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An elastic tape wound on a rotating central core is generically slack: it can be further tightened by gradually increasing the force on its free end. This process generates a typical, intermittent stick-slip noise, suggesting a process akin to plasticity in disordered materials, where yielding is associated to avalanches and widely distributed events. Here, we show in a controlled experiment that on the contrary, tightening proceeds in a very orderly manner through successive individual fronts nucleating close to the fixed core and propagating outwards at constant speed until they are evacuated. The average interlayer spacing of the roll thus decreases stepwise, linearly in the length of resorbed slack. Finally, we show that the tensile force increases exponentially as the average interlayer spacing decreases. Experimental results are in quantitative agreement with a simple mean field model where the roll is approximated by an Archimedean spiral.

Wound rolls are commonly found in the industry as a means of compactly storing materials such as paper, fabric, tape, etc. As successive layers interact through solid friction, pioneering papers have aimed to characterize rolls internal stress [1][2][3][4][5][6][7] and the conditions under which the roll can be damaged by interlayer slippage [START_REF] Vaidyanathan | A study on wound roll slippage[END_REF]. Industrial rolls are wound by rotating the solid core while submitting the elastic tape to a controlled tension. At large velocity or low tension, air can be trapped between rolls layers due to some viscous entrainment [START_REF] Knox | [END_REF][START_REF] Good | Proceedings of the International Conference on Web Handling[END_REF], accumulating slack. From a storage perspective, the space appearing between successive layers can be problematic as subsequent tightening can lead to damage.

To unwind a roll, one usually lets the system free to rotate to accompany the pulled end. Here we consider the case where the core is clamped and the free outer end of the elastic tape is slowly pulled to remove slack (Fig. 1.a). A naive expectation for the corresponding internal response is related to the capstan problem: considering solid friction between slightly elastic layers in contact, the tension decreases exponentially along the tape [START_REF] Rayleigh | [END_REF] over, say, a fraction of perimeter. Slipping would therefore produce a localised stretching of the outermost layer, thus failing to tighten the bulk of the roll.

Here we show that tightening occurs through successive localized fronts propagating very fast outwards in the roll, thus efficiently reaching the slack trapped in the bulk. We interpret these fronts as small localized drops in the interlayer spacing, as their evacuation results in a gradual release of excess internal volume. We then derive a mean-field kinematic argument based on the local rewinding of the tape that allows us to satisfactorily explain our surprising observations.

The experimental set-up consists of a polymeric Super 8 leader tape with a Young's modulus of 2.69 GPa, 103.3 m long and 8.0 mm wide, that has been centerwound on a cylindrical core of radius 8.0 cm. The ribbon has a rest thickness b 0 = 177 µm. As for the preparation of the roll, winding is driven by the rotation of the core while the entrained tape is maintained under a controlled tension. The latter is achieved by applying a constant frictional torque to the storage roll from which the tape is drawn. The difference between the initial mean interlayer distance b and the thickness b 0 is initially equal to 19 µm for a tape velocity of ∼ 1 ms -1 and a tape tension of ∼ 1 N during center-winding, which is consistent with a viscous entrainment of air during the winding process. Indeed the order of magnitude of this trapped air layer thickness corresponds to that reported in previous work [START_REF] Knox | [END_REF][START_REF] Good | Proceedings of the International Conference on Web Handling[END_REF].

During the experiment, the inner end of this tape is firmly stuck to the core and cannot slip. The core is then clamped, forbidding its rotation, and the free outer end of the roll is pulled at a constant velocity v = 1 mm s -1 (Fig. 1.a). An Instron extensometer imposes the extension rate x(t) = vt and measures the applied load F (t) with an acquisition frequency of 500 Hz, while a Nikon D800 digital camera captures a lateral picture of the roll every second. We observe that we are able to extract more than 1 m of tape out of the roll with this process before the tape breaks.

Even though layers are stacked and should present regions of contact, the slack stored in the roll can be approximated by that in a homogeneous Archimedean spiral of inextensible tape (Fig. 1.b). The key parameter in this model is its mean interlayer spacing b > b 0 . The roll's outer radius R 2 obeys the geometric relation:

R 2 = R 1 + N b (1) 
where R 1 is the roll's inner radius and N its number of layers. N is invariant and is imposed by the roll's initial winding. As a consequence, the outer radius R 2 decreases linearly with the extracted length x:

πN (R 2 (x) + R 1 ) = L -x ( 2 
)
where L is the roll's initial total length. Differentiating eq. 1 and 2 we get the prediction

db dx = - 1 πN 2 (3) 
The overall spiral shape therefore yields a simple expression for the slack as x slack = πN 2 (b-b 0 ). More windings around the roll allow for more length to be extracted for a given initial interlayer spacing. The effect is quadratic in the number of windings N because there are N interlayer gaps that are getting thinner and a decrease in the thickness of one gap affects the radii of all the layers above it.

As can be seen in Fig. 2.a, the mean interlayer spacing b decreases by steps, but presents an overall linear decrease with the extracted length x. It remains larger than the tape's thickness b 0 , but the difference is roughly divided by two over the course of the experiment. The slope db / dx observed for rolls of different numbers N of layers (and therefore different initial total lengths L) obeys the prediction of Eq. 3, as shown in Fig. 2.b. This directly confirms that the slack in the roll is homogeneous, and that the latter is correctly represented by a spiral.

The discontinuous evolution of b at smaller scales, however, cannot be captured by this homogeneous geometric model. In Fig. 3.a, image differences of consecutive pictures taken from the experiment reveal the displacement inside the roll. An outer region is in solid body rotation around a static inner region. As the rotation goes on, the outer region becomes thinner and thinner; when it vanishes, the roll outer radius R 2 suddenly drops of a finite amount and a new tightening zone nucleates close to the roll's inner radius (Fig. 3.b). We can thus assume that the change in b occurs at the propagating front between between the two regions: the average interlayer spacing b is therefore not really discontinuous, but its estimate using the spiral representation is updated at discrete times, when the tightening front reaches the roll's outermost layer.

Interestingly, such propagating boundary can be interpreted as a local rewinding of the last layer in the rotating region into a tighter one deposited in the static part of the roll. We denote by r b the radius of the tightening boundary separating the static from the rotating region. r b is the current outer radius of the newly wound tighter roll, which serves as a core for the rewinding. Following this simple idea, the propagation rate of this radial position dr b dx can be modeled by introducing the curvilinear coordinate s(θ) (Fig. 1.b), which obeys:

ds dθ = r and dr dθ = b 2π (4)
The static inner region is a spiral of interlayer spacing b in and of inner radius R 1 . It is therefore described by:

s(θ) = b in 4π θ 2 + R 1 θ (5)
Introducing ϕ the angle describing the solid body rotation of the outer region, which inherits the geometry of a spiral of interlayer spacing b out and of inner radius R 1 , but is rotated by an angle ϕ:

s(θ) = b out 4π (θ -ϕ) 2 + R 1 (θ -ϕ) (6) 
At the boundary between the two regions, for which r(θ) = r b , the curvilinear coordinate s(θ) is continuous, which gives, in the limit of a small decrease in interlayer spacing (b outb in ≪ b out ):

r b ≈ R 1 + b out 2 π (b out -b in ) ϕ (7) 
Finally using dϕ dx = 1 R2 one predicts the propagation rate:

dr b dx = b out 2 πR 2 (b out -b in ) ≃ b 2 0 πR 2 (b out -b in ) (8)
This kinematic model is qualitatively consistent with observations: the boundary radius r b propagates linearly with time or with the extracted length x. As b outb in increases, as is observed in Fig. 2.a where the steps in b(x) get bigger and bigger, the propagation rate of the boundary dr b dx decreases, as visible in Fig. 3.c. Although we tend to underestimate a little dr b dx with Eq. 8, the fact that its order of magnitude and trend are correctly captured validates the proposed rewinding mechanism. However, this mean field approach does not explain how the successive values of b outb in are selected and why they tend to grow with time.

Let us now turn to the pulling load F needed to extract a length x, shown in the zones where they touch. Under a self-similarity assumption, it follows from the usual capstan argument that this normal pressure is directly proportional to the tension inside the roll, which is itself controlled by the applied pulling load. The force variations are thus proportional to the load itself (Fig. The same for load increases.

Internal friction occurs in the roll at locations where neighbouring layers touch. This friction causes the pulling load to fluctuate through stick-slip events. At the beginning of the experiment these fluctuations are smooth (Fig. 4.b) and become sharper as the roll is tightened (Fig. 4.c). This corresponds to a combination of an increasing internal pressure and a decreasing driving stiffness. Here what plays the role of the usual driving spring is the tape that has been pulled out of the roll. Its length increases as the tightening progresses and thus its stiffness decreases, resulting in the sharpening of the load fluctuations. When at their sharpest the slopes of the load fluctuations are indeed given by the stiffness of the extracted tape (Fig. 4.d). Additional experiments with varying pulling velocities show that the length of the load drops is proportional to the pulling velocity v (Fig. 5.a), while the length of the load increases is first proportional with v and then independent of it (Fig. 5.b). These results are consistent with stick-slip phenomena.

Finally, on top of the exponential curve F (x) load peaks, much larger than these stick-slip fluctuations can be observed (Figs. 4.b and c). They happen exactly when the tightening zones reach the outermost layers (the vertical grey lines in Figure 3.b). This shows that the initiation of one of the observed rewindings of the roll is associated to an energy barrier.

In summary we have described the tightening of a wound roll as a decrease in the average interlayer spacing due to successive rewindings of the roll on itself. Supposing a simple Archimedian spiral geometry for the roll, this mechanism predicts a linear relationship between the roll's mean interlayer spacing and the tape extracted out of the roll, as it is observed in our experiments. This model does not take into account the tape's elasticity. Indeed this elasticity is only solicited in the extracted tape and explains well the slopes of the stick-slip fluctuations in the measured load-extension curves. These curves are exponential in the mean interlayer spacing, as a signature of the coupling between normal pressure and longitudinal stress for a tape wound around a capstan.
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 1 Figure 1. (a) Schematics of the experimental setup. A wound roll of outer radius R2 is fixed at one end to its static core of radius R1 while its other end is pulled at a constant velocity v with a force F . (b) Parametrization of the roll as an Archimedean spiral. b is its mean interlayer spacing (measured between successive midlines of the tape), and b0 is the tape thickness. s(θ) is the tape arc length as a function of the wrap angle θ.
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 2 Figure 2. (a) Evolution of the mean interlayer spacing b as a function of the extracted length x. The tape's thickness (b0 = 177 µm) is shown in red. (b) Mean slope db / dx as a function of the number of layers N . The theoretical prediction from Eq. 3 is shown in red.
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 3 Figure 3. (a) Image differences of two consecutive (∆x = 1 mm) pictures of the roll for the corresponding values of x (in mm). The inner and outer radii are marked in red. (b) Radius of the boundary between the static and rotating regions r b , and the roll's outer radius R2 as functions of x. The grey vertical lines correspond to drops of R2. (c) Propagation rate of the boundary (in radial millimeters per extracted millimeters of tape) as a function of the mean trapped air thickness b -b0. The line corresponds to the slopes dr b dx in Figure 3.b. The circles correspond to the kinematic prediction from Eq. 8 with the value of boutbin measured from the discontinuous drops of b in Figure 2.a.
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 4 a for different numbers of layers N . It appears to be an exponential function of the interlayer spacing: the smaller bb 0 , the higher F is. As a result, because of the geometric relation between this spacing b and the extracted length x in eq. 3, the force F increases faster with x for smaller rolls (i.e. with smaller N ). The exponential relationship between F and b can be interpreted using dimensional arguments. The tightening of the roll is opposed by the interlayer friction forces, which are proportional to the normal pressure in Slopes dF/dx (kN/m) (d)
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 4 Figure 4. (a) Load(F )-extension(x) curves rolls of different numbers of layers. Inset : The collapse when the load is expressed as a function of the mean interlayer spacing b. (b) Close-up of the load-extension curve of a 170-layered roll for 4 cm ≤ x ≤ 5 cm. The fluctuations are smooth. (c) Close-up of the load-extension curve of a 170-layered roll for 94 cm ≤ x ≤ 95 cm. The fluctuations are sharp. (d) Evolution of the typical load increase slope (for a of 170-layered roll). The red line corresponds to the stiffness of the tape portion highlighted in the upper left diagram.
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 5 Figure 5. (a) Typical length (∆x) of load drops. Inset: Typical duration (typical length divided by pulling velocity). (b) The same for load increases.