of rn independent observations from the

population with density function f(x) = Of\(x) + vfi{x) (with i] = 1 — 0),
where /i and /2 are defined by

fi(x) = T-1(X1T)2K(Xir)hi(-^L,XiT)
f2(x) = t~1(A2r)2A'(A2r)Ai(£^2i, A2t)

for — oo < x < oo. Let us consider the foliowlng set

X = {æ|jFi(x) ± F2(x)}

where F,- is the distribution function corresponding to fi, i = 1,2. (Using
Section 4 it is easy to obtain F,-, i = 1,2 ).
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Thus the James’ estimator Ôx for x G X is defined as (Ahmad et al (1983))

f <£ j if 0 < 0* < 1;
i = fB , if 0% < 0;

[i , ijgjj
where 0* = , with F(x) = m"1 • £ Yj , Yj = 1 , if xj < x , and is
zéro otherwise. Also the asymptotic variance of is given by

z$(x)
_ 1 v W(^) + yFijx)] • [0 Fi (s) + yF2(x)\

n n «g - F2(x)]2
where Fi(x) = 1 — Fi(x) , i = 1,2, and 7/ = 1 — 0.

According to Ahmad et al (1983) we consider an optimal estimator in the
class G(A') = {0x\x G X}. Using some transformations we obtain

Fi(x) = $(^) - {u^/lfw^exp(-^u>i) • [<^(-^ + ^1)+
+(£=Ï _ - un)] + expf-^u;,)^3^ - w,)A:(u>i)

F2(x) = $(—-) + {^2A (CJ2) exp(î-^rLL02) • + u2)—
_(i_Ë _|_ _ 0>2)] _p eXp(£-J'U;2^(_£_E _ U\)K(i02)

Because 6(t) = (p{t) — , —00 < i < 00, the dérivative 6'(t) =
< 0 , lim £(£) = +00 , and lim 6(t) = 0 we obtain 6(t) > 0

for any t. Ilence F2(x) > F\{x) for any x.
Now according to Ahmad et al (1983, Lemma 2.1, case iii) we hâve

f 4- F2{t))~2 , for i% < t < ;ftj
sup z0(t) = < Fi(t)l<\(t)(Fi(t) - F2(t))~2 , for t > h;

0<S<1 { F4l)F2(t)(FM - Ft(t))-2 , for t < (2,
where t\ and t2 are the respective médians for F\ and F2. Also, using Ahmad
et al (1983, Remark 2) we obtain a good choice by finding a t° such that

= /2(i°). Generally is not easy to obtain 1° directly. Some numerical
approximations are possible However, if Ai = A2, we may take t° = v. Ilence
James’ estimator is 0t0 defined as above.

A similar study is possible for case n = 0.
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Appendix A

In this section we consider sonie properties relative to \Pn defined in Sec-
tion 2, Let II be a normal distribution with mean // and variance r2. Then
the transform of order n associate to II is

OO

^nW = J(X~ S)n<f{x)dx
S

where <p{x) is the standard normal density function.

Lemma IA. For any real s and n > 1 (integer number) we hâve

\l/n+1(s) = -s^n(.s) +

with ^/o(s) = 1 — 3>(s) (= 3>(—s)) , (<-*>) = </?(s) — s[l — $(5)].
Proof. We obtain easily \p0 and $1. IHor n > 1,

OO OOOO

\Pn+i(s) = f(t — s)n(t — s)<p(l)dt = -s f(t — s)nip(t)dl + f i(t — s)nip(t)dt =
S SS

OO OO

= —s\Pn(s) — f (t — s)nip'(i)dt = —s^n(s) + zi f(t — s)n~1<f(t)dt —

- -styn(s) + n^n_i(a).

Lemma 2A. \Pn(s) is a derivable function for any real s and W^(s) =
—n#n_i(s), where n > 1.

OO

Proof. Using a change of variable we obtain \Pn(s) = / zn(p(s + z)dz.
b

OO

Because = —tip(t) we get = — f zn(s + z)<p(s + z)dz =
0

OO OO

—s f zn(p(s + z)dz — f zn+1<f(s + z)dz = —s\Pn(s) — \Pn+i(s). Finally we
0 0

use Lemma IA.
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Lemma 3A. We put a* = f tkip(t)dt, where k is a positive integer.
— OO

Then a2p — (2p— 1)!! and a2p+i = 0, where p is a positive integer, (2p— 1)!! =
(2p - l)(2p - 3) 3-1, with (-1)!! = 1.

S

Lemma 4A. Let /jfc(s) = f tk(p(t)dt , where —oo < s < oo and A: is a
— OO

positive integer. Then
a) Jfc(s) = (k - l)Ik-2{s) - sfc-V(5) , ^ > 2, with J0{s) = $(s) , Ii(s) =

b) /2p(s) = (2p - l)!!/0(s) - ip(s)[s(2p - 1)!! + s3(2p - l)(2p - 3) • • • 7 • 5 +
... -j. s2p~3(2p — 1) + s2p-1];
c) /2p+i(s) = (2p)!!/i(s) - <p(s)[s2(2p)(2p - 2) • • • 6 • 4 + s4(2p)(2p - 2) • • •
8 • 6 + • • • + s2p-2(2p) + s2p].

The proofs of Lemma 3A and Lemma 4A are simple exercises.

Lemma 5A. We hâve $„(s) = j^(-l)fcQsfc[an_fc - /„-*(«s)].
k=0

OO s

Proof. We can write tyn(s) = f (t — s)n(p(t)dt — f (t — s)n<p(t)dl =

= BPW
k=0

and 4A.

W O

f tn~kip[t)dt — / tn~kip(t)dt Now we use Lemmas 3A

n

Lemma 6A. We hâve $„(—s) = ^2{~^)k(^jsn~kak — (—l)n^n(-s).
k=0

OO 5

Proof. We see that $n(—s) j= f (t + s)n<p(t)dt = f (s — t)n(p{t)dt = =
—s —oo

OO OO . n. / \ oo

f(s-t)n<p(t)dt-f(s-t)n(p(t)dt = ^2(-1)k(k)s f tk<p(t)dt-(-l)n^n(s)
-oo a fc=(J -oo
and we use Lemma 3A.

Lemma 7A. Let us consider an integer number n > 0, and m, r real
numbers such that r ^ 0. Then

(z — m)2^
2— ) dz = rn+1 \/27r^n(—m/r) .
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Proof. We use a change of variable z = ra-f r£. Thus the intégral reduces
oo oo

to r J (m+ir)nexp(—t2/2)dt = rn+1 f [t—(—m/r)]nexp(—t2/2)dt =
—m/r —m/r

Tn+1y/2Tr^n(-m/T).
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Appendix B

Lemma IB. Let be Jn — f znexp(—\z)dz , where n
o

integer and A > 0. Then Jn — n\ • A^'H-i).
Proof. We hâve J0 = A-1 and Jn = nA-1 • Jn_i.

Lemma 2B. For —A2 < 2 < Ai we hâve
CO

a) f(£- v)n exp[£(f - Al) + Alv]d£ m exp(vL) • n! • (Ai - t)-n~
V

b) I (v ~ 0n expK(^ + A2) - A2v)d£ = exp(vt) ■ M • (t + A2)“"
— CO

Proof. It results from Lemma IB.

Lemma 3B. We hâve

a) f (v- fln exp[-A2(n - fl] exp[-(cr - fl2/2r2]d£ B
— CO

= rn+1 V27T exp(A2T^) exp(^^-) • \&n(^ + A2r)
OO

b) /(£-flnexp[-Ai(£-fl]exp[-(:r-fl2/2T2]d£ 1
V

= Tn+1 exp(—Ai(x - v)) ■ exp(^) •
Proof. It follows from Lemma 7A.

is a positive

,-i

+ Air) .
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I

Appendix C

Lemma IC. Let (an)n>i and ((3n)n>i be two real numbers sequences
with f3n > 0 for any n. Also let A be a positive real îïumber. We define
un = Aan -f (3nun-1, for n > 1, with m0 a given real number. Then

un = 0203 * ' ' fin ‘ [/?lw0 + A(ai + «2/^2 + ^/(/^Z^) + h &n/{0203 ' * * Pn)\ •

Proof. It is immédiate by induction.

According to Luceno (1992, pp. 407, 408) we hâve
Lemma 2C. The k- th moments of X about a given constant a is

r i [k/2] f k\
ak,a(X) = E [(X - «)*] = £ (2j - 1)!!J»*|r^ak^(0 ?

wherea*,a(£) = £ with <*.,>(£) = + (-1f?#]
j=o XJ/

Here ak,a{0 is the k- th moment of £ about a given constant a.

Lemma 3C. The central moments for £ and X are

wÀ) = EHIlto.,®)1® ;
t=o W

and

/**(*) = E(-1)i(*)K«W)iat-v*W •
Acknowledgments We are grateful to an anonymous referee for the
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