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DRIFT ESTIMATION UNDER STRONG MIXING

Mounir ARFI and Jean-Pierre LECOUTRE

Laboratoire de Statistique Théorique et Appliquée
Université Paris 6. 4, Place Jussieu, 75252 Paris, Cedex 05.

Abstract: It is shown that a kernel-type estimate for the drift function is pointwise
as well as uniformly strongly consistent, under strong mixing condition.

Ktywords: drift, strong mixing, kernel estimate.

1.Introduction

The diffusion model has been widely used in the literature to describe the
behavior of a dynamical System disturbed by white noise.

It can be defined as the solution to the stochastic differential équation

dXt — b(Xt)dt + cr{Xt)dWt; t > 0,
where (Wt‘, t € IR+) is a standard Brownian motion, and b and cr two con-
tinuous and unknown functions. We assume (Xt) to be a stationary process
with density / and we are interested in estimation of b(x) for each x (E E,
where E is the nonempty set {x € IR//(a:) > 0}.

The above problem has been considered by Brown and Hewitt [3] in a
parametric setting, in which b is assumed to be a linear combination of known
functions <&i, ,$* with unknown coefficients ai, ,0* to be estimated.
Whereas Banon and N’Guyen [1] considered the nonparametric estimation
of b by an indirect method using kernel estimâtes of / and its dérivatives.
Recently Pham [9] gave a kernel estimate of the drift function from the
régression function E(Xt+& \Xt = .) for which he establishes convergence in
quadratic mean.

In the framework, Genon-Catalot et al. [5] estimated the variance fun-
ction using the wavelets methods, Kutoyants and Pilibossian [8] considered
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the parametric estimation of the parameter of the Ornstein-Uhlenbeck
process.

Let A be positive and fixed and n G IN; the Markov observation
(A,a, 0 < i < n) permits to write:

AjA-|-A ~ A,A = 6a(A,a) + <TA(^t'A)e»A+A
where

bA(Xt) = E(Xt+± - Xt\Xt)
<jl(Xt) = ^,+AlX,)

are supposed to exist and define discrète versions of b and <r2, (et) being a
stationary Gaussian process such that:

E(et+&\XS]S < t) — 0

Æ(c?+aIXa-,s< t) = 1
A natural estimator of 6a is:

B» —-)Ea ~ Xa)
6a,„(*) = —— 3 Vx G E\n—1

T.K
t=0

A-,a — æ

hn

where (6n) is a positive sequence of real numbers such that hn —y 0 and
nhn —y oo when n —y oo, and K a Parzen-Rosenblatt kernel type (see
D.Bosq, J.P Lecoutre [2]) that is a bounded function satisfying:
/R K(t)clt = 1 and lim \t\K(t) = 0; moreover the kernel K will be assumed

|t|—AOO
to be positive and with bounded variation.

We establish the almost sure convergence of 6a,n to 6a under strong
mixing hypothesis and using the fact that:

b{x) = - Xt\X, = x)

we give an estimate of 6 by letting A —y 0, such that nA —y oo with n.
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2.Main results

We introduce the following assumptions:

Hl. The process (AT,a), i € IN, is strictly stationary and strong mixing
in the sense that:
a„ = sup{\P{A flS)- P(A)P(B)\ ; A € M‘0, B € M%.J -> 0, n -* oo;
where Mq (resp M^n) dénotés the <j-field generated by (Xa; s < t) [resp
(Xèr 3>t + n)].
H2. The Xîa hâve a continuons and bounded density / in E.
H3. The functions 6 and a and their discretized versions 6a and && are

Lipschitz and bounded in E, where the Lipschitz condition is defined by:
|6(a;) — 6(y)| + — <r(y)| < c \x — y\ V(æ, y) G H x IR, where c is a given
constant. Moreover a is assumed to be strictly positive.
H4. The density / is twice différentiable in E and its seconde dérivative is
bounded on a specified compact C included in E.

Remarks

A) If we assume that the initial condition À'0 is independent of
(Wt\ t 6 IR+) with density /, then a condition such as:

Va: G IR, \b(x)\ 4- &(x) < a.V1 + x2

where a is a strictly positive and given constant, implies that the process
(Xt) is stationary (E.Wong [10]).

B) Assumptions Hl to H3 are satisfied in the case of an Ornstein-
Uhlenbeck process if Xq follows a centered normal law.
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We give the following results:

Theorem 1.

Under assumptions H1 to H3, if (hn) is a sequence satisfying with mn:

lim
n—►oo

where mn is an unbounded and nondecreasing sequence with 1 < mn < n/2,
and such that there exists a bounded constant A satisfying:

nl

m„lnn
- = oo for some £ G ]0 , 1[

n

m„

1 m„

then for ail x in E we hâve:

< A;

6a,n(z) t-£ b&(x), n —* oo.

Theorem 2.

Under assumptions of theorem 1 and if the kernel K is Lipschitz, we hâve:

sup |6a,ti(æ) — 6a(a:)| 0, n —» oo.
x€C

Theorem 3.

Under assumptions of theorem 2 and H4, if the kernel K is even with
f z2K(z)dz < oo; then:

0"1 sup |6A,n(z) — 6a(x)| = 0(1) a.s., n —> oo,
xÇC

if we choose the sequence hn such that:

mjnn
Un = ——— > U, Unmn —► oo, n —► oo

nl-çnn

for some £ G ]0,1[
and if there exists a finite positive constant D such that:

Vn G IN, n > 3 hl<d~l < D.
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Corollary
Under assumptions of theorem 1, if we choose hn and A such that:

A n /1\ n nfA 0, -r- = o(l), : H OO,A mnInn Am,

/or some £ G ]0 , 1[, then for ail x in E we hâve:

^A,n(®) a.s.

0,

b(x), n OO.

Remark

For example, if an < C exp (—en2), C > 0, c > 0:
we can choose mn = rnoy/n and A = n~T with 0 < r < 1 then, the condition

l~(A ftn
mnlnn

becomes

—> oo becomes

lnn

„i/a-«+T)kii

n'/i-thn 0, n

lnn

oo.

oo for some £ + r < 1/2 and 0n

3.Preliminary results
We put:

&A,n(z) - 6a(®) = J*§fflgfy|U| + A2(x) + 6a(^)^3(®)]
with

Ai(x)=it* - 6i(x)/(x)

=iS K ffa(XiA)£ii+i
As(&) = f(x) - fn(x)
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fn(x)
1 yl jr ~ X\

nhn 1 V hn )
Lemma 1. (Carbon [4])

Let Z{ be a real valued strong mixing process, such that:

Vn € IN, V* G IN, 1 < * < n, EZi = 0, |Z,| < dn, EZf < Dn

then: Ve > 0, Vn G IN, n > 3

pjlE^I > cj ^ 2eæp i —7e + 472ne Dn + SdlJ2ai
where k is an integer less or equal than n/2, 7 satisfying 0 < 7 < 1/4kedn.

+ 2ey/èaï'*nj

Lemma 2.

If the sequence (hn) is submitted to the conditions of theorem 1, then for
ail x in E:

fn{x) f{x), n -> 00.

Proof:
By lemma 1 we hâve:

fn(x) - Efn(x) 0, U -¥ OO.

And by Bochner’s lemma we hâve:

Efn(x) - f(x) —| 0, n -> oo.

Lemma 3.

Under hypothesis of theorem 1 we hâve:

Ai(x) 0, n —► oo.

Proof:
We write:

Ax(x) = [ÂT(ar) - EAi(x)\ + [EAx{x) - b&(x)f(x)]
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where

= zr-ZK
i n—1 /y- _

Ü^Knhn -_q V hn
We hâve EA\(x) — b&(x)f(x) —► 0, n —> oo (see Pham [9]).

It remains to show that:

v4i(x) — EA\(x) 0, n —» oo.

We put

n—1

/l1(x)-£^1(x) = ^Zil
with

(3-i} éHEe%3B-I
By construction we hâve: EZ{ — 0. If K, T and p\ are upperbounds of

K y f and b& respectively, we hâve:

I < = dn

EZ? <* — r>2

nhn

2KTp2
n2hn

= Dn

Then we apply lemma 1 with k = mn and 7 =
1

f n—1

t i=0

p IEZil>4<2exp{-—=7ifhfi
e —

8eKp\mn \ mn ) emn
m

4mndne
2n f 1

X^ + ev^C"'3"
For sufficiently large n, we hâve:

I>i £ .

2 ’
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therefore, assumptions of theorem 1 imply that there exist two positive con-
stants Ci and C2 such tliat:

(3.2) pI\Y^Z,\>A <C\exp méÊà
and the choice of hn shows that:

Ve > 0,
n l 1=0 )

Lemma 4.

Under hypothesis of theorem l, if the sequence mn is satisfying:

n{•
► 0, n —» 00;

m„

for some £ G ]0 , 1[ then, we hâve:

Ai(x) 0, n —> 00.

Proof:
The study of cannot be made directly because of the possible large

values for the variables 6,a+a-
We use a truncation technique which consists in decomposing in

A+(x) and j4J(x).
Where:

AUx) = £1HM
and A^^x) = — Aff (x), Mn being a nondecreasing sequence satisfying
Mn = n* for some ( 6 ]0,1[.

We hâve

P?®! fc S le‘A+A|/{|£(A+A|>Mn}
Tl Un i'-q
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where p2 is an upper bound of cr&.

Leading by Schwartz inequality to:

^ EWa+A^^IK'A+aI > M„])1/2Tl fin j—q

Using Markov inequality we get for any sequence (en)
M

P{\Ai(x) - EAÎ(x)\ I e„} < -
tnKMZ

M being a positive constant and f3 such that /? > 4/£ — 2.
It suffices to choose now en = eo(^1-^n)-1 for a certain eo > 0 to get:

(4.1) P{nx *hn\A2 (x) — EAzfâl > e0) < Ln1 ^1+^/2)
where L is a positive constant.

The choice of /3 makes that the upperbound is the general term of a

convergent sériés, hence:

Atix) ~ pA0, n —> oo.

To proof that A^^x) — EA^{x) -^4 0 we put:

=

^ ^A»'(a;)crA(^iA)eiA+A-^{|«,A+Al<Mn} — p [-^»'(a;)0'A(^aA)e»A+A-^{|ejA+Al<A/n}] }
where Ki(x) = A' ^^^.

By the lemma 1 we get:

n—1

(4.2) Ve > 0 >z\<C3exp l-C4e
î=o

[~*hnn

mT

where C3 and C4 are two positive constants; and the choice of hn shows that:

J2P{\ J2 ^*1 > 4 < °°-
n l »=0 J
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Now, Aï(x) — ^(x) — EAi{x) permits to conclude.

Lemma 5.

Under hypothesis of theorem 2, we hâve:

sup |A2(æ)| 0, n —* oo.
xec

Proof:
By the proof of lemma 4, we get suplAj”(#) — EA%(x)| —^ 0, n —> oo.

xec

It remains to show that: sup|/lj(x) — EA^(x)| 0, n —> oo.
xec

Let {Bj, j = 1,2,/n} be a cover of C by ln spheres with center Vj and
radius less than with /„ < lh~v, where tj is a fixed number such that for
7i > 0, n > 1 H and 7 a given positive constant.

7i

If x is a fixed point in C, there exists a point vj such that x G Bj and we
Write:

$i(x) = l|({$ + $,(x),
where 'J'j(x) = 4/t(x) — ^fi(vj).

The kernel K being Lipschitz of order 71, there exists a fini te positive
constant À such that:

sup IV *i(*)| < n-1
*ec t=0

n—1

[le‘A+Al + -^|€»A+a|]
»'=0

By the law of large numbers we hâve:

n 1 |c»a+a | -^|€*a+a|
•=o

then, we get:

xec m
a.s.
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where À is a positive constant.
It remains to show that:

n—1

jm, I S ^.(ui)l 0, n -> 00.
,.=0

For any e > 0, we hâve:
n—1

1-J-/n i=o

P \ I E ^*(ui)l > 4 < ksup P \ | 2 ^.(z)l > ex€C

n—1

*=0

Inequality (4.2) shows that there exists a positive constant Cs such that

P I £mà > e \ ^ Csh-'exp ( -c4e m,

the right-hand side of the last inequality could be written as follows:
Cs

(nhny
,T)-CiHnC .

where pn =

resuit.

'-(hn .

mnlnn
; it is the general term of a convergent sériés, hence the

Lemma 6.

Under hypothesis of lemma 2, there exists 8 > 0 such that:

J2p(™lfn(x) <S) <oo.
a?tu

n

Proof:
It suffices to write:

fn{x) = f(x) - (f(x) - fn(x))

then, inf fn{x) > inf f(x) - sup \f(x) - fn(x)\x£C xec xç_c
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4.Proofs of theorems.

4.1 Proof of theorem 1.
We obtain:

I fP BrsiS^BHpK+wHBBB|6a.„(x) - M«)l < /(X)_|/W_AW|
Lemmas 2, 3 and 4 permit to conclude that:

&A,n(z) b&(x), n —» oo.

4.2 Proof of theorem 2.

We obtain:
sup|y4i(a:)| + sup| A2(a:)| + sup|ô^(ar) | |yl3(ar) |

sup|6A,n(x) - &A(x)| <^*Æ
xec mUn{x)
We find a proof of sup|/n(a:) — f(x)| 0, n —> oo in Gyôrfi and al. [6],

xec
and since the function &A is bounded on E we conclude that:

sup |6A(ar)||^43(a:)| 0, n —► oo.
xec

Now we pick up again the décomposition of A\(x) in the proof of lemma
3 and we Write:

sup |Ai(a:)| < sup |Ai(x) — EAi(x)\ + sup \EAx(x) — 6A(x)/(x)| = Tx -f T2
xec xec xec

with

Ti = sup
xec kH iI{ÉfclsSl -E [KHH I

T2 = sup
xec

1 n~l
-rY,Enhn §§§

K bA(XiA) bA(x)f(x)

and



123

By Bochner’s lemma and the fact that 6a is Lipschitz we get T\ —I 0
n —* oo

Now, using the technique of covering C by a finite number of spheres as
in the proof of lemma 5 gives:

Ve > 0, P { max | Y] Zi{vj)\ > el < C^hZ^exp f-C7e—J
U=1 ln »=o J V mn J

where Ce and C7 are two positive constants and Zi the variables defined in
(3.1). Moreover, if we Write:

Zi{x) = Zi(x) - Zi(vj)

we get:

sup 12 Zi(x)\ < AJih-')-1 '
X£C i=0

which leads to:

Ti ^ 0, n -» 00.

Lastly, the lemmas 5 and 6 permit to finish the proof of theorem 2.

4.3 Proof of theorem 3.

We proceed as in the proof of theorem 2 with eo0n instead of e, for a
certain Co > 0, and we establish that:

0“* sup |Ai(x) — EAi(x)\ = 0(1) a.sn —» 00.
xec

and proceeding as in the proof of lemma 5 with £o0n instead of e for a certain
6o > 0 we establish that:

0”1 sup \A^{x) — EA2 (#)| = 0(1) a.s., n —» 00.
xec

Furthermore, we hâve:

r2<sup-J- f I< (-7—-) |6a(u)~b^(x)\f(u)du+sup f K (U X) \ f(u)-f(x)\duxeC iln * \ ftn ' xeC hn J \ hn /
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and if we put z —

u — x

hn
and use the fact that 6a is Lipschitz of order 1 and

ratio r < oo we get:

T2 < rhn sup f \z\K(z)f(zhn + x)dz + ^ sup f K(z)\f(zhn -fa;)- f(x)\dz
xeC J x£C J

Now, the hypothesis of theorem 3 and a Taylor expansion in the second
term of the right-hand side of the inequality above shows that there exists a
finite constant D > 0 such that: Ti < Dh?n.

Hence, 0“1sup|i4i(x)| = 0(1) a.s., n —► oo.
xec

Moreover, by the proof of lemma 4 we hâve:

P {sup \A%{x) - EA%(x) I > e„) < -
x£C Cn/în

If we choose en = eo m“10n for a certain eo > 0 we get:

sup |A+(x) - EA*(x)\ > e0} < ^n({I+pm-llan
where Z is a positive constant, and then we conclude with Borel-Cantelli
lemma.

Lastly, we find in Gyôrfi, Hardie, Sarda and Vieu [6] a proof of:

©n1 SUP I fn{x) - f(x)I = 0(1) a.s., n —» oo.
xec

4.4 Proof of corollary.
We obtain:

Â

_ b{x) | bA,.(») - M*) | /4^) _ b{x]\
.. (_i h / xi ^ 1 l^iWI + l^2WI + l*A(»)||i43(a:)|

First we hâve:

IM*)I l^3(*)| <
6a(s)

AA b(x) |A3(a:)| + |6(ar)||A3(a:)|
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lemma 2 and the fact that

IM*)!
A

ba {x)
A b(x), A —> 0 give:

|A3(x)| AA 0, A —» 0, n —> oo.

Now proceeding as in the prôof of lemma 3 we get:

1
■Ai(a:) — jRi -f R2

with

with

n—1

nAhn -_q

I<| fXiA — x

hn

ba (x)M*a) - i-iWlj +^(EMx)-f(x))

bÆ-(Efn(x)-f(x)) = - 6(x)J (Efn(x)-f(x))+b(x)(EUx)-f(x))
using Bochner’s lemma, the fact that b(x) is bounded and the fact that ba
is Lipschitz we easily show that R2 —| 0, A —> 0, n —* 00.
Moreover:

Ri =
nAh,

I<
XjA - x

hn
mmm-E I<

XiA — x

hn &a(A',a)

then, using lemma 1 we get R\ AA 0, A —g 0, n —* 00.

Now,

^2(x) = (x)
Proceeding as in the proof of lemma 4 we get:

P {i|Aj(x) - EAÎ(x)\ > e„] <
if we choose en = eo(n1~^A/in)“1 for a certain eo > 0, we get:

P {n1-^ hn\A2 (x) - EA+{x)\ > e0} <
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then we conclude as in the proof of lemma 4.

Lastly if we apply lemma 1 to ^-[A2 (x) — EA2 (x)] we get:
n—1

E
»=o

P < J^^,| > e > < 2exp
d ^A hn

mnSKep2
For sufficient large n, we hâve:

e —
niVp2
Amn

+
2n

em„ \ mnj=1

n^rp2 e

Amn < 2 ’
therefore assumptions of corollary imply that there exist two positive con-
stants C'a and (79 such that:

P | ^[A2 (x) “ EA2 (x)] > ej < C%exp (-CqC-
and the choice of hn shows that:

J2p{-£[Aî(x)-EA2(x)} > e| < °°-
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