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Abstract

A new family of probability distributions is defined and Bayes es-
timation, Fisher information, Shannon entropy, an information differ-
ential metric and a James estimator are studied. This family is an
extension of some families considered in statistics. Also some proce-
dures to obtain the moment and maximum likelihood estimates are
given.

1 Introduction.

The purpose of this paper is to define a new family of compound probability
distributions and to stated some theoretical results and procedures of this
family. This family of probability distributions is an extension of the families
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of distributions considered by Ilolla and Bhatlacharya (1968) and Lucefio
(1992). Also our family of distributions is intended, as in Luceno (1992),
as a tool which could allow data analysis to be performed in the original
scale. This family is found by compounding two distributions and has the
normal, the gamma, the exponential and the double exponential distributions
as limiting cases.

Let us suppose that X is a continuous random variable having a normal
distribution with mean ¢ and variance 72 and that £ is a continuous random
variable with a probabilily density function given by

o(£) — 0"?:1 (E—v)" exp(=M(—=v)) ,if >0 i
/o { PO O exp (v =g) it e<v

where 0 <0<1,p=1-0, A\, 20, A\ >0, A} + X2 > 0 and n is a positive
integer. We note that for n = 0 we get the probability density family given
by Luceiio(1992).

Compounding these two distributions, a new family is found whose prob-
ability density function f(z) and cumulative distribution function F'(z) are
given for any real z. Further, in this part some properties for g(¢) and
f(&) are given. For example Bayes estimation, Fisher information, Shannon
entropy and Burbea-Rao information differential metric are studied. Our
results are defined relative to ®(-) , the standard normal cumulative distri-
bution function, and W,(-) a transform of order n relative to standard normal
distribution function. For this transform W,(-) some recurrence properties
are stated. If n = 1 we obtain the transform W(-) which appear in Railla and
Schlaifer (1961) and De Groot (1970, pp.246).

The definition of W, transform and some important properties of this
transform are described in Section 2. Many interesting properties ol prob-
ability density function g(£) are presented in section 3. Thus for g(£) we
obtain the moment generating [unction, the mean, the variance, the semi-
variance, the central moments, the relations for skewness and kurtosis, the
Fisher information matrix for some parameters, the information differential
metric (Burbea and Rao (1982)) and Shannon entropy (Guiagu (1987)). In
Section 4, the compound probabilily density function f(x), the cumulative
distribution function F'(z), the moment generating lunction, the skewness
and the kurtosis are stated. Also the posterior distribution of £ and Bayes
estimation of ¢ based on an observation z from a normal distribution with
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mean £ and variance 7%, under a prior density g(¢) and quadratic loss func-
tion is given in Section 4. The moment and maximum likelihood estimaltes
of some parameters can be found using standard algorithms presented in
Section 5. Using a result of Ahmad, Giri and Sinha (1983), in Section 6, a
James estimator for proportion # is given. I"inally, certain useful results are
included in three appendices.

2 V¥, transform

In this section we define the W, transform and some propertics of W, are
given. Also in Appendices A and B some recurrence relations are stated.

Let n be a positive integer and ¢(-) the standard normal density function.
We put

(e e}

Wa(s) = [(t = s)p(t)dt
for any real s.

We note that W,(¢) > 0 for any ¢ and lim W, (s) = +oo. According to
Appendix A we have that ¥, is a derivable function and according to Lemma
2A, ¥, (s) = —nW,_4(s), for any n > 1 and s real. Also for any real s and
n 2> 1, according to Lemma 1A, we have

Wori(s) = —sW,(s) + nW,_(s).

Further on other relations concerning W, are given by Lemmas 5A, 6A, TA
(Appendix A) and the following

Theorem 2.1 We have:

a) V,(-) is a convex and a decreasing function;

b) W, (s) > (<) i (nl)*(:)ska,;_k , il n is odd (even);
k=0

¢) lim W,(s) =0 ;

d) Lim [Wo(s) = 3 (=1)*(}) skan-k] =0,

where ay is defined in Lemma 3A (Appendix A).

Proof. a) According to Lemma 2A (Appendix A) we have
V() <0 and W/(s)=n(n—1) ¥, _o(s) > 0.
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For b) and d) we have in view that

U,(s) = _/(l—.s)”'(p(t)dfl—— ](;-s)“@(:)dz

and further we use Lemma 3A (Appendix A).
Relation ¢) is immediate.
Remark 2.1 According to Johnson and Kotz (1970), in Fisher (1930)

defined the Hh, functions, I/h,(s) = (n!)™! Dfo(! — s)"exp(—t?/2)dt . Thus
Hhy(s) = (n)1(2m)V2 - W, (s).

3 Properties of random variable ¢.
Let us suppose that £ has a probability density [unction defined by g(£) given

by (1). The moment generating function of ¢ is given by me(t) = Ee(eX).
Using Lemma 1B and Lemma 2B (Appendix B) we obtain

o [0 ( i t) 35 ( 2 t)w} exp(to)

for "")\2 =l )\l-
The mean and variance of { are given by

= E¢(€) = m(0) = v+ (n+ DOAT = nAz"]

Vare(€) = Be(€ — p)? = m(0) — (mi(0))? = az,(€)
= (n+1)(n + 2)[0A7 — 7A7%] — (n + 2)2[0A7" — A7)
where n =1 — 0, and o3,,(§) = Ee(§ — p)*.
The k - th moments of ¢ about a given constant a is k. (€) = Fe(é —a)
Using (1) , the moments about, v are given by ax,(§) = ki) -k p ot

n!

Now by Lemma 3C ( Appendix C) we obtain the formula for central moments
ofyfl;

k

k 3 ) §
) = -1 () 0+ 10T =5 Y
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We remark that po(€) = 1 and iy (€) =0 . Because
#2(§) = (n+ D)(n + 2)[0A7" =A%) = (n + 2’ (07 — A '],
p3(€) = (n+3)(n 4+ 2)(n + DOAT* =A% = 3(n + 2)(n + 1)*
JOATE — Azt [0AT2 — 272 + 2 dP0A" =P,
ual€) = (n + 4)(n + 3)(n + 2)(n + DA — yA3%] — 4(n + 3)
(n 4+ 2)(n + 120N — A M[0AT2 — A28+ 6(n + 2)(n + 1)
(AT = A POAT® — 922" = 3(n 4+ DMOAT — A"t
we obtain the skewness and the kurtosis as(€) = pug(€) (p2(€))™? and a4(€) =

114(€) (12(€)) ™% — 3 respectively.
In the following we consider Fisher information relative to some param-
eters of g(€) , Shannon entropy of ¢(¢) and information metric relative to

().

a). Fisher informalion. 1[0, A, , Ay and n are known we obtain Fisher
information for v . According to Saporta (1990, pp.291) we can write

I(v) = — L ( Ing(f)) = ”_{uo AR ()= (v = )" 2 exp (—Az(v — £)) dE+
tn { O (rh) (€ = v)* P exp (=Ai(€ = v))d = (n — 1)7 (0] + 0X]]

When 0 , Ay , v and n > 2 are known then I'isher information for A, is
Jid)i= Om 41252

Generally, if v is a given constant and a = (a;, @2, a3) where a; = 0
, 03 = XA , a3 = Ay , where n is known, using Lemma 2B (Appendix B) we

obtain /() , the Fisher information matrix for o , I{a) = —F (,f: 'E’j‘%)
(01 =0))~" 0 0
I(a) = 0 O(n + 1)A? 0
0 0 (1=0)(n+1)X3°
Thus we have the metric tensor field components (Burbea and Rao, 1982)
e = (0(1 _9))_1¢ €12 = €13 = €21 = €3 = €31 = €32 = 0, €3 = O(n +

DAT?, €33 = (1 — 0)(n + 1)A52.

3
Hence, the information metric ds? = ¥ ¢;da;da;, may be expressed as
ij=1

ds® = (0(1 — 0))™" (d0)? + 0(n + D)AT2(dA1)? + (1 — 0)(n + 1)A7%(dA2)?
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b). Shannon entropy. According to Guiagu (1978), Shannon entropy of
g(é)is 1 (y) = — T 9(€) ln g(€)dé. Thus we have

)\n+l

o (v=E)"exp(=Az(v—¢)) - [In (1]'\"‘:1> +nlin(v —§)

o n+1
—da(o = €)ldé — [ 0=1—(6 = v)" exp (= D(€ — v))-
[In (0'\1;#) +nln(é —v) — A\ (€ —v)]dé
Using Lemma 1B and Lemma 2B (Appendix B), Lemma 3A (Appendix A)

and the relation I'(t) = [ 27! In z - exp(t)dt, where I"(t) is the derivative of
0

A

gamma function I'(t), we obtain

H(g)=n+1+4+1In(n!)—(ylnn+0In0) — (1} InAy +0ln Ay + IM(n + l))

(n—1)!
where 7 = 1 — 0. If @ — 1 we obtain the Shannon entropy for gamma
distribution. Further on if n = 0 we obtain the exponential case.

We see that g(£) given by (1) is a mixture of two gamma distributions
,each having different intervals as ranges of variation. Plucinska (1966) used
two generalized gamma distributions, one for negative and one for positive
values of the argument, to construct a new class of distribution functions.
Mixtures of such distributions are used in Plucinska (1967).

4 The compound distribution. Derivation
and properties.

By compounding the distribution of &, given by probability density function
g(¢), and X given by a normal distribution with mean ¢ and variance 7%, by
Lemma 3B (Appendix B) we obtain

n+tl An+]

fl@)=0-(2rr2)12. A _. L, (z,A,0,7) 4+ 75 (2n72)"1/2. 2. La(, A2, 0,7

n!

where

Ly(z, 1, v,7) = 774 (2m) V2 exp (—Air=2) - exp (L) - @, (~222 4 Arr)
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Ly(z, Az, v, 7) = 77 (27) 2 exp (/\27$_”) - exp (M) W, (‘”T;” + )\ZT)

T 2

We put K(w) = exp(w?/2) , ha(u,w) = exp(uw) - ¥, (v + w) , wy = A7
,wz = Ag7 . Thus we get the probability density function

f@) = (nl7) 7 [0t K (wn)ha(— 222, w;) + Nt K (w2)ha ()22, wn] - (2)

for —ee <im < oo
The cumulative distribution function /”(z) is given, for any —oo < z < 0o
by

r—=v

F(z) = _f f(t)dt = Ow?ﬂ(”!)_] K (wy) - -_fr—hn(—u,wl) du +

it (n!) K (w2) - i b (U, ws) du.

According o Lemma 2A (Appendix A) we have

j o (u,ws) du = wyt exp (”’;”w:) v, (”;” + wz) + nw;! / b1 (u,ws) du

—00

for n > 1, with

f ho(w,wy) du = i exp(uws)Wo(u + ws) du = (3)
=wy exp(52wy) - (=222 — wy) + wi exp(~w}/2) - B(2)
and
f ho(—u,wr) du = —wi " exp (— I;le) v, (_m:v + wl) +

I—u

+nw! f by (—u,wy) du

forn > 1, with
f ho(—u,w;) du = —wflcxp(—-“"—;"—"wl) - P(E= —wy)+ (4)
—00
+wi ' exp(~w}/2) - ©(%2)

i
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T—u

TS — j by (w,wy)du , for n > 0, by (3) we obtain uy and by Lemma
1C (Appcndlx C), for n > 1, we get

Un = P2fs - Bn - [Bro + Ay + /By + s/ (B23) + - - - + [ (B2 - - - Bn)]
2)y @ = Wo(Z=2 + ws) and B, = nw; !,

where A = wj! exp(Z2

Alsoifu! = f ho(—u,w;) du, for n > 0, by (4) we get ug, and by Lemma
1C (Appendix C), for n > 1, we get
Un = B3B3+ By - [Brug + A'(e) + o/ By + o [ (B33) + -+ - + o, [ (Bas - - - B,)]

=2 — = : P s -1
where A' = —wi exp(—Etwy), o), = Vu(—%2 +wi) ,and f), = nw;
Thus we obtain the following formula for cumulative distribution function

F(z),

n+t1 n+l

F(z) = 021 K (w1, +7, — I (w2
T

For n = 0 we obtain the cumulative (hstnbul.xon function [F'(z) obtained
by Luceno (1992). For n = 1 we have

(= +wn)] +
(r;v ) :

(-~ E
= ) -

The moment generating [unction and the moments of X can be obtained
as in Luceno (1992), using the properties of conditional expectation Rao
(1973, pp. 86-98). Thus the moment generating function of X is given by,
according Luceiio (1992, pp. 406) mx (1) = me(t) - exp(t?72?/2), i.e. X is the
sum of two independent random variables, the first £, and the second one
having a normal distribution with mean zero and variance 72. Using mg(l)
given by section 3, we obtain

A n+1 A n+1
i 2 1 | 249 ic
mx(t) = [n (/\2 T t) + 0 (/\1 = t) ] exp(lv + t7%/2)

Uy = —wy c-xp(—_w])[ (—z=2 +w1) (.’c:u
(w 11‘(&)1))“! ‘I’(IT”)—w

and

ur = wi exp(E5twy) [p(252 +wy) — (5
(W3 (w2)) ™" @(252) + wy exp(=3

T
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for =Xy < 1 < AL
Using Section 3, the mean and the variance of X are given by

B(X) = Be(Bx(X/€) = Be(€) = p= v+ (n+1) [0A7 = 1)7"]
palX) = Var(X) = Var(Ex(X/)) — Be(Varx(X/6)
= Varg(€) + Le(7%) = Varg(€) + 12 .

=(n+1)(n +2) [0)\, 2—dy 2] ——(n+1)? [ﬂAf] - 1})\.;1] + 72

The central moments of X arc given by (Appendix C)

k2 7 g -
iR~ 100 (24‘)(21' I i (E)
j=0 \4J

where [k/2] = { f/Z 1)/2 llrf;:,'; IZ(OVLY(I.II ; and p;(€) is the central moment

of order j of ¢ and is defined by Lemma 3C (Appendix C). Also we have
#a(X) = pa(€) and pa(X) = pa(€) + 6725(€) + 374, where pz(€), pa(é)
and y14(¢) are given in section 3.

The skewness and kurtosis satisly the equations (Luceiio (1992))

ay(X) = as(€) [2(€)/ pa (X
as(X) = aq(é) [2(€)/ p2 (X))

where a3(€) and aq4(€) are defined by section 3. Thus the following relations

holds
(@3(X))" (@a(X)) ™ = (a3(€))" (a(£)) ™

Remark 4.1 The compound family of distribution has five parameters,
namely 6, A, A;,v and 72. Sometimes is desirable to restrict this set of
paramelers. For example, il @ = 0 (or § = 1) the lamily has only three
parameters because 7 = 1 — 0, and then this skewness and kurtosis are
negalive and positive respectively.

Remark 4.2 If 0 = 5 and A\, = ), a different family with three pa-
rameters is found for which a3 and a3 are casily to be obtained.

Generally, for n fixed, when the available information permits it, we con-
sider as in Lucefo (1992) a set of covariates ci,...,cx and a new set of pa-
rameters 6, ..., 6, affecting the location parameter v, in the following way:
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V = gn(01, ey Opj €1, ony €k ), Where g, is a known function. This equation would
be a predictor that could be used together with a link function specific for
the characteristic of the distribution to be estimated.

Remark 4.3 Irom the computational point of view, the probability
density function and the cumulative distribution function depend on ¥, for
which Lemma 5A is useful. For ¢(+), the standard normal density function,
very good approximations arc known. Thus the quantiles of X and the log-
likelihood function for a given sample, are casily computational. Also sce
Remark 5.4.

Remark 4.4 If n = 0 we obtain the family of compound probability
distributions defined by Luceno (1992).

Remark 4.5 If 0 = 7 and n = 0 we obtain a symmetrical family of
probability distributions studied by Ilolla and Bhattacharya (1968). Also in
this case, in Holla and Bhattacharya (1968), an expression for the distribution
of the sum of k independent random variables cach having this compound
distribution is given.

Remark 4.6 We note that for n = 0 and 0 = 5, with Ay # Ay, the
relation (1) described the probability density functions which are sometimes
used (see McGill (1962)). The case A; = Az correspond to double exponential
distribution (Johnson and Kotz (1970)).

5 Bayes estimation.

The posterior distribution of ¢, f(¢|z) = g(€)[f(|€)/f(z), where [(z|¢) is a
normal density function with mean ¢ and variance 72, g(¢) is defined by (1)
and f(z) is defined by (2), is given by

)\?+1-cxp()'f'rz/?.)exp(AJ(U—:ﬂ))-(f—v)" if& >
f(ﬁ]m) = niVyd2a-f (o) exp(li~(z=2ar2)2/(272)) ’ (5)
7 A3 exp(A372 /2) exp(Aa(z~v))-(v-€)" 1[5 0
nV7122r-f(z)-exp([€ —(z+A272)]2/(272))

We note that the family (1) is a [amily of piecewise conjugate priors of
order 2 (Meeden (1992)) relative to the mean of normal distribution with
given variance. See Dalal and Ilall (1983) , Diaconis and Ylvisaker (1984)
and Meeden (1992) for some elicitation procedures using piecewise conjugate
priors. From standard decision theory, e.g. Berger (1980), the Bayes estimate
of ¢ based on observation z from N(&,7%) under a prior density g(£) given
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by (1) and quadratic loss function is given by the mean m(z) of f(£|z), the
posterior distribution of £&. Using (5) and Lemma 3B (Appendix B) we obtain

m(e) = | Ef(él )d§—0"‘")"”‘“"*’“’1‘2’)ﬂ /()™

nlrexp(M7
{T ll’n+1( o = )]
Qe explan)/2) (7)),

ni7 exp(la7 12E)

[Twn_{.](m;” + A7) — 0V (T L4 A7)

Using Berger(1980, Theorem 3 ,pp.122), we get that this Bayes cstimate
m(z) is admissible. . Also m(x) is the regression function of £ on X (Ca-
coullos and Papagiorgiou (1984)).Recently, Diebolt and Robert(1994) present
approximation methods which evaluate the posterior distribution and Bayes
estimators by Gibbs sampling, relying on the missing data structure of the
mixture model.

6 Moment and ML estimates.

The estimation of the parameters of finite mixture distributions has recently
considered. Mixture models provide an interesting alternative to nonpara-
metric modelling, while being less restrictive than the usual distributional
assumptions. The maximum likelihood estimates (ML estimates) of the pa-
rameters can be found using a standard algorithin for minimizing or maxi-
mizing a function of several variables. I'or the convergence of the algorithm,
some good starting values for the parameters are necessary. In Radhakr-
ishna et al (1992) an attempt to derive the moment and ML estimators of
the parameters of two-component mixture is made.

In the following we consider these techniques to derive moment and ML
estimators of the parameters Ay, Ay, 0, v and 72

a) Moment estimators of the paramelers.

Let p! be the jt* row moment of X about the origin. Thus we consider
the first sa,mpl@ moments and equate them to the corresponding population
moments 1o obtain the moment equations for the five parameters Ay, Az, 0, v
and 72,

Let m;, 1 < j < 5, be the first five samples moments. The moment
equations to be solved simultancously for A, Az, 8, v and 72 are hj(w) =0,
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for 1 <j <5, where hj(w) = p —m; and w = (A1, A2,0,v,7%)7 (here T
denotes the transpose).

This system of equations can be solved using Newton-Raphson or the
method of steepest descent. By these procedures we obtain the solution in
the following way. Using the Newton-Raphson method we have

T

Wt = o — (W(w')) k(W) 0 1=0,1,2,..
where w? is the zeroth approximation, h = (fy,...,h5)T and W(w') is the
Jacobian matrix calculated al w'. For the method of steepest descent we
have

Wt = o — o (W(w"))T -h(w') , i=0,1,2,...
where
L (h(w), W(w) (W ()" h(w)
(W (w?) (W ()" h(w?) , W(w?) (W (w))" h(w))
with (,) for inner product.

A procedure is terminated as soon as the norm of w' is less than a pre-
assigned small positive quantity c.

b) ML estimators of the paramcters.
In the following we derive ML estimator of vector w . Let z;,zg,...,2n
be a random sa.mple of size m draw from X. Then the likclihood function

is given by L = H f(z;) and log-likelihood function is log L = E log f(zi)

, where we note tha.t, f is a mixture of two probability densnty functlons

f(z) = 0fi(z) + nfa(z), with

s i O
f(z) = fa(zlw) = Q2 K (Do7) - ha(222, Mpr)

n!r

We pul v'(w) = f(z:), 1 <4 < m, and vi(w), 1 < j < 5, the derivatives
of u'(w) with respect to the component of order j for vector w, respectively.
Thus the ML equations to be solved are given by

dlog L. & uj(w)
Ao Z ui(w)

=1

=0,, 1<j<5
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Because fi and f; are not dependent of all parameters, this system have a
special form. Detailed expressions of uf(w) are omitted.

Solving simultaneously these equations, using for example one of the it-
erative techniques of Newton-Raphson or the method of steepest descent
presented above, we obtain ML estimates of the vector parameter w .

Remark 6.1 Tor the calculation of ML estimators, also the EM algo-
rithm (Dempster et al (1977)) is it appropriate to be apply. Thus on this line
is it important to bear in mind the Newton-Raphson version and the method
of scoring presented, for example in Titterington et al (1985).

Remark 6.2 The information matrix can be obtained by evaluating the
Jacobian matrix W at ML estimators of the parameters and changing the
sign of all the elements. Further, by inverting the information matrix we get
the approximate asymptotic variance-covariance matrix of the estimators.

Remark 6.3 An analysis of models with fully categorized data (in-
complete data) can be given. In this case the data are represented as
(g, + = 1,2,...,m} = {(yi,2i), i = 1,2,...,m} , where each z = (zi)1<i<q
is an indicator vector of length ¢ with 1 in the position corresponding to
the appropriate category and zeros clsewhere. For the likelihood [unction
corresponding to (21, ..., Tm) see Titterington et al (1985, pp.84).

Remark 6.4 When computing the log-likelihood function, the value of
InW,(s) should be evaluated iteratively. Using Lemma 2A we have

Wn41 = Wy b lll['—S i¥ TU;‘L(S)]

where w,(s) = InW,(s) and w!(s) = W, (s)/Wa(s). Here w;(s) is approxi-
mate by (wn(s + A) — wy(s)) - A1, for small A > 0.

Because log-likelihood function takes the form log [ = log(0f: + n/2),
for 0 € (0,1), the computations should proceed as in Luceno (1992), in
order to avoid rounding errors. Thus lnf = In(0f1) + In[1 + (n.f2/0f1)],
1f2/0f, = exp[in(nf2) — In(0f;)] where In(0f1) and In(nf;) are evaluated
directly using w,.

Remark 6.5 Also when the predictor v = ¢n(81,...,p, 15 .-, k) (5€€
Remark 3.2) is given, it is possible to used a parametric estimation procedure
defined in Lucefio (1992, pp.379).

Remark 6.6  Often it is convenient to restrict the values of the param-
eters in some specific way depending on the characteristics of the data (see
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Remarks 3.1 and 3.2). For example 0 =0; § =1; 0 =7 and Ay = Ay, In
these cases the moment estimates and ML estimales follow easily.

7 An James estimator for proportion 6.

Mixtures of distributions have received considerable attention in recent years
due to the fact that practical problems involving mixtures arise in biology,
engineering, fisheries, medicine, social sciences (see Choi and Bulgren (1968)
and McDonald (1971)) .James (1978) proposed certain estimators based on
some rapid measurements like (i) the number of observations smaller than a
fixed point m ,(ii) the number of observations smaller than n, and greater
than n; , (iii) the sample mean (using the method of moments). Although
estimators of 0 based on (i), (ii) and (iii) have been previously considered by
McDonald (1971), Odell and Basu (1976), James (1978) discussed the choice

of m in (i) and (ny,n3) in (ii) and efficiencies of these estimators relative

to the maximum likelihood estimator 3 of @ . In this section we obtain an
estimator based on (i) through minimax criterion. According to Ahmad et al
(1983) we adopt the criterion that an estimale 0 = 0(zy,22,...,2,) of O ina
class of estimators © is optimum if it minimizes the supremum with respect
to 6 of the asymptotic variance of § over ©. Here we consider the problem of
estimating the proportion @ in (2) when Ay ,A; and v are known and n =1,
on the basis of independent observations from f(z).

Let 22, ..., 2m be a sequence of m independent observations from the
population with density function f(z) = 0fi(2) +nfo(z) (withny=1-19),
where f; and f; are delined by

filx) = 77 )2 K (ar)ha (— 252, Ay )

P

f2(z) = 771 (A7) 2K (Ag7) By (552, Ag7)

T

for —oo < & < o0. Let us consider the following set

X = {a|Fi(z) # Fa(=)}

where F; is the distribution function corresponding to f;, ¢ = 1,2. (Using
Section 4 it is easy to obtain Fj, i =1,2).
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Thus the James’ estimator 0, for x € & is defined as (Ahmad et al (1983))

0, if0<0:<1;
(R (28 <40
Vi vogonif OB 1y

* P‘ - (z s r — Ly . .
where 07 = ﬁ%)_u}";(%, with F(z) = m™ ~J_§1Y,~; g = b g g L (g
zero otherwise. Also the asymptotic variance of 0, is given by

20(z) _ 1 [0F(2) +nl%(2)] - [0F(2) + nFa(x)]
n n [F1(z) — Fy(2)]?

where Fi(z) =1—- Fi(z), i=1,2,and n =1 - 0.
According to Ahmad et al (1983) we consider an optimal estimator in the
class O(X) = {0,|z € X'}. Using some transformations we obtain

Fi(z) = &(%2) — {wi1 K (wy) exp(—
H(572 — w)@(52 — wi)] + exp(—

B).< Of% (w2) exp(Etws) - [p(*5¢ + wa)—
(” + wy )‘I}(—u — wy) ]+exp(uw2)¢'( L VK (ws)
Because 6(1) = ¢(t) — t®(— ) , —00 < 1 < oo, the derivative §'(t) =
-®(-1) < 0, ]1m a(in= , and lim §(t) = 0 we obtain §(t) > 0

for any ¢. Hence I‘ ( i 1‘;(3:) for any x.
Now according to Ahmad et al (1983, Lemma 2.1, case iif) we have

~H(£4(2)
)1
)1,
where t; and ¢, are the respective medians for Fy and I. Also, using Ahmad
et al (1983, Remark 2) we obtain a good choice by finding a t° such that
Si(t%) = f3(1°). Generally is not easy to obtain (° directly. Some numerical
approximations are possible However, if Ay = Az, we may take t® = v. Hence

James’ estimator is 0,0 defined as above.
A similar study is possible for case n = 0.

wy) - (=52 +wi)+
et ) (wi)

Fo(t)) 2 ; for s iy,

t)
() (F1(t) = Fa(8)72 5 for b >y
(O)(F1() — 12()=* , for & <1y

0<0<1

sup zy(t) = ( ]f
() F:
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Appendix A

In this section we consider some properties relative to W, defined in Sec-
tion 2, Let H be a normal distribution with mean g and variance 72. Then
the transform of order n associate to I is

o0

Wa(3)'= /('c — 3)"p(z)dz

S

where ¢(z) is the standard normal density {unction.
Lemma 1A. TFor any real s and n > 1 (integer number) we have
Wn+1(3) = —s\lln(.s) -+ ?t‘.l’n_l(S)

with Wo(s) =1 — @(s) (= P(—s)), Vi(s)=p(s)— s[l — &(s)].
Proof. We obtain casily Vg and ;. For n > 1,

gy :f(t — )™t — s)p(t)dl = —s :f(t — s)(U)dL + ‘ft(r. — 8)p(t)dt =

— )(1
= —sWy(s) = [ (= 8)"¢(1)dl = —sV¥(s) + 1 :F(t — sy lg(l)dt =
= —sV,(s) + n¥,_1(s).

Lemma 2A. W,(s) is a derivable [unction for any real s and W/ (s) =
—nW,_1(s), where n > 1.

Proof. Using a change of variable we obtain W,(s) = Tz”(,o(s + z)dz.
0

Because ¢'(t) = —tp(t) we get Wi(s) = — }Oz“(s + 2)p(s + 2)dz =
0
—s [ 2™p(s+ z)dz — Tz““np(s + z)dz = —sW,(s) — Y,u41(s). Finally we
0 0

use Lemma 1A.
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Lemma 3A. We put ap = f tkp(t)dt , where k is a positive integer.

Then az, = (2p—1)!! and azp+1—0 where p is a positive integer, (2p—1)!! =
(2p—1)2p—3)--+--3-1, with (-1)!! = L.

S
Lemma 4A. Let Ik(s) = [ tFp(t)dl , where —oo < s < oo and k is a

positive integer. Then
a) Ik(s) = (k — D)Ix—a(s) — s p(s) , k = 2, with Io(s) = ®(s) , [i(s) =
—¢(s); ;
b) Ipp(s) = (2p — 1)!Mo(s) — @(s)[s(2p — D) +s*(2p—1)(2p—3)---7-5+
4 — 1) P
O wi(s) = (2p)U(s) — p(s)[5*2p)(2p —2) - 64+ 5'(2p)(2p —2) -+
86+ + 8% 2(2p) + s%].
The proofs of Lemma 3A and Lemma 4A are simple exercises.

Lemma 5A. We have V,(s) = > _(—1)* (z)sk[(tn,k — L—k(8)].

k=0

Proof. We can write ¥,(s) = ofo(f — 8)™p(t)dt — j" (t —s)"p(t)dl =

—Z( 1) () [ [ " ke(t)dt — fs t"‘ktp(l‘.)dt]. Now we use Lemmas 3A
a.nd 4A

Lemma 6A. We have W,(—s) = Z(—l)"(:)s""‘ak — (=1)"W.(s).

k=0

Proof. We see that V,(—s) = _j?(t + s)"p(t)dt = _f (s =) (t)dt = =

_cf;(s%t)“go(t)dt-—j’o(a—t)"n,o(t)dt = i(«l)* (’;)s“-" _Z: tkp(t)dt—(—1)"Wa(s)
and we use Lemma 3A. E:

Lemma 7TA. Let us consider an integer number n > 0, and m, 7 real
numbers such that 7 # 0. Then

2£

]oz"exp( ("’"’") )d = 2, (—m/T) .
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Proof. We use a change of variable z = m+7({. Thus the integral reduces
to 7 [ (m+tr)texp(=t?/2)dt = 7"t [ [t—(—m/T)|"exp(—t?/2)dt =

—-m/T —-m/T

T”“\/ﬁ‘l’n(—m/r).
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Appendix B

Lemma 1B. Let be J, = [z%exp(—Az)dz , where n is a positive
0
integer and A > 0. Then J, = n!- A-(v+1)
Proof. We have Jo= A" and J, = n)~1.J,_;.

Lemma 2B. TFor —); < < \; we have
a)  [(§—v)"exp[é(t — A1) + \v]dé = exp(vt) - nl- (N — 1)~ 1,

b) fu (v = &) expl€(L + A2) — Agv]d€ = exp(vl) - n!- (L + Ag)™" L.

P_roof. It results from Lemma 1B.

L%mma 3B. We have
a) (v =&)" exp[—Aa(v — €)] exp[~(z — €)*/27?]d¢ =
= AT exp(/\g'r“’;")exp((—)—)”; 2) W (2= P Aar) 5

(€ — v)" exp[—A; (€ — v)] exp[—(z — £)*/27*]d¢ =

= 7"HV27r exp(— A (z — v)) - exp(ﬁ‘z—rﬁ) = AT
Proof. It [ollows from Lemma TA.

b)

Q‘—..ﬁg
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Appendix C

Lemma 1C. Let (an)n»1 and (B,)n>1 be two real numbers sequences
with B, > 0 for any n. Also let A be a positive real number. We define
Un = Aay + Frtin_1, for n > 1, with up a given rcal number. Then

Up = Bafiz- - P [Bruo+ Al + az/ Bz + as/(B2fs) + - -+ an/(B2P3- - Bn)] .

Proof. It is immediate by induction.

According to Lucernio (1992, pp. 407, 408) we have
Lemma 2C. The k- th moments of X about a given constant a is

[k/2] e
amM%ﬂﬂw—@ﬂ:zwaW@Jmeﬂﬂ,

g=0)

mmmma=i@mwmmﬂimmm@=%ﬁWﬁH4mW

Here agq(€) is the k- th moment of £ aboul a given constant a.

Lemma 3C. The central moments for £ and X are

k

pul©) = 31 (¢ crnt@aninte)

=0
and
5 (k ; J
) = 0 () )i
i=0
Acknowledgments We are grateful {0 an anonymous referee for the
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