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1. Introduction.

The aim of this paper is to review some new techniques and results in the
area of large déviations that hâve been obtained recently by the author and some

coauthors.

We first recall what is a large déviation principle (LDP).
Consider a topological space 0 endowed with its Borel cr-field, and let X\ be

a family of 0-valued random variables (r.v.’s) indexed by A G [0,oo).

Définition 1.1. The family (Xx)a>o obeys a LDP if there exists a function I(.)
from 0 into [0,oo] such that for any closed set fl G 0,

limsup A-1 log P(X\ G H) < — /(fl) (1.1)
A—* oo

and for any open set fl G 0,

liminf A-1 log P(X\ G fl) < —/(fl) (1.2)

where we define for ail fi G 0 ,

/(fl) := inf{/(x) : x G fl} (1.3)

The function /(.) is called the rate function. It is convenient to introduce the

following définition.

Définition 1.2. The rate function /(.) is a good rate function if it is lower semi-
continuous and the level sets rc := {i G 0 :/(x) < c} are compact.

If (1.1) and (1.3) hold, we say that we hâve a LDP on closed sets while we

say that we hâve a LDP on open sets if (1.2) and (1.3) hold.
Définitions 1.1. and 1.2. are classical. Many large déviations results may

be found in the boocks by Azencott (1980), Varadhan (1984), Stroock (1984),
Deuschel and Stroock (1991), Dembo and Zeitouni (1993).

LDP’s are important for applications in probability and statistics. Among
the most well known applications are the Strassen (1964) theorem which may be
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obtained with the LDP of Schilder (1961) on Wiener process (see e.g. Deuschel
and Stroock (1991, Theorem 1.4.1)), the investigation of Bahadur (1967, 1971)
efficiency (see Groeneboom and Oosterhoff (1977) for a review), the study of
the incréments of various processes such as the Erdôs-Rényi (1970) laws (see
Csorgô (1979) for a review). Large déviations are also important in simulation
techniques, when one wants to simulate rare events (see e.g. Cottrell, Fort and
Malgouyres (1983), Bucklew (1990), Sadowsky and Bucklew (1990)). Finally,
LDP’s are very usefull tools in statistical physics and statistical fields theory to

study phase transition phenomenas (see e.g. Ellis (1985)).
To make things clear, let us sketch a statistical example. Consider an i.i.d.

sample of real valued r.v.’s À^, X\, X2,..., Xn. Assume that EX = 0 and EX2 =

1. Then, the empircal mean Xn obeys the central limit theorem, i.e.

lim P(nx^2Xn > x) = 1 — $(x)n—>oo

where $(.) dénotés the standard normal distribution function. If (an)n>i is a

sequence of positive numbers which tends to 00 and n —» 00, the CLT says

nothing about P{nx^2Xn > anx), except that this probability tends to 0 when n

tends to 00. For the spécial case where an = n1'2, we are looking at P(Xn > x),
which is just a large déviation in the sense defined above.

Next, assume that the mean EX is unknown, and that the distribution of
X is symétrie arround its mean. Then, we can estimate the mean in using Xn
but also, say, in using the médian Mn of X\,.. .Xn. One way to compare these
two estimators when the true mean is say m, is to look at the probabilities
P(\Xn-m\ > x) and P(\Mn — m\ > x). These probabilities are large déviations
type probabilities. They are typically of the form

P(\Xn — m\ > x) = exp(—nhi(x)(l + o(l)) as n —*■ 00 ,

P(\Mn — m\ > x) = exp(—n/i2(x)(l + o(l)) as n —* 00

If hi(x) > ^2(23) for ail x, Xn is in some sense a better estimator than Mn
since it converges to m at a faster rate. Hence, a test based on Xn should be
better than a test based on Mn. This is very roughly what is the comparison of
tests in the Bahadur sense.
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The problem of obtaining a LDP has two aspects : to prove that the family
of r.v.’s obeys a LDP, and then to identify the rate function. Moreover, for some

applications it may also be interesting to study the continuity or the convexity
of the rate function.

In the easiest case, we may obtain a LDP from a previously known LDP in
using a change of variable formula. For instance, let 0' be a second topological
space.

Theorem 1.1. Let h be a continuons mapping from 0 into 0' and assume that

(*a)a>o obeys a LDP with rate /(.)■ Then, h(X\) obeys a LDP with rate Ioh 1.

Theorem 1.1. is called a contraction principle. Its proof may be found in the
above mentionned books on large déviations.

There exist many LDP’s for various rv.’s such as solutions of stochastic differ-
ential équations, sums of r.v.’s, empirical probability measure of a Markov chain,
etc. In this review, we concentrate only upon two aspects and their applications.
The first one is an extension of classical results on the empirical p.m. of an

i.i.d. sequence and on processes with independent incréments. The second one

is some extension of the contration principle. It turns out that many processes

that are defined in using a sequence of i.i.d. r.v.’s can be handled with the results
described below.

The starting point in section 2 will be a classical LDP on the empirical prob-
ability measure (p.m.) of n i.i.d. r.v.’s. We shall show that this resuit does not
give easily LDP’s on some classical statistics such as the rank statistics, and that
it is natural to study LDP’s for the point process of the sample. We shall also
show the limitation of the classical contraction principle.

In section 3, we shall describe a technique which enables us to obtain LDP’s
for the empirical p.m. associated to a rescaled version of the point process of the
sample.

In section 4, we explain some ideas which lead to some refinements of the
contration principle.

Finally, section 5 is devoted to review some applications.
At this stage, we mention that the aim of this paper is more to explain the

general tools and techniques than to give very précisé results. Sometimes, to give
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précisé results would hâve length this paper considerably. We hope that it will
be more benefit for the reader to hâve a kind of general exposition, leaving out
the too technical details that may be found in the papers quoted in references.

2. LDP for the empirical measure.

We now consider a sequence of i.i.d. r.v.’s ,JL on a Hausdorff topo-
logical space X. Their empirical p.m. is defined by

Pn~n-1 £ Sx,.
l<i<n

We endow the space V(X) of ail p.m.’s on X with the topology of weak
convergence and the corresponding Borel <r-field. The p.m. Pn is a random
element in V(X). The interest of Pn is that many quantities of statistical interest
may be written as functional of Pn.

For instance, if X is a vector space, we can define the mean functional on

V(X) by
M(/i) := J x dfi(x), ii G P{X).

Then, the empirical mean n-1Xà<»<n^i is just M(Pn). If X = IR, the
empirical distribution function (d.f.) is

Fn{x) jg= n-1 £ I(*i < *) •
l<i<n

It is a random element in the space X>(IR) of ail càdlàg functions of IR. If we

define the mapping F from 'P(IR) into ^(IR) by

F{n){x) := Jl(y < x)dn(y)
we see that Fn = F(Pn). We deduce that the médian, says, is also a function of
Pn-

Therefore, having in mind the contraction principle, we see that there is a
certain interest in having a LDP on Pn. This has been worked out by many au-
thors among them Sanov (1957), Borovkov (1962), Stone (1974), Hoadley (1976),
Donsker and Varadhan (1976), Bahadur and Zabell (1979), Groeneboom, Oost-
erhoff and Ruymgaart (1979) Csizar (1984) and De Acosta (1992). In the sequel,
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we shall make use of the following conséquence of any one of the papers mentioned
above after Donsker and Varadhan (1976).

Theorem 2.1. The p.m. Pn obeys a LDP inV(X) endowed with the weak topol-
ogy, with good rate function the Kullback-Leibler information number

EL
_ J SH(dQ/dP)dQ if Q < P

I oo otherwise

The meanning of Theorem 2.1. is roughly that if fi is a set of p.m.’s, then

P{Pn G fi) ~ exp(—n inf K(Q,P)).
Q £0

Now, if Tn is a statistics which may be written as a function T(Pn), and if T(.)
is continuous, then Theorem 2.1. and the contraction principle lead to a LDP for
Tn. Using this approach, Groeneboom, OosterhofF and Ruymgaart (1979) and
Groeneboom and Shorack (1981) obtain LDP’s for L-statistics.

Now, we can make clear a first limitation of the contraction principle. The
mean functional M(.) defined above is generally not weakly continous since the
function x —| x is generally unbounded. Therefore, we cannot obtain a LDP on

the empirical mean in using Theorem 2.1..
For the functional F(.) (X = IR in this case) a different problem occures. For

a fixed y, the function x —>■ I(x < y) as a function from IR into IR is bounded
but not continous. Consequently, F(.) is not weakly continuous, and we cannot
obtain a LDP on the empirical d.f., even at a fixed point, with Theorem 2.1. and
the contraction principle.

We now turn to a more sophisticated limitation of Theorem 2.1.. Assume
that X = IR and let R{n be the rank of Xi in the sample Xi,..., Xn. Consider
the rank statistics

Ü •— n ^ ] afi/ti) RiiTX,/n^
l<i<n

when a(.,.) is a continuous and bounded function (this requirement on a(.,.)
may be considerably weakened but we try to avoid extra complications here).
The statistics Tn cannot be written as a functional of Pn. However, one may

obtain a LDP for Tn in using Theorem 2.1. as follows. Define a new sequence of
i.i.d. r.v.’s uniformly distributed over [0,1], £/i,...,t/n, which are independent
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of the Xj’s. Define the empirical p.m. Qn := n~l Yli<i<n 8(c/ilxi)- Replacing Xi
by (Ui,Xi), we see that Theorem 2.1. leads to a LDP for Qn. The p.m. Qn is a
random element in the space "P([0,1] X IR) of ail p.m.’s on [0,1] x IR. Define the
mapping F;, i = 1,2 from P([0,1] x IR) into T>[0,1] if i = 1 and Z>(1R) if i = 2 by

Fi(n)(x) := JI(yi < x) dn(yx,y2) i = 1,2.
Notice that Fi(Qn) is just the empirical p.m. of U\,..., Un, while F2(Qn) is that
of Xi,... ,Xn. Since the UCs are independent of the XCs, we hâve Qn = Q'n :=

7i-1 ZàciCr» à(Ui,n,Xi) where U\<n < ... < Un>n is the order statistics of U\,...Un.
Then, notice that i/n = while Rijn i F2{Q'„)(Xf) i F2(Qn)(X
Hence, since the XC s are i.i.d.,

fn = f
Since a LDP deals only with the distribution of r.v.’s, we see that Tn may

be represented as a function of Qn. Hence, there is a hope to obtain a LDP
for Tn from Theorem 2.1. and the contraction principle. This has been done by
Praagman (1988) in using the above described technique. A direct proof of a
LDP for Tn is due to Woodworth (1970).

The reason why it is somehow so complicated to handle rank statistics is
essentially that the empirical p.m. Pn does not keep track of the order in which
the sample X\,..., Xn came out. The p.m. Pn is the sample up to a permutation.
The reason why the Pragman (1988) technique works is that

IPn := n~x 8(i/n,Xi) = / 8çF^Qn^u)iX)dQn(u,x), (2.1)
1 <i<n J

and that IPn keeps track of the order in which the sample came out. The p.m. IPn
is called the sequential empirical measure (s.e.m.). It is clear that représentation
(2.1) and Theorem 2.1. and the contraction principle lead to a LDP for IPn.
However, one can do much better.

Instead of considering a sequence Xi,... ,Xn in IR, consider an i.i.d. random
field (-Xi)i6]N<j in a general Hausdorff topological space and define the s.e.m.

IPn.d §= 8(i/niXi).
»6n[0,l]a
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This p.m. is a random element in the space ^([0,1]^ x X) of ail p.m.’s on

[0, l]4* x X, endowed with the topology of weak convergence. Clearly, Pn = IPn,i*
Now, if d > 1, représentation (2.1) is useless. The case d > 1 is of interest in
statistical physics and probably in other fields such as image processing. Barbe
and Broniatowski (1993) developped a new technique which leads to a LDP for
Pni(i and is explained here in section 3.

To make perfectly clear the interest of IPn, consider the weighted V-statistics

Vn:=n~2 w(i/nJ/n)a(Xi,Xj)
l<i,j<n

where a(.,.) is, say, some function from X x X into IR. The limiting distribution
of Vn has been obtained very recently by O’Neil and Redner (1993) for V-statistics
of degree 2, and Major (1992) for an arbitrary degree. Clearly, Vn = V(Pn) if we
define for any y, £ .M([0,1] x X)}

V(fi) := J J w(uiv)a(x,y)dfi(u,x)dfi(v,y).
LDP on IPn leads also some older classical results. If X is a vector space,

consider the partial sum process

Sn(t)-.= n-' £
l<i<nt

which is a random element in 2?[0,1]. Define the mapping S(.) from M([0,1] x X)
into 2?[0,1] by

S{fi){t) := [l(u < t) x dy,(u, x).
Then, ^(O = 5'(Pn)(.) so that a LDP on Pn will lead to one for 5n(.).

The limiting behaviour of the sem Pn is as follows. If A is a Borel subset of
[0,1] , and B a Borel subset of X, it is easy to check that Pn(Ax B) converges a.s.
to |Â| x P(B) where |.| is the Lebesgue measure on [0,1]® and P the p.m. of X\.
Since a measure is completely defined by its values on rectangles, P„ conveges

a.s. to P := |.| x P. The weak convergence of the process un := n1'2(Pn — P) as

a process indexed by a class of functions follows from Theorem (10.6) in Pollard
(1990).

3. Large déviation principle for the sequential empirical measure.
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We dénoté #([0,1]**) the Borel cr-field of [0, l]d for the usual topology. If
A £ B([0, l]d), we define

IPd,n < A >:= Tl 1 V
t/ngi4

We may see Pjin < . > in two ways :

i) it is a process indexed by sets A C B([0,l]d) and taking its values in the
space M.\{X) of ail measures on X with mass less than 1. Notice that if ADB = 0
then Pdin < A > is independent of P^.n < B >. Hence, as a process indexed by
sets, Pd,n has independent inoirements* IBarbe and ^3roniatowski ^ 19939»j
extended the proof of McBride (1974) and Lynch and Sethuraman (1989) to
obtain a fairly general déviation theory for abstract set indexed processes with
independent incréments. This leads to a LDP for the process P^ < . > (see
below).

ii) If B is a Borel subset of X, P^n < A > (B) = P<i,n(A x B). Hence we

may view Pj.n <•>(.) as a measure on the product space [0, l]d x X. This
measure may be written as a function of P^n < . >,

*(1^ < • >)(A x B) = Wd,n <A> (B).

Since a measure is completely determined by its values on rectangles, it is easy to
see that $(.) is one-to-one. Provided we endow the space where Pd,n < • > lives
with a suitable topology, the mapping \Er(.) is continuous when 77([0,l]<i x X) is
endowed with the topology of weak convergence. Then, using the contraction
principle, we obtain a LDP on Pjin from that on P^.n < • >•

To make clear how we can obtain a LDP on Pn < . >, we need to interpret
Theorem 2.1. as P(Pn % Q) % exp(—nK(Q, P)). The % signs are not well defined
but one should understand P(Pn ~ Q) as the probability that Pn is very close to
Q. The second sign % means somehow a kind of asymptotic relation which holds
when n gets large. Let fl be a set of functions from B[0,1]^ into AA\(X). Call a
finite family A = (Ai,..., A*.) a partition if each Ai is a rectangle in [0,1] and
the Aj’s are disjoint. Let fl < Ai >:= {Q < Ai >: Q £ fl}. For any partition A,
notice the following facts :

. raPn < Ai > /#(nAj fl IN) = P^n^niN)
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• Ifl^j,IPn < A{ > is indépendant of IPn < Aj >.
. #{nAi fl IN)/n % \A{\ for n large.

Hence, using Theorem 2.1., we see that

p(p„ « «)

< P(nFn < Ai > 1ÈÊM n IN) « nQn < A{ > /#(nA; n IN) : 1 < i < k) (3.1)
~ ni<i<fcP(P#(nylin]N) ~ Qn < M > /|i4»|)

^ ni<t<fcexp(-#(n>li fl IN)ÜT(Q < A{ > /|A;|,P))

%exp(-n ^2 \Ai\K(Q < Ai > /\Ai\,P)). (3.2)
i<»<fc

Now, view Q as a p.m. on the product space [0,1]** x X and dénoté Q1(u)(0 <
u < 1) the conditional p.m. of Q given that its first marginal at u. Then, if Ai
shrinks arround some u, Q < Ai > l\Ai\ tends to Qx(tt) and we see that when
each element of the partition A gets smaller and smaller, the expression (3.2)
should tends to

exp(—n J ü£T(Q1(ix), P) du) ,
which is just exp(—n«/(Q)) with J(Q) := K(Q, P). Now, if we take an other
function in fi, say Q', we obtain that P(P„ % Q') sa exp(—nJ(Q')). Assume for
instance that J(Q7) > J(Q). Then,

P(PB *Q# or Fn*Q)

< P(TPn « Q') + P(Œ>„ « Q)
~ exp(—n«7(Q')) + exp(—nJ(Q))

« exp(—ninf(«/(Q), «/(Q7)) as n —» oo.

This explains that

P(IPn G fl) < exp(— n inf J(Q)(1 + o(l))) asn-+ oo.

For the lower bound on open sets, notice that if fi is open and Q G fi, there
exists a neighborhood {Q}‘ of Q in fi. If the partition A contains only some very
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small sets, any p.m. Q' such that Q' < A{ >% Q < Ai > for any Ai C A belongs
to {Q}€. Hence,

P(TPn G fi) > P{JPn < Ai > » Q < Ai > : Ai G A)

and the same argument as above yields the lower bound on open sets. The final
resuit is as follows.

Theorem 3.1. The sem IP^.n obeys a LDP on ^([0,1]** x X) endowed with the
topology of weak convergence, with good and convex rate function

J(Q); f If»! i/Q(.xAf) = |.|1 oo otherwise

Notice that since IPn(. xX) = n"1 Ht/ne[o,i],J £»/n converges weakly to |.| in a purely
deterministic way, it is not surprising that the rate functional «/(.) is infinité on

measures Q which do not hâve a uniform first marginal on [0,1] .

In fact, this construction may be used for general processes indexed by sets
and with independent incréments. For instance, Barbe and Broniatowski (1993a)
consider an extremal process. Assume that X — IR and let

Mn(t) := max Xi.
l<i<nt

To obtain a LDP for Mn(.), we embed it into a process indexed by sets. For
A G [0,1], define

Mn < A >:= max Xi.
i/neA

Then, Mn < . > is a process indexed by sets, and with independent incréments.
We can obtain a LDP for Mn < . > just applying the general resuit of Barbe
and Broniatowski (1993a). Next, we map Mn < . > to Mn(.) in considering its
restriction to the sets of the form [0,t]. Since Mn(t) = Mn < [0,£] >, the LDP
for Mn < . > and the contraction principle lead to a LDP for Mn(.). Notice that
Mn < . > has independent incréments, while Mn(.) has not.

The technique discribed in this section may be used to obtain LDP for random
walks process in a set endowed with an associative operation (the extremal process

is in fact an exemple of such a random walk).
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4. Contraction principles.

In this section we use the general formalism of large déviations introduced in
the first section, and we are going to discuss the contraction principle.

Varadhan (1984) gives the following extension of the contraction principle,
where we use notation of Définition 1.1..

Theorem 4.1. If h is a uniform limit over compact sets of a familly of contin-
uous function h\, then h\(XA) obeys a LDP with rate I o h~l.

Having in mind the example given in the introduction for the functionals
M{.) and F(.), one can see that this theorem still does not give a LDP for M(Pn)
and F(Pn) from Theorem 2.1.1 However, it suggests the possibility that we can

approximate h by some nice functions. For instance, going back to the function
M(.) in the introduction, it suggests to define a truncated version of M{.). In
the example of the mean, we assume 0 to be a separable Banach space.

For any r > 0, define Tr(x) := x if || x ||< r and Tr(x) := ræ/ || x || otherwise.
Define the truncated version Mr of M(.), from 'P(O) into 0 by

Mr(p) := J Tr(x)dp(x).
Since Tt(.) is continuous and bounded, AfT(.) is weakly continuous. Therefore,
Theorems 2.1. and 1.1. give a LDP for Mr(Pn) for any r > 0. Moreover, for a

fixed /4, Mr(p) tends to M(p) as r —> oo so that we can reasonably try to take the
limit as r —► oo in the LDP for Mr(Pn) to obtain a LDP for M(Pn). To proceed
further, notice that || Mr(Pn) — M(Pn) ||< An(r) where An(r) := n-1 Ei<»<n II
Xi III(|| ||> r).

Assume that

<J>(t) := Eexp(t || X\ ||) < oo for ail t > 0.

Then, using standard Cramer estimâtes, we see that for ail t > 0,

^(An(r) > e) = P(exp(< || X{ ||ïï(|| X{ ||> r)) > exp(nte))
l<t<n

(4.1)
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< exp(—nie) (E exp(£ || X{ ||I(|| |j£ ||> r)))n (4.2)
Since <f>{t) is finite for ail t > 0, we can take t arbitrary large in (4.2), and since

Jim^log £exp(t || X{ ||II(|| X{ ||> r))) = 0 (4.3)
we see that (4.1) and (4.2) imply for any e > 0,

lim limsup n-1 log P(|| M(Pn) — Mr(Pn) Il> e) = —oo.r-*°° n—*oo

In particular, there is a sequence rjt such that

limsupn-1 log P(|| M(Pn) - Mrh(Pn) ||> l/k2) < -k
n—*oo

Hence, if we define

p := {/* € V(X) : || Af(/t) - Mr.(/i) ||< l/k2} ,k> 1
we see that for large n and large k, it is very unlikely (even in the sense of
large déviations) that Pn does not belong to It means that ’asymptotically’,
Pn should be in the set := fljt>mPfc. This suggests that the rate function
for Pn should be infinité outised of J-m. Now, we also see that J-m is a set of
p.m.’s for which x —► x is uniformly intégrable. And so the functional M(.) will
be continuous on the set Tm. It turns out that Donsker and Varadhan (1976)
shown that x —> x is uniformly intégrable on the level sets of K(.,P) provided
(4.1) holds.

Before pointing out the general underlying mechanism, let us mention a flaw
of this construction. When we define the set P*., we assume that is finite.
Since M(.) is not continuous, we cannot infer anything on the closness property
of Pfc. But Cauchy’s convergence criterion suggests to define

gky {n € V(X) : Il ||< 2/k2}.

Clearly, PieflPfe+i C É/fc. Hence, Pn € Qk with high probability and the preceeding
arguments may be carried over in replacing Tk by Qk. Now, since the MTk*s are

weakly continuous, Qk is weakly closed. Moreover, if fi 6 then MTk(fi) is
a Cauchy sequence, and therefore, M(/x) exists.

With notation of Définition 1.1., the general mechanism is as follows (Barbe
(1993a)).
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Theorem 4.2. Assume that there exists a sequence of sets Gk G 0 such that

limsup A-1 log P(X\ G Gk) < — k and
A—»oo

for any c > 0,c/(Ak) (1 Fc = Gk D Tc.

Let 7ik = ni>kGi- Assume that for any k large enough, h\7ik is continuons at
each point of Ttk- Then I o h~l is a good rate function provided I is also a good
rate function, and h(X\) obeys a LDP on closed sets.

The problem with Theorem 4.2. is that it gives only the upper bound on

closed sets. The lower bound on open sets may be handled with the following
resuit which is an extension of Lemma 2.1.4 in Deuschel and Stroock (1989) and
is proved in Barbe (1993a).

Theorem 4.3. Assume that (0',p) is a metric space. If hn is a sequence of
function from 0 into @' such that for any e > 0,

ii) lrnin-Kx, lim supA_>0O A-1 log P(p(hn(X\), h(Xx)) > e) = -oo where
i) hn is continuous at each point x G 0 such that J(x) < oo
Then h(X\) obeys a LDP on open sets with rate function I o h~l.

Generally speaking, Theorems 4.1. and 4.1. are the tools to deal with func-
tional which are not continuous due to a lack of boundedness. For functionals of

the empirical p.m. or of the sem of the form / ip(x)dp(x), they are the tool to
handle unbounded function VKO*

Now, the other example we pointed out in the introduction was the empirical
d.f. at a fixed point x which is not a continuous functional of Pn. Recall that Pn

obeys a LDP with rate K(., P) and that if K(Q, P) is finite, then Q « P. Now,
assume that x is a continuity point of P. If K(Q,P) < oo, x is also a continuity
point of Q. This suggests that for the the contraction principle to hold, we just
need the function h to be continuous on the set where the rate function /(.) is
finite. It turns out that this is true (see Barbe (1993b)) and explains assumption
ii) in Theorem 4.3.. This is the tool to handle the non-continuity that occures in
the rank statistics example (see e.g. Barbe (1993b), Barbe and Hallin (1993)).

To conclude this section, we would like to mention that the contraction prin-
ciple holds underrather weak conditions. There is however a point which is not
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clear : what is the minimum requirement to obtain a contraction principle? Hav-
ing in mind the example of the mean functional M(.), it should lead to a LDP
on M(Pn) from that on Pn assuming only that the momment generating function
(j>{t) in (4.1) is finite in a neighborhood of 0. One can obtain LDP on M(Pn)
from that on Pn using some convexity arguments (see e.g. Groeneboom, Ooster-
hoff and Ruymgaart (1978)) but it would be very interesting to avoid convexity
techniques.

5. Some applications.

In this section we review some applications of the above mentioned results.
i) Application to sequential statistics

Many sequential statistics may be written as function of the sequence (Pn)n>i-
Assume that we hâve to consider Pn for 1 < n < m (this typically arises when
one wants to obtain an évaluation of the tail probability of a stopping time).
Then for some t G (0,1], Pn = IP[mt]• But

IP[mt] := {m/[mt}) J £(m„/[mt],*)I(u < <) dPm(u,x).
For m large, m/[mt\ ~ 1/t and roughly

IP[mt] t-1 J 6(u/ttX)I(u < t) dPm(u, x).
Hence, we see that some sequential statistics may be approximated by functional
of the sem Pn. This approach has been developped in Barbe and Broniatowski
(1993b) to obtain a LDP on sequential rank statistics.
ii) Application to fractional ARIMA process.

Consider a fractional ARIMA process

(1 - B)U(B)Yt = 6{B)X,

where <^, 9 are two polynomials with root outside the unit circle and B is the lag
operator BXt = Xt_i. Akonom and Gouriéroux (1987) shown that approximately
when n is large and 0 < t < 1,
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for some constant c which dépends on d, (f> and 9. We see that this représentation
leads to

Y[nt] ^ cnd (t — i/n)dXi

= cnd~l Jl(u < t)(t - u)dx dJPn(u,x)
Using this approximation, Barbe and Broniatowski (1993c) shown that n~d+lY[n]
obeys a LDP in X>[0,1]. The rate function is given by

I(f) ~ Ih{fW(x)e{l)/^(l))dx
where h(x) := supt>0(£æ — log f?exp(£Xx)), and is the fractional dérivative
of order d of / (for fractional calculus, see e.g. Oldam and Spanier (1974), Ross
’1974)). When d = 1 and <f> = 6 = 1, y^ntj \s the classical partial sum process.

Thus, we hâve a généralisation of the resuit of Varadhan (1966) on partial sum

to fractional ARIMA process.

inj Conditional s.e.m. and linear model
Assume that Xi = (Xiti,X2ti) is a pair of r.v.’s (we do not assume that Ai,,

is independent of A^.i)* One can use the construction developped in section 3
to obtain a LDP for the lPn conditionned on X2ii,.. •, A2,n. This has been done
in Barbe (1993a) in order to handle linear models. Conditional LDP for the
usual empirical p.m. has been obtained by Cornets (1989) by a slightly different
technique. Indeed, if one consider the linear model

Zi = aX2,i +

one often consider such model where X2,i is either deterministic, either random.
In the random case, one often consider the model conditioned on the A2ti’s. Ail
these cases may be handled. It turns out that many statistics are functionals
of IPn conditioned on X2)i,... ,X2<n. To make the idea clear, a LDP for lPn
conditioned on X2ii,..., A^.n is obtained in considering the process P < . > as

in section 3 and reworking ail the construction conditionally on A24, • • • > X2>n.
This has an interesting application in econometrics. It is well known that

when one has to test some hypothesis on a coefficient in a linear model, one may

use at least three different tests : the Wald test, the Lagrange multiplier test, the
likelihood ratio test. It turns out that these three statistics hâve the same limiting
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distribution under the null hypothesis and under a sequence of local alternative.
In Barbe and Bertail (1993), we obtain the exact Balladur slopes of these test
statistics which show that they are not équivalent.

iv) Sequential empirical measure in a space of sequences

We can generalize the resuit on IPn in the following direction. Let X :=

be a sequence of i.i.d. r.v.’s. We consider the space X°° of ail sequences

(*»)i<o* This space is endowed with the norm || (a:*)*<0 ||a:= £»<oa*lx*l f°r
some summable positive sequence a = (ai);<o. We define 93X := (Xi+J)i<o, and
consider the sem

ipr -i9 e HHl
l<i<n

This is a p.m. on the infinité product space X°° x [0,1]. Barbe (1993) obtained
a LDP for P£° in using the following technique. We first define

:= n 1 à(e\x,iin)
l<t<n

where dkX = (Xi+j)-k<j<0' Then, P* is a p.m. on Xk+1 x [0,1]. For fixed k, the
0kX’s are k-dependent. Hence, the process P^ < A >:= n-1 ^(^x,i/n) has
not independent incréments. However, define

F‘<A>:=

where the sum is taken over ail the integers i such that ifn is in A and (i + a)/n
k

is in A for any —k < a < k. Then, the process Pn < . > has independent
incréments. The construction of section 3 may be carried over to obtain a LDP
for the process Pn < . >. Now, notice that if A is an interval [a,6], then

sup |P^ < A > (B) — P£ < A > (B)| < 2k/n.
B

Hence, in a deterministic way, Pn < . > is a good approximation of P£ < . >.
, Jç

It enables us to carry over P* < . > the LDP for Pn < . >, and then obtain a

LDP for P*.
In fact, as mentionned in Barbe (1993c), we can obtain LDP for the sem of

hypermixing Markov process in this way in using a remark of Dembo and Zajic
(1993).
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Now, to obtain the LDP for IP°°, we hâve to make k —*■ oo in the LDP on PÎÏ.
The problem is that P£° and P^ are not defined on the same space. For this, we

define a mapping tpk from V(Xk x [0,1]) into V(X°° x [0,1]),

V»fc(/x) := SqX fi

where So ls ^he Dirac measure on the constant sequence 0. The mapping V'fc is
continuons for the weak topologies. Thus, obeys a LDP. Now, we go on

the other way, from P“ to P^, in defining a mapping Tk from X°° into X°° by
(Tk(x))i := X{ if — k < i < 0 and (Tk(x))i := 0 if i < —k. Then

K = J =: rt(P”).
The mapping Tfc(.) is weakly continuons. Using the ideas of the contraction
principle given in Theorems 4.1. and 4.2., we can check that with very high
probability the sequence (Tfc(Pn))/e>0 is a Cauchy sequence. This enables us to
make k —* oo and obtain a LDP for P“. In fact this approach is very roughly
the same as the classical one using projective spaces (see Deuschel and Stroock
(1989) and Dembo and Zeitouni (1993)). However, it leads to a LDP under a

better topology.
Indeed, to see the interest of a LDP on P“, consider a linear process Y{

Ej>0 djXi-j. One can reasonably be interested in the trajectory of this linear
process. But the trajectory is in one-to-one mapping with the s.e.m.

IIn := n~l à(Yi,i/n)-
1 <i<n

Define the mapping 7r from X°° into X by 7r(a:) := £j>o We see that

n„ = f 6(„iU)dW~(u,x)=:n(lP~).
Thanks to the norm || . ||a on X°°, the mapping ü(.) is weakly continuous. Using
the usual contraction principle, Barbe (1993c) turns the LDP for IP£° into a LDP
for nn.

6. Conclusion.
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We would like to conclude in mentionning that we passed over a major chai-
lenge. The contraction principles given in the Theorem 2.1. and in section 4 lead
to rate fonctions I o h~l. First, it is nice when /(.) is known explicitely. Then,
the mapping h(.) can be rather complicated. To actually calculate I o h~x may

be extremely difficult. It is beyond the scope of this paper to describe some

methods, but that may be first a good deal of variational calculus in some rather

complicated space (such as Then, if one wants a numerical answer, that
can be a good deal to obtain it with a computer.
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