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ABSTRACT. In tlie double kernel density estimate, the sinoothing parameter h is chosen
so as to minimize the L\ distance bctween two kernel density estimâtes having identical
smoothing factors but different kernels. Tliis method is known to be consistent for any
density and to be asymptotically optimal for a certain smooth class of densities. We
propose a plug-in modification of the estimate and introduce various other data-based
bandwidth estimâtes. Finally, a simulation study is presented in which the new bandwidth
selectors are compared with a host of well-known methods.
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1. Introduction.

The purpose of this paper is to demonstrate the usefulness of the double kernel
estimate introduced by Devroye (1989b) as an alternative for choosing the smoothing
factor h in the Akaike-Parzen-Rosenblatt density estimate. We consider an i.i.d. sample
Xi}..., Xn drawn from a univariate density /, and estimate / by

U(x) = -Y,Kh(x-X{)
1=1

where K is the kernel (a function integrating to one), Kh{x) = (1 /h)K(x/h), and h > 0
is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956). The fundamental
problem in kernel density estimation is that of the joint choice of h and K in the absence
of a priori information regarding /. Watson and Leadbetter (1963) show that the choice
of h and K should not be split into two independent subproblems. Also, the choice of
K largely dépends upon the smoothness of / (Devroye, 1992). In this work, we take
a less ambitious goal: we fix A to be a bona fide density, so that /„/, is a density as
well. Standard asymptotic theory in L2 (Bartlett, 1963; Epanechnikov, 1969) and L\
(Devroye and Gyôrfi, 1985) shows that for smooth densities, the asymptotically optimal
nonnegative kernel is given by

K(x) = -*2)+ •

We take K as our kernel in the simulations that follow. This kernel is inadmissible in the
expected L2 norm. By that we mean that there exists another kernel L and corresponding
density estimate gnh such that, with the same h in both estimâtes,

E J{9nh - /)2 < Ef(U ~ !f
for ail n, ail h and ail densities. This follows from the expressions given in Watson and
Leadbetter (see Cline, 1988): it sufiices to choose L such that its Fourier transform is
max(0, where rp is the characteristic function for K:

,. . 3(sin t — t cos t)
m = —p—•

However, L takes négative values, and hence, the comparison of gnh with fnh is not
considered “fair” by some. This interesting anomaly can also be put another way: if we
use K and pick h such that limsup n2//5E f \fnh — f\ < 00, then there exists another kernel
L and another sequence h' such that the kernel estimate gnh> with (L, h!) is asymptotically
infinitely superior:

E J \gnh' -f\ = o(n"2/5)
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For this existence resuit, see section 7.5 of Devroye, 1987. It suffices to take a symmetric
kernel L integrating to one, having compact support, possessing a zéro second moment.
We cannot in general tell how to choose h'. This is frustrating, because nobody likes to
work with the knowledge that there is something better out there. However, it is also a

blessing, as we will use this property to our advantage to design an automatic smoothing
factor selector.

Ail global smoothing factors can be written in the general form H = Hn(Xi,..., X„).
A sélection method is thus nothing but a sequence of functions {Hn,n >1}. One of the
major open problems is to establish the existence or non-existence of a sélection method
such that

E

Einfk/|/^-/|
for ail /. For some sélection methods, this property is known to hold for a subclass of nice
densities. If a universally optimal {üTn(.)} sequence does not exist, then any inventor of
a sélection method should tell us what class of densities the sélection method is designed
for. At this moment, many sélection methods hâve been proposed in the literature. Each
one is geared towards a given class of densities. A fair comparison of such methods is
indeed very difficult if not impossible. The best we can do is to compare different selectors
on a wide class of densities with varying shapes, numerous combinations of skewness and
kurtosis, many grades of tail heaviness, several brands of infinité peaks and discontinuities,
and various degrees of smoothness. Without the variety in the testbed of densities, our
study would be worthless.

In the double kernel method, one takes two different kernels K and L whose char-
acteristic functions do not coincide on any open neighborhood of the origin. The kernel
estimate with smoothing factor h and kernel K is denoted by fnh, while for kernel L, we
will write gnh. The smoothing factor that will be employed in practice is 77, where

H = arg min / \fnh - gnh\ •
h>0 J

There are two fundamental properties that make this estimate useful. First of ail, for any
density /, the estimate is consistent:

E f \fnH /| * 0 .

This feature distinguishes it from many other bandwidth selectors, which fail to yield
consistent estimâtes in ail cases unless the bandwidth is unnaturally restricted to a deter-
ministic interval. Note that the minimization above is performed over the entire positive
halfline.
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Figure 1. We show two families of density estimâtes in the set of ail densities. The
double kernel bandwidth minimizes the L\ distance between fnh and gnh.
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kernel reference

(75/16)(l - x2) - ( 105/32)(1 - x4) , |x| < 1

20i — 02

(105/64)(1 — 5x2 -f- 7x4 — 3x6) , |x| < 1

(l/2)(3 - x2)^

(3K + xK')l2

2K-K*K Stuetzle and Mittal (1979)

Schucany and Sommers (1977)
Jones (1990)

Su-Wong, Prasad and Singh (1982)
Müller (1984)
Wand and Schucany (1990)
Deheuvels (1977a,b)

Devroye (1989b)

Gasser, Müller and Mammitzsch (1985)
Scott (1992)

Table 1. Table of fourth-order kernels. The top two entries represent general rules for
obtaining fourth-order kernels from a standard kernel K. 0a represents the normal density
with variance a. More examples are given in the references and in Berlinet (1991), Singh
(1979), Bosq and Lecoutre (1987), Hall and Marron (1987c), and Fan and Hu (1992).

The second property goes to the heart of the matter. Assume that K is a symmetric
positive kernel with J xK = 0 and that L is a symmetric kernel with f xL = f x2L =

J x3L = 0, f xAL 7^ 0. Such kernels are called fourth-order kernels. From Berlinet
(1993) it turns out that higher order kernels can be grouped into hiérarchies generated by
probability densities. More precisely a general form for a fourth-order kernel is

where 4/ is a density with finite eighth moment, {P(i,x) , 0 < i < 3} are orthonormal
polynomials in L2(4'), P(i, x) being of exact degree i, ip is any function orthogonal to the
space of polynomials of degree at most 3 in L2(4') (thus (p can be taken equal to 0 to
minimize computing time). See section 12 for the choice of our second kernel.

Assume that both K and L are symmetric, bounded, and hâve compact support.
Also, both K and L must be L\ Lipschitz (that is, f \Ki — Kh\ is bounded by C{h— 1)
for some constant C and ail h > 1, and similarly for L). In that case, E f \gnh /| —

o(E f \fnh — f\) when f is smooth enough: more precisely, when / is absolutely continuous
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with dérivative /', which in turn is absolutely continuons, and when

sup f(x + y) dx < oo

(a tail condition on /), then the following property holds true:
E J 1 fnH — f 1 < 1 + e

inf/i E f |/„ft — /| - 1-6 ’
where

e = 4 K2

(Devroye, 1989b). The upper bound can be pushed as close to one as desired by stretching
L out. One may obtain a limit of one if L is fixed and we replace gnh by gnh>, where
h!/h —> oo in a prescribed manner. For the limited simulations we are performing, this is
liardly worthwhile.

The sheer simplicity of the estimate, and its versatility—there are infinitely many

pairs K and L one may choose from—should rnake this an attractive alternative. The
greatest drawback is that the method is numerically slow, as we need to minimize a
multimodal function, whose values are computed as intégrais.

It is necessary to limit the scope of the paper. We are deliberately not considering
local bandwidth selectors or variable kernel methods, although some of these hâve proven
track records. One should also keep in mind that we may always transform the data, apply
a fixed kernel estimate such as the estimâtes discussed in this paper, and then retransform
the kernel estimate (see chapter 9 of Devroye and Gyôrfi, 1985). This has the effect of
introducing variable bandwidths.

We cannot begin this paper without mentioning the formidable comparative sim-
ulations carried out by Cao, Cuevas and Gonzalez-Manteiga (1994). Their study deals
with smooth densities, but is more far-reacliing than our study as ten different selec-
tors axe compared with respect to several error criteria. The authors conclude that the
time-honored plug-in method is exceptionally good. Some modifications of the £-2 cross-
validation method are not far behind, and the double kernel method typically ends up
third or fourth out of ten methods. The latter method should be fine-tuned however to

obtain optimal results—we will show how. Another conclusion of the Spanish study is
that the double kernel method never performs poorly—it is very robust. This resuit is
corroborated by the theoretical properties of the double kernel estimate. With the afore-
mentioned fine-tuning, the double kernel method routinely beats other selectors that are
designed for other error criteria (such as L2 cross-validation). However, a new L\ plug-in
method introduced below also works well in practice. But perhaps the biggest selling
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points for the double kernel estimate are that it is genuinely automatic—no parameters
hâve to be picked— and that it always Works—the estimate is universally consistent.

The paper is organized as follows: in section 2 we give a quick survey of the
smoothing factor sélection literature, and take the opportunity to define some bandwidths
that will be used in the simulations. In section 2.6.2, new plug-in versions of the double
kernel estimate are proposed. Methods can be classified according to several criteria.
Many believe that scale is important, as measured by the collection of values {|Xj — Aj|}.
This is false. A density is only a tool for computing probabilities. Hence good bandwidth
design should be based on probabilities. The double kernel method and its dérivatives do
just that. The spacings methods of sections 2.7.2 and 2.7.3 too use only intégrais of density
estimâtes over intervals. In section 3, we présent our simulation results. The following
quantities will be defined as we move along. They dénoté the various bandwidths that
will be compared with one another, and are collected here for easy reference.

/iref ,li plug-in, Ll-based, reference method, larger constant
^ref.n plug-in, Ll-based, reference method, smaller constant
/&ref,L2 plug-in, L2-based, reference method
/iDh,li plug-in, Ll-based, reference method

(DH refers to Deheuvels and Hominal)
/&dh,l2 plug-in, L2-based, reference method
/tms.Li plug-in, maximal smoothing, L\ version
/inis,L2 plug-in, maximal smoothing, L2 version
hpi.ii plug-in, Li-based, pilot /w,li
/ipi.Li plug-in, Li-based, pilot hdk,2> stretch 1.50
/ipi>L2 plug-in, L2-based, Sheather and Jones
hcy L2 cross-validation
hBh spacings method based on Sherman statistic
hgr spacings method based on Greenwood statistic
hpX projection method
h0p optimal bandwidth
hdk.i double kernel method, second kernel stretch 1.20
hdk,2 double kernel method, second kernel stretch 1.44
hdk.3 double kernel method, second kernel stretch 1.73
hdk,4 double kernel method, second kernel stretch 2.07
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2. Methods of selecting the bandwidth.

2.1. L2 cross-validation. Rudemo (1984) and Bowman (1984) proposed picking h so
as to minimize an estimate of

J(U-f)2-J f2 = J fL-if fU
An unbiased estimate of this is given by

The smoothing factor for which Mnh is minimal is called the L2 cross-validation estimate.
Asymptotically équivalent criteria hâve been proposed by many. An example includes

where fnhi is the kernel estimate with Xi deleted. The optimality of the L2 cross-validation
estimate H was established in Hall (1983), Burman (1985) and Stone (1984). From the
latter paper, we retain that

under the sole condition that / is bounded. The L2 cross-validation method is too variable,
leading often to undersmoothing and sometimes to oversmoothing (Hall and Marron,
1987a,b; Scott and Terrell, 1987; Hall, Marron and Park, 1992). See also Marron (1987).
Hall and Marron (1991) found that the L2 criterion that is minimized typically shows
many local minima. Devroye (1989d) points out that for any constant a > 1, one can find
a density / such that with probability tending to one, H < n~a. The smoothing factor
is thus much too small, leading to a divergent estimator. The densities in this class of
counterexamples ail hâve infinité peaks.

A modified criterion, the biased cross-validation estimate, was proposed by Scott
and Terrell (1987). As pointed out in Cao et al (1994), it lias a global minimum at h = oo,
so that one has to apply a further modification to insure consistency.

A related modification due to Stute (1992) minimizes

M = K *K-K- a1K"

where
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<T2 is f x2K, and K is assumed to be three times différentiable. Technical reasons lead to
recommend the Gram-Charlier type kernel

K(t) = + .

v27r

Smoothed cross-validation was developed by Jones, Marron and Park (1990), and
Hall, Marron and Park (1992). The bandwidths achieve the optimal rate with respect
to the optimal bandwidth for the mean integrated square error (Jones and Kappenman,
1990; Marron, 1991; Hall and Marron, 1990). This optimality property is achieved for a
small subclass of densities. One minimizes the criterion

-Kh*U,)2

where h' is a pilot bandwidth. The second term is a natural estimate of the bias term
in the mean integrated square error. Various choices for h' hâve been suggested in the
cited papers. For example, Cao et al (1994) take h! = Cn~23^A5/h2, where C is a constant
depending upon a normal reference distribution. The potential of this method remains
largely untapped, as there are many ways of picking h'.

Jones and Kappenman (1992) observed that most of the cross-validation methods
may be cast in the same light. They ail asymptotically minimize

J K2

for some function M. The following table is partially borrowed from Jones and Kappen-
man (1992), who take K normal in experimental comparions.
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_ M
2K-K*K

%(K * K)""

(T4 TSHH
4 1

K*K*K*K — 2K *K*K-\-K*K

K * K - K — <j2K"/2 4- (1/24)(6<t4 - fiA)K""

K*K-K- a2K"

référencé
L/2 cross-validation
(Bowman, 1984; Rudemo, 1984)
biased cross-validation

(Scott and Terrell, 1987)
biased cross-validation

(Jones and Kappenman, 1992)
presmoothed cross-validation
(Hall, Marron and Park, 1989)
complété cross-validation
(Jones and Kappenman, 1992)
Stute’s modified cross-validation

(Stute, 1992)

Table 2. Table of cross-validation methods listed according to the choice of M. The
symbols a2 and 114 are used for the second and fourth moment of the symmetric kernel
K.

2.2. The L2 plug-in method. The plug-in method for obtaining an Z/2-optimal smooth-
ing factor was introduced by Woodroofe (1970), who obtained an asymptotically optimal
expression for the optimal h as a function of / and n, and, in a second step, estimated the
unknown functional of / (in this case, J f"2) from the data in a nonparametric manner
using a pilot bandwidth. For a similar idea, see Nadaraya (1974) and Deheuvels and
Hominal (1980). To minimize EJ(/n — f)2 when / is sufficiently smooth and K is a
nonnegative kernel, the asymptotically optimal h lias the following form:

h =
( A(K) V/5
W/"V ’

where A(K) = (a/(3)2, a = y J K2 and P = J x2K(x)dx. This formula is at the heart
of the plug-in method. The kernel K asymptotically minimizing E f(fn — f)2 among
nonnegative kernels is the Bartlett or Epanechnikov kernel (3/4)(l — x2)+ (Bartlett, 1963;
Epanechnikov, 1969). With this kernel, the formula reduces to

11
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See for example Watson and Leadbetter (1963), Rosenblatt (1971), or Deheuvels (1977a,b).
Ways of estimating the unknown factor f f"2 in the formula are reviewed in the following
subsections.

2.2.1. The reference densitv method. In the L2 setting, one computes J f"2 for a
reference density such as the normal (/i, a). In the latter case for example, the (asymp-
totically) optimal h is given by

h = = 2.345... <rn~1/5 .

The unknown parameters (such as o in the above example) are estimated by a generally
accepted method from the data, leading in turn to an estimate for f f"2. For the normal
reference density, Deheuvels (1977a,b) suggests using

(U
i=l

instead of a2. A robust method advocated by many uses the interquartile estimate

ff — -^[3n/4l ~ *[n/4] _ A[3„/4] — A[w/4]
Finv(3/4) - Finv(l/4) 1.35... ’ U

where F is the standard normal distribution function. One really needs a scale estimate
that is less sensitive to outliers than averages and more accurate than quantile-based quick-
and-dirty estimâtes. Janssen, Marron, Veraverbeke and Sarle (1992) tackle this problem
head-on, and make several interesting suggestions, some of which were implemented by
Jones, Marron and Sheather (1992).

More versatility could be created by considering a large reference family such as
Pearson’s or Johnson’s that covers ail possible combinations of skewness and kurtosis
(see Devroye, 1986, for descriptions). We are not aware of any attempt along these lines
in the literature, except for a passage in Scott (1992, p. 56-57) where lognormal and
t families were considered as reference densities. The reference density method with a
normal reference density led us to include the following bandwidths in our simulations.

• ^dh,l2 — 2.345a n-1'5, where a is (1).
• ^ref,L2 = 2.345 (7 n-1/5, where a is (2).

2.2.2. The maximum smoothing principle. For any density for which the asymp-
totic formula for h given above is valid, we hâve, according to Terrell (1990), for the
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Epanechnikov kernel,
h < 3(3/7n)1/5<7 = 2.532362... an~1/5 ,

where a is the standard déviation. See also Scott and Terrell (1985). Terrell présents
arguments in favor of using the upper bound in some situations. The bandwidth used in
our experiments is:

• ^8,1.2 = 2.532362a n-1/5, where a is defined in (2).

2.2.3. Two-stage plug-in methods. Park and Marron (1990), Park (1989), Hall and
Marron (1990) and Sheather and Jones (1991) provide modem versions of the plug-in
estimate for the Li criterion. See also Hall and Marron (1987a,b), and Hall, Sheather,
Jones and Marron (1991). In ail these papers, various methods are evaluated for estimating
f f'2 for use in the asymptotic formula for the optimal h. We include in our experiments
the method of Sheather and Jones (1991), which performed very well in the studies of
Cao et al (1994), Park and Turlach (1992), and Jones, Marron and Sheather (1992). In
the last paper, one also finds comparisons with related bandwidth selectors suggested by
Engel, Herrmann and Gasser (1992). Sheather and Jones require an estimate of J f"2 in
the formula

Hte&t
They suggest using

1-flflB IIB8(Xi “ ■B ■i,j x 7 *.J

where h! is yet another bandwidth, and L is a smooth kernel, for which we will take
standard normal, as in Cao et al (1994). Theoretical considérations suggest that the
optimal h' here is given by the formula

f 2L""(0) \1/7
\nf f'"2 f x2LJ

Cao et al (1994) suggest estimating f f"'2 by the reference density method based upon
the normal density. Mimicking them, we estimate J f",2 by

15

16\/7r(77
where a is the robust interquartile estimate of the standard déviation. Replacement shows
then that

h' = a x
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The resulting bandwidth is called

hpi,L2 = min ( BBI—
\ W

It is easy to show that for ail densities, hpi,L2 —» 0 and n/ipitL2 —> oo in probability
whenever L"" is uniformly bounded. This implies that E J \fnjj — f\ —» 0 for ail densities
/•

It is worth mentioning that Parseval’s identity has been employed by some to aid
in the estimation of the optimal h. For example, Chiu (1991) has a plug-in method that
is based upon the empirical characteristic function

3=1

Let A be the smallest positive t such that \<Pn{t)\2 < 3/n (where the constant 3 is a design
parameter). Then use

where

C = - [ t4(\ipn(t)\2 ~ 1 /n)dt .^ J0

Devroye (1993) showed that this is not consistent whenever the density has a large infinité
peak. A modification of Chiu’s estimate was proposed in Chiu (1992).

2.2.4. Itérative plug-in methods. Scott and Factor (1981) and Scott, Tapia and
Thompson (1977) estimate f f"2 by / g'^2h, where gn>h in turn is a kernel estimate, now
with a kernel having two dérivatives. The smoothing factor in g,hh should be chosen
according to the same asymptotic formula, which suggests that one should take h as a
solution of the équation

\nJ9n%J
Scott and Factor propose an itérative solution to this that is based upon Newton’s method.
However, their method does not always converge.

Park and Marron (1990) hâve a modem version of the itérative method. This
approach is continued in Park (1989) and Sheather and Jones (1991). In most cases, one
has to restrict h to an interval that is bounded away from 0 and oo.
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2.3. L1 plug-in methods. Devroye and Gyôrfi (1985) consider the class T of ail den-
sities / with compact support, such that / is absolutely continuous, /' is absolutely
continuous and there exists a version of f" that is bounded and continuous on the real
line. Define

a = JJlÔ,0 = J x2K(x) dx

and A(K) = a4/5/?1/5. We also introduce the function 4>(u) =f E|N — u\, where N is a
normal (0,1) random variable. If / 6 T and

lim h = 0 , lim nh — oo ,

then

S|-3fSWll < o(h2) + o(l/Vnh)

(Devroye and Gyôrfi, 1985). As noted by Hall and Wand (1988), this implies the following.
For / G T,

n2/5inf EM H 2~''SA(K)QV) ,
h

where

Hh
A generalization of this resuit that is valid even if / ^ J7, e.g., when / is the isosceles
triangular density or the Laplace density, is given in Devroye and Wand (1993). For
/ € T, we note among other things that the asymptotically optimal formula for h is given
by h = (c2/n)1/5, where

def
C =

. [a-JJ , (v?0\r\\
mmmB •

Needless to say, this is a cumbersome formula to work with. An adaptive method gener-

alizing Woodroofe’s method for L2 was developed in Hall and Wand (1988). It rests on
good pointwise estimâtes of f" and y/f. Devroye and Gyôrfi (1985) elected to pick h so
as to minimize a simple but more manageable upper bound for the expected Li error: for
/€/-, if

then

inf ip(u)/u =f 7 = 1.028493... < .
«>o B(f)

QU) < 5(8tt)-2/5 = 1.3768102... .

The choice of h for which we hâve

n2^EJnh -4 2~1/5A{K) x 1.3768102... B{f)
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is given in Devroye and Gyôrfi (1985, p. 107): for the Epanechnikov kernel, with a = \Z3/5
and /? = 1/5, this yields

This h is never very far from the true optimal h. We note the following:

A. For the normal (0, a2) density, the latter h can be written as

Hall and Wand (1988, Table 4.1) report that the optimal h asymptotically varies
as

h = 2.279... an~1^

B. In any case, the h yielding the bound on B(f) is bounded from above as follows:

(Devroye and Gyôrfi, 1985, p. 113). This does not mean that the true optimal h
cannot be larger of course, but it is neverthless a useful bound. In a sense, it is
the L\ counterpart of a similar inequality for the L2-optimal h noted recently by
Terrell (1990).

The reference density method with a normal reference density led us to include the fol-
lowing bandwidths in our simulations.

• /iref.Li = 2.279 <r n-1'5, where a is defîned in (2).
• ^dh,li = 2.279<7n-1'5, where a is defîned in (1). DH is a mnemonic for Deheuvels

and Hominal.

• /ims,li = 2.71042 a n-1/5, where a is given in (2).
• ^ref ,n = 1.6644<7 n-1/5, where a is defîned by (2).

2.4. Discussion of plug-in methods. The formulae at the basis of most plug-in meth-
ods are valid under certain conditions on the density that are difficult to verify in practice.
For example, the standard formulae for L\ and L-z plug-in smoothing factors are not valid
for uniform or exponential densities. If the formulae were valid, one should still remember
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that they are only valid asymptotically, with no guarantees regarding the applicability for
finite nPcil

Even if we accept that n is large enough such that the asymptotics may kick in,
using a formula designed for L2 provides us with little dues as to its suitability for L\.
Nevertheless, as the L2 plug-in methods are very popular, it is necessary to see how they
perforai even if L\ is the criterion that is considered.

Even if we accept the formula and its validity, one typically needs additional guar-
antees in order to insure the convergence of the estimâtes of factors such as J \f"\ or
H

On the other hand, nearly ail comparative simulations indicate that plug-in meth-
ods are compétitive. In their favor, one might argue that small samples from arbitrarily
ill-behaved densities are ail but indistinguishable from same-sized samples drawn from
smooth small-tailed densities, for which the plug-in formulae are approximately valid. Fi-
nally, one should not forget that plug-in methods do not require any optimization at ail.
This may be important when designing real-time software.

2.5. The bootstrap method. In most bootstrap-based methods, one picks h so as to
minimize

where h' is some pilot bandwidth, f*h is the kernel estimate with bandwidth h based
upon a bootstrap sample X{,..., X*, and E* dénotés expected value with respect to this
bootstrap sample. The choice of h' and the bootstrap sample distribution hâve been the
subject of various recent research projects. Note that E* can be explicitly computed, so
that the bootstrap sample is used in the formai définition only—one never has to actually
generate it.

Taylor (1989) takes h' = h and draws the bootstrap sample from /„/» with a normal
kernel K. His criterion has a minimum at infinity, so that a modification is necessary to
insure a meaningful choice. Further theoretical properties were obtained by Mihoubi
(1992).

Faraway and Jhun (1990) take h' by L2 cross-validation. They also do not minimize
E* as above, but prefer to use an average over a large number of bootstrap samples to
approximate E*.

Cao-Abad (1990) draws the bootstrap estimate from fnh>- The value of E* is then
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easily determined. In the L2 sense, the best theoretical value for h' is given by

h, ( / g"2 V/T
\nf P"2 f t2K ) '

The unknown intégral in this expression is replaced by the corresponding expression for
the normal density with variance estimated from the data.

Hall (1990) draws a bootstrap sample of size m < n from the empirical distribution,
and sets h' = ^(n/m)1'5. One suggestion tried out in Cao et al (1994) is m y/n. He
takes the minimum of E* closest to n-1/5 to avoid degenerate solutions. For a survey and
more discussion of bootstrap methods in density estimation, we refer to Marron (1992).

2.6. The double kernel estimate.

2.6.1. General setting. In the double kernel method, we take two different kernels K
and L whose characteristic functions do not coincide on any open neighborhood of the
origin. The kernel estimate with smoothing factor h and kernel K is denoted by while
for kernel L, we will write gnh- The smoothing factor that will be employed in practice is
H y where

H = arg min / \fnh - gnh\ .
h>0 J

Connection with the bootstrap method. When L = 2K — K * K, it is easy
to see that H is identical to the H obtained if we had taken L = K * K. This has an

intriguing interprétation, as gnh = fnh * in the latter case: H minimizes

J | fnh ~ fnh * Kh\ ■
The density fnh * Kh is that of a sample drawn from /„/, (as one would draw in a smoothed
bootstrap), in which each observation receives an additional perturbation in the form of
hWy where W has density K. In other words, we are minimizing the distance between the
density of Xn + hW and that of + hW + hW', where N is a random integer between 1
and n, and VF, W' are i.i.d. perturbations with density K. This sort of criterion is closely
linked to the criteria proposed in the bootstrap literature.
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A STABILITY CRITERION. Continuing in the same vein, we note that formally, if fj,n is
the standard empirical measure, fnh = fin * Kh- We are thus looking for the operator *Kh
that yields the most stable solution: one application of the operation yields fnh = fj,n*Kh,
while two applications yields gnh = Vn* Kh* Kh, which is by définition very close to fnh-

Choice OF the SECOND KERNEL. It is computationally interesting to work with kernels
that axe piecewise polynomials of low order. For this reason, we picked the Epanechnikov
kernel as kernel K :

KM = 5(1 - x2) , |x| < 1 .

We also constructed a fourth-order piecewise quadratic kernel L. To get such a kernel
which moreover would be symmetric and continuons, two ways are possible. Either fix
for L a polynomial form on some intervals or work within the general framework given in
the introduction :

L(x) = (1 + P(0)P(x)) V(x)
where is an even density and P is an even polynomial of degree 2, with norm equal to
1 in Lïfô), and orthogonal to the monomials 1 and x. In both cases this leads to Systems
of non-liiiear équations. A solution is given by

,M<l/2
L(x) = i Æ , 1/2 < |z| < 1 .

lo ,l<\x\
This kernel is the kernel of order 4 in the hierarchy generated by the density

dg > N < 1/2
Wfawmm 'x/2<w<ilo , |*| > 1 ,

where C — 8.57444.... T appears as a continuous regularization of the naive uniform
kernel on [—1/2,1/2] and is very “close” to it. Thus the performance of our kernel can be
expected to be close to the ones of the fourth-order “minimum variance” kernel since the
minimum variance hierarchy (or Legendre hierarchy) is generated by the uniform kernel
(Berlinet, 1993).

The asymptotic variance of a kernel estimate is proportional to W(K) = J K2 and
the asymptotic MISE for a kernel of order r > 2 is proportional to

Tr(K) =(^J K2^j | J xrK{x)dx\ .
The minimizer of Tr(K) over the set of square intégrable kernels of order r with r — 2 sign
changes on IR is the kernel Kr of order r in the Epanechnikov hierarchy, i.e., the hierarchy
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generated by our kernel K (Berlinet, 1993; Granovsky and Müller, 1989). The kernel üf4
minimizing T\{K) is given by

K^x\ = / (45 - 150rc2 + 105x4)/32 if \x\ < 1 ;10 otlierwise.
The kernel if4 of order 4 with support [—1,1] minimizing W(K) is given by

//„(*) = ((9“15a:2>/8 ifW<i;L 0 otherwise.
It is discontinuons at the ends of [—1,1]. In the table below we list the values of W(K)
and T^(K) for i/4, if4 and L.

kernel K W(K) Tt(K) W{H4)/W(K) T4(K4)/T,(K)
H*

ü
L

9
8

5
4

47
30

19683
143360

625
5376

4879681
37800000

1

0.9

0.71...

0.84...

1

0.90...

Table 3. This table shows that L is nearly optimal in the sense of optimal mise.

In this simulation study we will use four kernels defined from L by rescaling:

L2i{x)

with l = (1.2), (1.2)2, (1.2)3 and (1.2)4. We dénoté the double kernel smoothing factor
by hdk.D ^dk,2) hdk,3 and hdk>4 respectively. The theory tells us that for large n, the scale
factor of L should exceed that of K. This is why we do not consider the case l < 1.

Double kernel-double h method. If K and L are a pair of kernels of second and
fourth order respectively, we may define the double kernel-double h method by

(H, H') Éj arg min J \fnh - gnh> \ ,
where the kernel estimâtes are based upon the same data but different kernels K and
L respectively. The optimization is not a sinécure, of course, but we believe that this
method is asymptotically optimal in the sense that E f \fnn — f | ~ inf/t E f \fnh — /| for
ail smooth densities with a small tail. For small sample sizes, h' tends to hover around
the value that makes f \Kh — Lh>\ smallest, and tlius, h'/h tends to remain fairly constant.
The effect of the double optimization is only felt at larger sample sizes. For this reason,
this method is not included in our simulation experiinent : we will only minimize the L\
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distance between estimâtes by considering h' of the form 2Ih with l as above. At this
point, a better understanding of the theoretical properties of the double kernel-double h
estimate is needed.

2.6.2. A modified double kernel estimate. We introduce two versions of the plug-in
method for use in an L\ context. Both are based upon the approximately asymptotically
optimal formula for h given in subsection 2.3:

h=(ÆMîÆ\2/\-^V Ég J '
This formula cornes with the standard caveats for plug-in methods. We define

hpi.it = min n~1/5 ’ /Wij » (3)
where A is an estimate of f \ff, and B is an estimate of f \f'\. Ail rests on a pilot
bandwidth h' = /iref>Li> a robust reference density bandwidth. With h' taken as the
double kernel bandwidth with as second kernel L$ (with stretch l = 1.5 in the notation
of the previous section), the eventual plug-in estimate will be called /ipijLi. To estimate
the two unknown functionals, we employ once again nonparametric estimâtes: f y/f is
estimated by

where fnh> is a kernel estimate with Epanechnikov kernel K. The Taylor sériés expansion
that leads to the asymptotic formula in the first place would suggest that f \f"\ may be
estimated by

D 2 J \fnh" - gnh"\B=
h*fx’K ’ (5)

where fnh" and gnh» are kernel estimâtes with kernels K and L respectively, and L is as
in the double kernel method, with stretch l — 1.5. and the bandwidth h" is defined by

h" = /i'max^l, ,
where

a^J(k-l)2
y/fth J" | fnli> Qnh' |

and t = 1/10 (we will see that the value of the threshold r is not very critical). We note
that h" > h'. The choice of our procedure is justified below. Note that the computation
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of the plug-in bandwidth requires some additional intégration work, but the method is
designed to be very robust. This is borne out in the results.

Theorem. The plug-in method with bandwidth (3), with (A) and (B) given by (4) and
(5), and with K and L as in the double kernel method is universally consistent, i.e.,
Ef |/nj/ — f \ —* 0 for ali f.

PROOF. By a general theorem of Devroye and Gyôrfi (1985), H —► 0 in probability and
nH —► oo in probability imply E J |/n# — /1 —► 0 for ail /. Applied to H = the
former condition follows from hpi.n < hms.Lij which tends to 0 in probability. The latter
condition holds if n2A/B —> oo in probability. Since h' —> 0 in probability and nh! —> oo
almost surely, we note that fnh> —► / almost surely at almost ail x by general pointwise
convergence theorems (Devroye, 1987). By Fatou’s lemma, we hâve, almost surely,

liminf [ ïÆü > f liminf vOW = f y/f > 0 .**—*oo J J n—*oo J
Also,

2f\K-L\
h"2 J x2K ’

so that n2A/B —* oo in probability whenever nh" —> oo in probability. By définition,
h" > h', and we axe done. □

Justification. In general, for h large enough,

J | fnh ~ 9nh\ ~ J | fnh ~ f\
« /\f*KH-f\
«(1/2)h2 J |/"| f x2K.

These approximations can be made précisé of course. The first one uses the fact that
f \9nh ~ f\ is much smaller than J \fnh — /| as L is a higher-order kernel. This assumes
some degree of smoothness on /. Also, we assume that h is in such a range that bias is
much larger than variation. The last approximation may be found in Devroye (1987, p.
110) or Devroye and Gyôrfi (1985, p. 209). Under the said large bias assumption, f |/"|
is approximately estimated by

2 f \fnh 9nh\
h2 J x2K '
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s This is B. It suffices to find a reasonable test for the validity of the large bias assumption.
We begin with B evaluated at h = h', but we also realize that this h' may be too small.
To see this, a rough estimate of the variation term

à [\(fnh-g*H)-f*(Kh-Lk)\
•)

is given by

SJÎs]S(K-LY _ L)2
\/nh' yjnh!

“ If this is less than r times the bias estimate (1/2)h12 f |/"| f x2K, (i.e., when R < r),
e then h' is indeed large enough, and we may safely accept B as an estimate of f \f"\-
îr Otherwise, we set h" = h'(R/r)2'5. With this choice, the bias estimate (being quadratic
0 in h1) becomes about (R/t)a^ times as large. The variation term on the other hand
ie becomes about (R/t)1^5 times smaller. The new ratio of variation over bias is thus about

r, which is a parameter we control. Therefore, the new h" is large enough for B to be
acceptable.

2.7. Other methods.

b

2.7.1. The projection method. Semiparametric methods may work well for certain
families of densities. To illustrate this point, we will include in our study one projection
method. The basic principle here is to start from a class T of densities (such as ail
Pearson densities; or ail normal densities; or ail log-concave densities). The class should
not contain K even as a limit. We détermine the pair (h, f ) as follows:

(h, f) = arg min [ |=/ - fnh\ .
h>0\fÇ.F J

This idea has been around (Devroye, 1989a). We also discussed it with Cuevas and
Gonzalez-Manteiga. This détermines the projection of {/n/,, h > 0} onto the class T as
well as the closest kernel estimate to the class. As this sort of strategy warrants a separate5g

study altogether, we will consider a simplified version. First we détermine from the datais
the médian m and the estimated standard déviation s = (X[3n/4] — JA[n/4])/1.35 (which is'

the interquartile estimate assurning that the data are normally distributed). Let /o be
the normal density with mean m and standard déviation s. Détermine H = hpX by

/ipr =f arg min [ |/0 - jffi .
h>0 J

1
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This will be called the simplifiée! projection estimate. What matters for now is that we

hâve at least one member of this family under considération to detect a certain trend in
the performance. One could relate this also to the well-known minimum-distance method,
although there one usually considers distances from the empirical measure, and one grabs
the best closest density (according to some criterion) in a given nonparametric class of
densities (whereas we restrict our estimate to be of the kernel form). For more details of
minimum-distance estimation, consult Vapnik and Stefanyuk (1978), Stefanyuk (1979),
Reiss (1986), and Gajek (1989).

As the target is the normal density, the projection estimate should prove useful
when the true density is bell-shaped. The following inequality highlights the utility of
this approach:

J 1/ - fnu\ < J\f-fo\+[\fo~fnu]
< J \f - fo\ + J I/o - Uh* | (h* minimizes / \f - fnh\)
<2 J |/-/o| + f\J-U-\
= 2 J\f~fo\ + inf J |/ - fnh\ ■

Thus, if /o is close to /, we hâve a formidable performance guarantee. With positive
kernels, we know that asymptotically, for any / and h,

inf E J |fnh - f\> 0.86 n~2/5
(Devroye and Gyôrfi, 1985). Ignoring the E for a moment, the inequality above says that
if we can pinpoint a parametric family in which one density is within 0.215 n~2/5 of /,
then J \f — fnH | is roughly speaking within 50% of its optimal value, whatever it may
be. The inequality thus links what we know about / (which is reflected in our choice
of /o) with actual performance, providing a continuous bridge between parametric and
nonparametric.

2.7.2. The spacings method. The idea of using spacings to select parameters has
been explored by many researchers, both in a finite parameter setting (Cheng and Amin,
1983; Ranneby, 1984) and in a more general context (Roeder, 1990). One of the methods
included in our simulation is based upon first principles from hypothesis testing. Let
X(\) < • • • < A(n) be the order statistics for the data sequence Ai,..., Xn, drawn from
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' density /. It is well-known that the spacings

, Di= f,...,Dn= f,Dn+1— / /
^ «/—OO «/ ^(n—1) v

f are distributed as uniform spacings. These are at the basis of many spacings tests (Pyke,
f 1965). Of these tests, we are mainly interested in those that provide us with an Li flavour.

For example, the Kendall-Sherman statistic

l

f

n+l

k» = £
1=1

m
î

n + l

was suggested by Kendall in the discussion of Greenwood (1946). Under the null hypoth-
esis, the limit distribution was obtained by Sherman (1950). Further studies hâve been
undertaken recently by El abdin Ras (1989) who showed, among other things, that for ail
e > 0,

P{|Kn - 2/e| > e} < 4e-7(n+i)e2/i20
To apply this in our setting, we combine it with a cross-validation idea. We define the
leave-two-out double spacings

H
= / fn,h,i-l,i(X) dx

Jxa-D
where X(o) = — oo, X(n+i) = oo, and fn,h,i-i,i is the kernel estimate with smoothing factor
h, with X(j_i) and X(j) deleted. We compute the statistic

Observe that for fixed n,

n+l

D"
1

n+l

Define
i

lim K" = 2
h—*oo

n — 1

n + l
and lim K" = 1 .

h-*o n

» . r/’/f
nsh = argmmA„ .

h>0

It is not diflficult to show that for any density, heh —> 0 almost surely, and that for any

sequence h with h —* 0 and nh —» oo, K" —> 2/e almost surely. Therefore, almost surely,
/ish is well-defined and stays away from 0 and oo.

There are no guarantees that n/ish —> oo as required for consistency. In practice,
hBh often undersmooths. For h large enough, K” is very close to the true bias, J \ f—f*Kh\-
Therefore, there may be merit in considering the

h = arg min (RT" + K) ,

I
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where Vn is an appropriate estimate of the variation, E f \f * Kh — fnh\. (Eead, however,
Mammen (1990) and Jones (1991a) regarding the minimization of expected values.) A
simple proposai for Vn is given below. Nevertheless, we won’t include this modification in
our simulation.

Estimation of the variation. If we split the data into two parts, Xi,...,Xm,
Xm+i,..., Xn, with m = |n/2j, then the variation

W„ = E J \u - E/„»|
can be estimated by

fiKmf
where fmh is the kernel estimate with kernel K, smoothing factor h, and data X\,..., Xm,
and f^h is the kernel estimate with kernel K, smoothing factor h, and data Xm+\,..., Xn.

To study the properties of Vn, note first of ail that if one Xi changes value, then
Vn changes by at most 2 J \K\/n. Thus, by McDiarmid’s inequality (1989), for e > 0,

P{\Vn - EVn\ >e}< 2e-n€2/Vf*W) .

In other words, Vn — EVÇ, is of the order of 1 /y/n or less. We know that

sJJwWl
y/nh

under some conditions on /. For other /, we hâve y/nh Wn —* oo. For the former class of
densities, it is easy to see that we also hâve

Wn~\l-x
7T

2
UnWS I /—rTT y/nh

Therefore, we may use Vn as a good estimate of Wn.

2.7.3. A method based upon the Greenwood statistic. Start with the inter-point
intégrais

If fn is replaced by / above, then Di,..., Dn+\ would be distributed as the spacings
of a uniform sample. This implies that (n + 1)D\,..., (n + l)Dn+i are asymptotically
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distributed as exponential random variables. Ideally, then,

Un+1 = e"(rl+1)Dl, . . . , e~(n+l)Dn+l
are approximately distributed as an i.i.d. uniform [0,1] random sequence. What we need
now is a test statistic that measures departure from uniformity. Among the myriad of
possibilities, we picked Greenwood’s test statistic (Greenwood, 1946; Pyke, 1965)

n+2

G„ = (n +2) £>„)-£/<j-,))2,
i=1

where C/(f), 1 < i < n+1 are the order statistics for U\,..., f/n+i, t/(o) = 0, and t/(n+2) = 1-
Formally, we define the bandwidth

/igr = arg min .
/i>0

2.7.4. Maximum likelihood cross-validation. The number h > 0 maximizing
n

i=l

where fnhi is the kernel estimate based upon a sample of size n — 1 with Xi deleted
from Ai,..., Xn, is called the maximum likelihood cross-validation method. It was intro-
duced by Duin (1976) and Habbema, Hermans and van den Broek (1974), and was later
modified by Marron (1985). Convergence conditions werc established by Chow, Geman
and Wu (1983) and Devroye and Gyôrfi (1985). Unfortunately, when the distribution
has tails that decrease exponentially quickly or slower, the. estimator is not consistent.
This phenomenon was first observed by Schuster and Gregory (1981), while necessary and
sufficient conditions of convergence are given by Broniatowski, Deheuvels and Devroye
(1989). For the size of the smoothing factor, see Hall (1982) and van Es (1988, 1989).
The estimate tends to minimize the Kullback-Leibler distance between /„ and /, and has
no direct relationship to the L\ error. A universally consistent estimate can be obtained
by transforming the data to [—1,1] via a monotone transformation like x » x/{l + |x|),
applying the maximum likelihood cross-validation method, and re-transforming the data
(Devroye and Gyôrfi, 1985). In most studies carried out to date, and in particular in the
study of Cao et al (1994), the maximum-likelihood cross-validation method performed
very poorly. For this reason, it is not includcd in our simulation experiment.

3. Comparisons and simulations.

General surveys of bandwidth selectors arc given in Devroye and Gyôrfi (1985),
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Titterington (1985), Marron (1987, 1988, 1989a), Izenman (1991), Jones, Marron and
Sheather (1992), and Turlach (1993).

Cao, Cuevas and Gonzâlez-Manteiga (1994) consider Li, L2 and Loo error criteria,
and provide us with a wealth of practical information. Few other studies offer practical
experiments with the L\ criterion. An example is Bean and Tsokos (1982), who are

mainly concerned with penalized or smoothed maximum-likelihood estimation. Various
1/2 cross-validation and L2-based plug-in methods are compared from an L\ point of view
on six normal mixture test densities in Park and Turlach (1992).

Scott and Factor (1981) compare maximum likelihood cross-validation and the
method of Scott, Tapia and Thompson (1977) on normal and normal mixture data with L2
as a criterion. Bowman (1985) looks at many methods, among which maximum likelihood
cross-validation, L2 cross-validation, the normal reference density method, and a goodness-
of-fit method. The densities included normal, normal mixture, t(5), Cauchy, chi-square
(6) and beta (2,2). The normal reference method was declared the overall winner under
the Z/2 criterion. Abdous (1990) too only considers L2 errors, and takes the normal
mixture family as well as the power exponential family as prototypes. Also included is
the chi-square distribution with 4 degrees of freedom, the t(5) density, and the normal
density. The L2 plug-in method of Deheuvels (1977a,b) wins against L2 cross-validation
and maximum likelihood cross-validation.

Further L2 simulation studies were conducted by various research groups in the late
eighties. Typical test densities include the normal density, normal mixtures, the t and
gamma families. See for example Kappenman (1987), Marron (1989a), and Faraway and
Jhun (1990), where a semi-automatic bootstrap method is compared with other methods.
Jones, Marron and Sheather (1992) offer an L2-based comparison on a battery of 15
unimodal and multimodal densities. They also test various scale estimâtes.

Nearly every bandwidth sélection paper in the nineties offers a limited simulation.
Notable examples are Park and Marron (1990), and Jones and Kappenman (1992). The
latter L2 study too favors various plug-in methods, and shows the feasability of modified
L2 cross-validation estimâtes such as those listed in Table 2. Other recent simulation
studies include Park and Turlach (1992) described above, Sheather (1993), and Kim,
Park and Marron (1993).

3.1. The comparative simulation: a benchmark test. In our simulation, it is not
our intention to duplicate the study of Cao, Cuevas and Gonzâlez-Manteiga (1994), who
compared ten different bandwidth selectors on many different densities under the Lp
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criterion with p € {1,2,00}. Our goal is more modest: we will only look at Li, we

don’t average over so many simulation runs, and we include only 011e représentative of
each sélection methodology in our study. On the other hand, the double kernel method is
studied in more detail than before, and our test bank of densities comprises a smorgasbord
of densities of varied shapes. In ail the tests, K is the Epanechnikov kernel.

We take the following view with regards to the criterion. First of ail, what matters
in practice is

We will compare this with the best possible error.

which measures the quality of the sample (hence the choice of the symbol Qn). To partially
offset the variablity in Qn and Jnu, one might look at things like Jnn — Qn, (JnH — Qn)/Qn
or JnH/Qn- This will be done in our simulations. Especially the last two quantities are
convenient as they allow us to compare performances across different densities on a more
or less absolute scale. Note that we do not attach a lot of importance to E J \fnh — f | per

se, as the E averages over many data sets, and this clearly is not something one would
hâve in practice.

For a fair comparison, ail the kernels are the same—we pick Epanechnikov’s kernel
because of its optimality property among positive kernels.

3.2. The test densities. Twenty-eight test densities are included in our simulation.
Random variate génération is trivial in ail cases—see Devroye (1986) for a general de-
scription of non-uniform random variate génération. Throughout, we hâve n = 100. The
group of densities contains several smooth bell-shaped ones such as the normal, logis-
tic, lognormal, Maxwell, Cauchy, inverse exponential, and extreme-value densities. These
hâve varying tail sizes and asymmetries. We add five densities with an infinité peak at
the origin (numbers 8, 14, 15, 18 and 19). Again, the densities differ in peak sizes and
skewness. Note that of these, only density 15 is in L2. Three continuous densities with dis-
continuous first dérivatives were included: the Laplace density, the beta (2,2) density and
the isosceles triangle. The discontinuity occurs either at the peak or near the extrema of
the support. Next, we throw in a uniform density, a uniform mixture, and an exponential
density, in the hope of testing the robustness in the presence of simple discontinuities. A
Pareto and asymmetric Pareto distribution are introduced as well to test the performance
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in the presence of very big tails, not unlike those obtained with économie or linguistic
data.

The first 20 densities are unimodal. The latter eight densities are multimodal. The
normal mixtures 21 through 24 were suggested to us by Steve Marron, who earlier (Marron,
1989a) obtained interesting simulations with normal mixtures, that show the richness of
this class of densities. Since the collection of normal mixtures is a dense subset of ail

densities in the L\ sense, one may effectively restrict oneself to such types of simulations.
However, the denseness also tells us about the enormous variety of possible test densities.
Others may argue that in blatantly multimodal settings, one would resort to some form
of variable bandwidth kernel estimation, and that it is useless to test uncompetitive fixed
kernel estimâtes such as the ones dealt with here. Densities 22 through 24 are taken from
Marron and Wand (1992). The marronite density (number 21) is included to test the
robustness with respect to well-separated modes of varying scales.

1. The uniform density on [0,1].
2. The standard exponential density f(x) = e~x, x > 0.

3. Maxwell’s density f{x) = xe~x*/2,x > 0.

4. The Laplace density f(x) = (l/2)e-^.
5. The logistic density f(x) = e~x/(l 4- e~x)2.
6. The Cauchy density f(x) = (l/7r)(l + x2)~l.
7. The extreme value distribution. The distribution function is F{x) = exp(— exp(—x)).
8. The infinité peak distribution, having density f(x) = \/(2<Jx) on [0,1].
9. The asymmetric Pareto distribution with parameter 3/2: it has density f(x) I

1/(2æ3/2) on [1, oo).
10. The symmetric Pareto distribution with parameter 3/2: it has density f(x) =

1/(4(1 + |x|)3/2) on the real line.
11. The standard normal density.

12. The standard lognormal density: f(x) = (l/a:Vz7r)exp(—(loga:)2/2) on [0,oo).
13. A uniform mixture: 50% weight is put on a uniform [—1/2,1/2] distribution, and

50% weight on a uniform [—5,5] distribution.

14. The Matterhorn: an incredibly peaked density defined as the density of Se~2/U,
where «S is a random sign, and U is uniformly distributed on [0,1]. The density
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has support on [—l/e2, l/e2] and is given by f(x) = l/(|x|(log(|x|)2)).
15. The density of UV, the product of two independent uniform [0,1] random variables:

f(x) = -log(x) on [0,1).
16. The isosceles triangular density: f(x) = (1 — |x|)+.
17. The beta (2,2) density f(x) = 6x(l — x), 0 < x < 1.

18. The chi-square density with one degree of freedom: f(x) = {\/y/2nx)e~xl2, x > 0.

19. The normal cubed distribution: the distribution of N3, where N is a standard
normal random variable.

20. The inverse exponential distribution: the distribution of 1/E2, where E is a stan-
dard exponential random variable. The distribution function is F(x) = e-1//vÆ.

21. The marronite density: if <r) dénotés the normal density with mean p, and
standard eviation <7, define

/ =i<K-20,1/4) + !*(0,1) .

22. The skewed bimodal density: another normal mixture (density # 8 in Marron and
Wand, 1992), with

/= |ÿ(0,l) + ^(1.5,l/3) .

23. The claw density: a normal mixture (density # 10 in Marron and Wand, 1992),
with

/ = ^(0,W+«Kf*0-l)+^(-0-5.4)j*(W0-!)+^(0-5.0.1)+iÿ(l, 0.1).24.The smooth comb: a normal mixture (density # 14 in Marron and Wand, 1992),
with

/ =

+
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25. The caliper: The density of S(X + 0.1), where 5 is a random sign, and X has
density f(x) = 4(1 — x1/3) on [0,1].

26. The trimodal uniform density: / = 0.5/[_i,i] + 0.25/[2o,2o.i] + 0.25/[_2o. 1,-20]? where
f[a,b] dénotés the uniform density on [a, 6].
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27. The sawtooth density: the density oî N + X, where N is uniformly distributed !
in {—9, —7, —5, —3, —1,1,3,5,7,9}, and X has the isosceles triangular density on

[-1,1].
28. The bilogarithmic peak: f(x) = —(1/2) log(x(l — x)) on [0,1]. This is the only

density with two separated infinité peaks, and an outspoken U-shape in the middle.
It also is the mixture of two logarithmic peak densities. i -q

-«a

0

PlGUFigure 2. The multimodal densities in our collection.
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Figure 3. The unimodal densities in our collection.
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3.3. The comparative simulation: the results. For each of the 20 densities, we
generated 20 samples of size 100 each, and tried 17 different bandwidth selectors. Ail
programs were written in PASCAL. The computation of f |.| needed in various places was
done with great care as standard numerical intégration routines are unsatisfactory under
the extreme circumstances encountered here, especially when h is extremely small or very
large. For example, if we hâve two density functions / and g, and if we can identify a
finite number of intervals Aj = (a,j, bj) for the set

{/ > 9} = UjU4»
(by solving / = g), then we hâve

r *
/1/ - g\ = 2 - n«i) - G(bj)+G(aj)),J

3=1

where F and G are the distribution functions for / and g respectively. This sort of
property aids tremendously in getting précisé numerical results. Densities with infinité
peaks and large tails are easy to deal with in this setting, while numerical intégration is
known to be problematic.

The following quantities are estimated for each density:

A. The average L\ error, i.e., the average value of f |/—/nj/|, where H is the (random)
bandwidth. In one case, hop, we take for H the optimal bandwidth:

hop = arg min f \f - fnh\ .
h>0 J

B. The average relative L\ error, i.e., the average value of

p = f\f ~ fnH| _ .
infh>o / |/ - fnh\

C. The probability that the relative L\ error Pn exceeds 0.1: P{jPn > 0.1} .

D. The probability that the relative Li error Pn exceeds 0.5: P{P„ > 0.5} .

E. The average rank of each method, where methods are ranked from 1 to 17 according
to Li error on every run.

F. The probability of oversmoothing with respect to the optimal bandwidth.

G. The average value of the bandwidth.

H. The maximal value of Pn observed over the runs.
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Our results still hâve a lot of residual variability. This may be reduced by averaging
over collections ( “baskets” ) of densities, such as the log-concave densities, the continuons
densities, etcetera. Such averaging also counteracts cheating, as it is much harder to fine-
tune design parameters in bandwidths to work well uniformly over large classes of sets.
In fact, density averaging is like calculating stock market indices.
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Figure 4. The average relative error (Pn) is shown for ail densities.
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Figure 5. The average absolute error, defined as the average of f \fnn — f\ minus
■ f m - n is shown for ail densities.
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3.4. Bounds for minimization. When minimizing either Jnh = / \fnh — f I or J'nh =

f \fnh — 9nh\ with respect to h, we are faced with a multimodal optimization problem over
an unbounded interval. In ail cases, it is possible to quickly detect a finite interval [a, b]
to which we may restrict the search. It is possible to find simple functions x{h) and £(/i)
with the following property: x(^) x(0) — 2, £(/i) î 2 as h | oo, and

Jnh > max(x(/i),£(/i)) •

The constant a is then easily determined as the largest number of the form /iref ,n /2l with
the property that x(a) > Jnhrei n, and b as the smallest number of the form /w.n x2‘
with the property that Ç(a) > Jn href ir This procedure works with any starting point,
not just /iref ,n* For m the same thing is valid, except that the limits of the functions x
and £ are f \K — L\, not 2. The following functions are valid for Jnh when / is unimodal
with mode at m. We let s be the upper bound of the support of the kernel K (one, for
the Epanechnikov kernel). In what follows, F and Fn are the distribution functions for /
and fnh respectively, X(0) = — oo and X(n+1) = oo. We also assume that K has a mode
at zéro, and define u < v as the two roots

u = inf{x : x < m\f(x) > K(0)/h} ,v = sup{x : x > m;f(x) > K(0)/h} ,

These numbers are on both sides of the mode of /.

x(/ï) = max ^2(F(m — 2nhs) + 1 — F(m + 2nhs)) ,

2(F(X(i+i) - hs) - F{X(i) + hs))+j ;
i=0

£(h) = max ^2(F(v) — F(u) — (v — u)K(0)/h) ,

2(Fn{X(l)) + 1 - F„(X(„,)) - 2(F(Xm) + 1 - F(XW))) .

For J'nh, we cannot use the unimodality of /, and are therefore somewhat more restricted.
Let fî be the sample mean, and let C be the Lipschitz constant for K — L. Then

h?

x(h) =
f\K — L\ J( n—1

J •f[X(i_1)+2/i<X(i)<X(i+i)— 2h] "b ■f[X(1)+2/i<X(2)] ~b ■^[^(n-i)+2^<^(n)]l i=2

These bounds are used in ail our computations of inf Jnh and inf J'nh. The minimization
is also simplified because Jnh and satisfy the following simple smoothness property:

!Jnh l Jnh'\ ~ J \Kh ~~ Kh'\ ~ mlc(/i, J) ’
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where C is some finite constant depending upon the kernel. Also,

I JL - I BpfeH L)h -(K- L)„, IS -^h~ h'[ ,J max(/t, h')

where C is some finite constant depending upon K — L.

Figure 6. A hypothetical L\ error Jnh is shown as a function of h. Also shown are the
lower bounds x(h) and £{h). The figure illustrâtes how one computation of Jnh directly
leads to an interval [a, 6] that contains the overall minimum, and yet stays bounded away
from 0 and oo.

3.5. Interprétation of the results. The variability of the results may be measured by
the ratio of the worst relative error over the average relative error, although some may
argue that this criterion itself is too “variable”. As a measure of general trends, it will

i do. We found the reference methods and the plug-in methods to be amazingly stable in
this respect.

For every density, we call “admissible” a method whose average relative error and
average absolute error are not both simultaneously dominated by those of another method.

!
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href,L1
href,11

double exponential Matterhorn

^ref,L2
“■DH.Ll logistic
hm,L2 isosceles triangle normal beta (2,2)
^ms,Ll
hme,L2
hpi.il extreme value chi square (1) Maxwell

hpi.Ll exponential Cauchy marronite

logarithmic peak
skewed bimodal

lognormal inverse exponential

hpi,L2 symmetric Pareto Cauchy
hCy claw

/ïsh sawtooth

hgi
hpr normal cubed

^dk,l smooth comb

Pareto
caliper trimodal uniform

hdk,2 uniform

hdk,3 uniform uniform mixture bilogarithmic peak
»idk,4 infinité peak

Table 4. For every bandwidth selector, we list the test densities for which the selector
is admissible according to average absolute and relative errors.

Table 4 shows why density estimation is fascinating—every method seems to “like”
certain types of densities. The Li-based plug-in methods are admissible in the above sense
for 16 out of the 28 densities. Of these 16, 10 are densities for which the rate n~2'5 is not
achievable because of either a big tail or a discontinuity. We provide a method-by-method
discussion.

A. Reference density methods. Except when faced with simple smooth uni-
modal densities such as the normal or beta (2,2), reference density methods are
predictably overshadowed. This is especially noticeable for multimodal densities.
Also, hma.Li and S(L2 are almost always too large.
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B. L2 CROSS-validation. This is among the good methods in some multimodal set-
tings when many minor peaks are présent (as for the claw and sawtooth densities).
This may be a bit a case of good luek as the bandwidth is typically much too
small. For some peaked densities (Matterhorn, chi square (1), normal cubed), its
performance is dismal, perhaps showing at even this small sample size that the
method is inconsistent.

C. PROJECTION method. This uncompetitive toy method behaves very much as the
reference density methods.

D. SPACINGS METHODS. When we minimize the maximal value of the average abso-
lute error over ail densities, the bandwidth hgr cornes out well ahead of the other
methods. Its theoretical properties may show some surprising universal strengths.
Nevertheless, hgr routinely oversmooths because it tries to put some of the mass
of fnH in each interval between the data points. The bandwidth /i8h undersmooths
nearly ail the time. Both hgz and hBb are good but not excellent in multimodal
situations, as they are based on scale-less principles.

E. The L2 plug-in method. hp±tL2 is excellent for the collection of unimodal densi-
ties, thus confirming what is known from other studies. In multimodal situations,
our version performs poorly because we are using a reference density pilot band-
width. It is not clear how the pilot bandwidth problem may be resolved without
eventually resorting to a universal method such as hcv, hgr or /idk.i-

F. The double kernel method. In absolute terms, only the sawtooth density
brought /idk.i to its knees. In relative terms, it also lost ground on very smooth
small-tailed densities. The method shines under spécial circumstances—infinité
peaks, large tails, tricky multimodal densities. As a resuit, averaged over the
collection, its performance is better than any method discussed thus far. The
bandwidths are usually a bit small and show some variation. Also, /idk,4 and /idk.3
are less compétitive. Particular success was achieved for the Cauchy, infinité peak,
Pareto, Matterhorn, inverse exponential, skewed bimodal, smooth comb, caliper,
trimodal uniform, and bilogarithmic densities.

G. L\ PLUG-IN METHODS. Finally, fipi.n shows the same pattern as hpiti2 across the
board. Its modification hpi>Li however combines the stability of the plug-in meth-
ods with the robustness of the double kernel method to produce the overall winner
for the average relative error. On some densities (lognormal, inverse exponential,
marronite) it leaves the compétition far behind. On average, it is the best method.
It also has the lowest maximal value of average absolute error over the collection
of densities (in a Virtual tie with /idk,i> hdk,2) ^,3)-
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Table 5 gives the performances, averaged over the set of 28 densities. This includes
the average Li error, the average relative error, the average worst relative error, the es-

timate of the probability that the relative error exceeds 10% and 50%, and the average
rank. The Li-based plug-in methods are first with respect to ail criteria. Among the
double kernel methods, /idk,2 is consistently best. The most important entries in the table
are those for the average error, and the average rank. They clearly confirm studies per-
formed by others (Cao et al, 1994) that indicate the power of plug-in methods. According
to every criterion, hpi.Li is best on average. It is always followed by the double kernel
method or hpi.n. For the average error, the new method hgr beats hpiiL2 and hcv.
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o o
ex ex
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AA o bû

1
U
>

0 average relativeerr< worst relativeerr< probability{relativeen probability {relativeen averageran average smoothing1 probability {oversmool
optimal 0.327 0.000 0.000 0.000 0.000 0.000 0.593 0.000

plug-in: L1 0.429 0.345 0.784 0.583 0.185 6.957 1.397 0.775

plug-in: L1 improved 0.366 0.146 0.613 0.391 0.075 5.764 0.794 0.617

référencé: Ll, large 0.491 0.563 1.137 0.680 0.275 9.539 2.247 0.826

référencé: L2, quartile 0.495 0.576 1.157 0.685 0.280 10.416 2.312 0.846

référencé: Ll, small 0.459 0.472 1.069 0.610 0.216 8.107 1.641 0.671

référencé: Ll, std dev 0.643 0.843 1.501 0.789 0.446 11.226 2.72505e+06 0.903

référencé: L2, std dev 0.647 0.859 1.526 0.798 0.453 12.255 2.80397e+06 0.912

max smoothing: Ll 0.516 0.652 1.260 0.758 0.348 12.789 2.672 0.898

max smoothing: L2 0.505 0.614 1.198 0.724 0.312 11.625 2.496 0.876

L2 cross-validation 0.480 0.472 1.496 0.639 0.298 9.612 0.291 0.107

double kernel 1.20 0.375 0.237 0.811 0.467 0.164 7.553 0.496 0.323

double kernel 1.44 0.379 0.220 0.931 0.467 0.137 7.148 0.618 0.433

double kernel 1.73 0.386 0.239 0.963 0.480 0.137 7.292 0.620 0.367

double kernel 2.07 0.404 0.301 1.055 0.525 0.166 8.185 0.673 0.308

plug-in: Sheather/Jones 0.448 0.421 0.935 0.594 0.196 7.685 1.490 0.760

Sherman 0.473 0.762 1.845 0.787 0.466 12.012 0.200 0.074

projection 0.538 0.741 1.523 0.724 0.453 13.076 3.280 0.826

Greenwood 0.422 0.437 1.722 0.639 0.258 9.658 1.306 0.667

Table 5. A summary of the results, averaged over 28 test densities and 20 répétitions
each, with n = 100.



4. Complementary discussions.

4.1. Fine-tuning parameters. One of the aims of this paper is to présent new Li-based
plug-in kernel estimâtes. We do not claim that this research is finished. We are encouraged
though by the results of our experiments. Both plug-in estimâtes hâve parameters that
may be further fine-tuned. To do this, we ran two more full tests on the 20 unimodal
densities, with 20 répétitions per density, n = 100. We do not hâve the space here to
report on the full extent of these experiments. Instead, we only give the summary table
for the 400 tests.

The tests involve hpi,n and /ipi>Li, and the parameter picked here is the threshold
r, which was 1/10 in our main round of simulations. Here, r is varied to prove that its
actual value does not matter much. The criterion shows great robustness with respect to
the threshold parameter.

method average

L\ error

average

Pn
P{P„ > 0.1} P{P„ > 0.5} average

rank
probability

oversmoothing
h>op 0.3255

hpi ,11» T — 1 0.3601 0.1616 0.4000 0.0600 5.3725 0.4075

hpi.xu t = 0.5625 0.3563' 0.1319 0.3300 0.0425 4.8500 0.4450

/ipi,u,r = 0.36 0.3541 0.1108 0.2850 0.0275 4.7125 0.5100
T — 0*25 0.3551 0.1046 0.3250 0.0250 4.6850 0.5750
t — 0.1837 0.3574 0.1055 0.3600 0.0225 4.7525 0.6425

hpifu,T = 0.1406 0.3602 0.1107 0.3775 0.0200 5.0450 0.6875

hpifll,r = 0.1111 0.3634 0.1179 0.4150 0.0225 5.4675 0.7200

hpi,u,T = 0.09 0.3665 0.1252 0.4400 0.0225 5.9475 0.7500

/ipi.n,r = 0.0744 0.3694 0.1326 0.4625 0.0250 6.4950 0.7700

^pi.iij'T = 0.0625 0.3723 0.1401 0.4900 0.0250 7.2050 0.7925

Table 6. The summary results for hpi,n are shown when the threshold parameter r is
varied. Depending upon the criterion, the best r is somewhere in the range 0.36... 0.14.
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1

method average

L\ error

average

Pu
P{Pn > 0.1} P{Pn > 0.5} average

rank
probability

oversmoothing
hop
hrpi,Lli = 1

0.3255

0.3678 0.2001 0.4725 0.0975 6.8575 0.2550

hpi.Ll) = 0.5625 0.3615 0.1698 0.3975 0.0775 6.1800 0.3225

hpi,Ll> T = 0.36 0.3572 0.1471 0.3475 0.0600 5.7050 0.3650

hpi,Ll> = 0.25 0.3541 0.1301 0.3100 0.0450 5.3450 0.4025

^pi,Ll) = 0.1837 0.3517 0.1173 0.2925 0.0350 5.0825 0.4325
= 0.1406 0.3500 0.1082 0.2800 0.0350 4.8900 0.4725

hpi.Ll» = 0.1111 0.3492 0.1029 0.2950 0.0325 4.9175 0.5275

hpi,Ll,T = 0.09 0.3489 0.1007 0.3150 0.0275 5.0375 0.5700

hpi, L1 ) 7” = 0.0744 0.3492 0.1008 0.3200 0.0250 5.2625 0.6150

hpi.Ll) = 0.0625 0.3498 0.1024 0.3400 0.0225 5.6600 0.6450

Table 7. The summary results for hpitL1 are shown when the threshold parameter r is
varied. Depending upon the criterion, the best r is somewhere in the range 0.14... 0.09.

4.2. Catastrophic behavior. Our experiments are too limited to properly illustrate
several important issues in density estimation. Most software users will undoubtedly be
abhorred by possible catastrophic behavior of an estimate. Foremost among this is the
consistency: is there a nonempty subclass T of densities for which

inf limsup E j \fnH - f\ > 0 ?
Ail methods that rely somewhere on a scale factor computed as an average (such as

/idh.li» Adh,l2) fail this test whenever the scale estimate diverges (i.e., when / has a long
tail). Many estimâtes we did not consider (including most bootstrap estimâtes) axe ill-
defined as the criterion to be minimized would yield H = oo. Strictly speaking, they
are not consistent. The maximum likelihood method is inconsistent whenever the tail of
the distribution is at least as big as an exponential tail (Broniatowski, Deheuvels and
Devroye, 1989). As pointed out in Devroye (1989d), the choice hcv is inconsistent when
the densities hâve too large infinité peaks. The choices hBh and hpT are also inconsistent for
certain densities. The double kernel and plug-in bandwidths of this paper axe universally
consistent.

Another important point, also discussed in Jones, Marron and Sheather (1992),

1
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is that some methods do not pass a bimodality test. To put it simply, let g be a fixed
unimodal density on [0,1], and consider the family of bimodal densities

f{x) = pg{x) + (1 - p)g(x - 6) ,

where 6 > 1. Create an infinité family of samples from / as follows: start with n i.i.d.
pairs drawn from (Y, U), where Y has density g and U is uniform [0,1]. Define

Then A has density /. Fix n. A kernel density estimate fnH does not pass the bimodality
test if for some g, almost surely,

for the given sample. This would happen if as 6 —> oo, we hâve H —> oo. Densities
that fail the bimodality test are typically based upon the reference density method in one

step of the définition. These can be made to perform arbitrarily poorly in the sense given
above. As such, the parameters /w,li> ëém,n, hrefth2, /idh.lii /idh,l2 are inadmissible. The
same is true for S(L1 and /im8,L2- Plug-in methods invariably require the estimation of
certain functionals. This typically forces one to solve another nonparametric estimation
problem. A pilot bandwidth is introduced, which in turn dépends upon an unknown
functional. One may continue this chain, but eventually it has to corne to an end (for a
simulation that involves a variable number of layers in this chain, see Park and Marron,
1992). If a reference method is used at the end of the chain, then bimodal examples may
be constructed that for sufficiently large n make the whole procedure useless. Absolute
methods axe those that end the estimation chain by appealing to an absolute principle,
such as minimization by L2 or Lqq cross-validation, or the double kernel method. Only
those will be totally immune against bimodal séparation viruses. hpi.n and /ipitL2 axe not
immune. Among the tested bandwidths, only /idk>i, /idk>2, ^dk,3, h,dk>4, hpijU, hBb and hcv
axe absolute and pass our bimodality test.

Robustness may be measured in many ways. Perhaps the most trivial way of
measuring it is by what happens if we move one data point to different locations: we say
that the density estimate is sensitive to one point if

almost surely, where H = H(xi, X2, •. •, Xn). This would occur for example if with proba-
bility one, infXl H(xi,X2, A3,..., An) = 0 (as in the case of hcv) or supXl H{x1, X2, A3,... ,XV
00 (as in the case of /idh.li or /idh,l2)- This idea may be generalized to insensitivity with
respect to an e-fraction of the sample.
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While the above three criteria are very disconcerting for some estimâtes, we should
not lose track of the original goal—to design an asymptotically optimal bandwidth selec-
tor. There is still an open question as to whether such a selector exists for ail densities.
So, we will water down things a bit by considering the class N of nice densities, that is,
ail densities on [0,1] that hâve infinitely many continuons bounded dérivatives on the real
line. We say that H is expédient if

sup lirnsup . ;, 77 < 00 •

feM n—>oo înfhbj \Jnh~ J\
This criterion says that we corne within a finite constant of the optimal performance for
large n, uniformly over ail nice densities. Ail Z/2-based methods, including hpi(L2, fa.il this
test. While it is true that for ail nice densities, the optimal L\ and L2 choices for h differ
by a constant factor only, the ratio is not uniformly bounded. Unfortunately, only /ipi>u,
hpi'iu and the double kernel choices hdk(i, hdk,2j hdk,3, hdk,4 are expédient. We hasten to
add that we would like the supremum in the définition of expediency to be one. This is
not the case for any method discussed in this paper. Possible remedies for this problem
include a plug-in method as suggested in Hall and Wand (1988), or a modified double
kernel method as discussed above.
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method consistent? bimodality
test?

insensitive L\
to one point?

expédient?

robust reference methods

,11, hr«f,Ll, hr8f ,1.2) yes yes no no

standard reference methods

(h.DH,Ll) ^DH,L2) no no no no

maximal smoothing
(hms.Llj hmg,L2) yes yes no no

L\ plug-in
(hpi.n, hpitLi) yes no/yes yes yes

Z/2 plug-in
(hpi,L2) yes no/yes yes no

double kernel method

(hdk,l> hdk,2j hdk,3> /ldk,4j yes yes yes yes

Z/2 cross-validation
(M no yes no no

spacings methods
(hghj hgx) no/yes yes yes no

projection method
(V) no no yes no

Z/2 bootstrap no no no no

Lqq maximum likelihood no no no no

Table 8. The table shows which methods pass the consistency, bimodality, insensitivity
to one point, and expediency criteria.
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