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Minimizing
 
vibration

 
levels

 
of

 
dynamic

 
components

 
at

 
their

 
operating

 
frequency

 
range

 
has

 
been

 
a

 
widely

 
studied

 
topic

 
in

 
engineering.

 However,
 
the

 
design

 
of

 
structures

 
that

 
satisfy

 
geometric

 
constraints

 
and

 
technical

 
performances

 
is

 
an

 
ongoing

 
challenge.

 
In

 
this

 
work,

 
a

 topology
 
optimization

 
procedure

 
based

 
on

 
the

 
Bi-directional

 
Evolutionary

 
Structural

 
Optimization

 
(BESO)

 
algorithm

 
is

 
performed

 
to

 
maximize

 the
 
natural

 
frequency

 
separation

 
interval

 
of

 
an

 
elongated

 
structure.

 
The

 
issues

 
of

 
disconnected

 
and

 
trivial

 
solutions

 
are

 
solved

 
using

 
a

 connectivity
 
constraint.

 
It

 
is

 
imposed

 
by

 
a

 
proposed

 
procedure

 
based

 
on

 
the

 
heat

 
flux

 
solution

 
of

 
an

 
auxiliary

 
system.

 
An

 
assessment

 
of

 
the

 feasibility
 
of

 
the

 
structure

 
is

 
done

 
by

 
verifying

 
its

 
accordance

 
with

 
manufacturing

 
and

 
design

 
constraints.

 
The

 
optimized

 
structure

 
was

 manufactured
 
and

 
validated

 
experimentally.

 
The

 
implemented

 
process

 
produces

 
topologies

 
that

 
maximize

 
the

 
natural

 
frequency

 separation
 
and

 
reduce

 
the

 
mass

 
of

 
the

 
structure.

 
The

 
obtained

 
results

 
demonstrate

 
the

 
effectiveness

 
of

 
the

 
proposed

 
procedure

 
at

 
satisfying

 geometric
 
design

 
constraints

 
and

 
technical

 
performances.

1. Introduction

In engineering problems, excessive vibration is usually associated with undesirable consequences, such as failure. Usually, for
rotating systems, operating frequencies are chosen far from resonance speeds. In some applications, it is not easy to maintain a
constant speed, especially when undergoing variable loads. For this reason, it is advantageous to ensure a large enough separation
margin between the operating frequency and the nearby resonance frequencies. Therefore, controlling the natural frequencies of a
structure is the objective of many optimization applications [1].

The topology optimization method is a well-established method for structural optimization. First introduced by Bensøe and
Kikuchi [2] as a shape optimization algorithm based on the homogenization method, this procedure promptly started a new branch
in structural optimization. The need for the homogenization method was removed after the introduction of continuous relaxation
functions and penalization when defining the properties of the structure. This yielded the well-established Solid Isotropic Material
with Penalization (SIMP) method [3–5]. The topology optimization method was then extended to a discrete form as the Evolutionary
Structural Optimization (ESO) [6]. Its main advantage is the absence of elements with intermediary properties, which carry no
physical meaning. Then, the Bi-directional Evolutionary Structural Optimization (BESO) method was proposed as an alternative to
allow both the addition and removal of elements [7].
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These algorithms require additional procedures to avoid usual problems related to dynamic system optimization. A numerical fil-
ter is needed to avoid mesh-dependent topologies and checkerboard patterns [8,9]. Additionally, as demonstrated by Pedersen [10],
the SIMP interpolation scheme results in non-physical topologies due to the dynamic behavior of void elements. A new interpolation
scheme was then proposed to avoid such problem, which was subsequently adapted for the BESO [11]. With these adjustments,
topology optimization algorithms proved to be robust enough for several problems. Among others, it has been implemented for
fluid–structure interaction [12,13], multiscale analyses [14,15], design of piezoelectric harvesters [16] and acoustic insulators [17].

When optimizing dynamic systems, one can desire either to increase or to reduce vibration. When working with energy harvest-
ing, clustering the natural frequencies of a system can be beneficial, because it increases the performance of the harvester [18]. When
dealing with dangerous resonances, however, the separation of natural frequencies is desired. The maximization of this separation
is also beneficial on the design of controllable structures [19].

In the context of topology optimization for reducing vibration of dynamic systems, there are two main alternatives: either the
natural frequencies or the frequency response is optimized. Ma et al. [20,21] performed a topology optimization process based on the
homogenization method to solve both types of problems. Xie and Steven [22] implemented a simple natural frequency optimization
algorithm using the ESO, which was then extended to the BESO [11]. Jensen and Pedersen [23] maximized the separation interval
between adjacent natural frequencies for 1D and 2D scalar cases. Du and Olhoff [24] proposed a robust algorithm for several
different cases of natural frequency optimization. Two common problems in these algorithms are mode shifting and local modes.
Li et al. [25] performed the optimization of dynamic responses using the Level-set method to eliminate local modes. Li et al. [26]
and Lopes et al. [27] proposed methods for the optimization of natural frequency separation interval that solve both problems.

For dynamic response optimization, damping could be considered using the proportional damping model or other models with
diagonal modal damping matrix [28]. These models have been used in the context of topology optimization [29], but it is important
to emphasize that, even in non-diagonal damping systems, an approximated proportional one can be built [30].

In recent years, additive manufacturing has gained popularity. Despite the many challenges for successful integration of topology
optimization procedures and additive manufacturing, they are powerful tools for designing and prototyping. Ma et al. [31] utilized
a topology optimization procedure to maximize natural frequencies of a structure, which was subsequently manufactured and tested
experimentally. To impose certain restrictions on the optimal design, a multidomain topology optimization technique was employed,
calibrated by the user.

For structures with high geometric aspect ratio, such as bridges, aircraft and missiles, topology optimization procedures for
natural frequencies often fail. This is due either to local optima occurring for disconnected topologies or to the presence of a
trivial solution, such as reducing the length of the structure. One way to avoid this problem is to include a non-structural mass
on set locations, guaranteeing their connectivity [32]. Another alternative is the addition of a compliance term in the objective
function [33]. Munk et al. [34] proposed an elegant alternative, via the implementation of a connectivity filter. However, while this
solution solved the connectivity problem, it lead to mesh-dependent topologies. Liu et al. [35] proposed the Virtual Temperature
Method (VTM) to avoid enclosed void regions, which may lead to manufacturing difficulties. This method was recently extended to
the Nonlinear Virtual Temperature Method (N-VTM) [36], which was employed to satisfy overhang angle constraints.

This work performs the topology optimization design of a structure through the following the steps: optimization, simulation
and experimental validation. The main challenges of each step are assessed. First, the structure is optimized based on a frequency
separation criterion. A novel connectivity approach that uses energy balance properties, similarly to the VTM, is proposed to satisfy
geometric design constraints. Then, a close examination on the optimization hypotheses is done by simulating the obtained solution
in a three-dimensional analysis. Finally, an experimental test is performed to validate the proposed procedures. This structure is
produced via additive manufacturing and tested using a sweep harmonic excitation and measuring the displacements with a laser
Doppler vibrometer. Results show correspondence between both the experimental and simulated results. The developed procedures
enable a satisfactory increase of the initial frequency separation margin.

2. Procedure for structure design

In this section, the optimization problem is presented and the connectivity constraint is formulated. The algorithm for the
topology optimization procedure using the BESO method is also presented.

2.1. Frequency separation interval maximization

The maximization of natural frequency separation interval of elastic structures is considered in this section. As the present
problem concerns the optimization of natural frequencies, the system is modeled as undamped. This hypothesis is not too restrictive,
since the damped natural frequencies and resonance frequencies change little for systems with small structural damping.

The undamped linear dynamic system can be represented by the following eigenproblem:

−𝑴𝜔2
𝑗
𝜙𝑗 +𝑲𝜙𝑗 = 0 (1)

where 𝜔𝑗 and 𝜙𝑗 are the 𝑗th eigenvalue and eigenvector of the system. The matrices 𝑴 and 𝑲 are the global mass and stiffness
matrices, obtained via the Finite Element Method. The system is assumed to be linear elastic isotropic, under the two-dimensional
plane stress hypothesis, that is, the stress tensor components outside the studied plane are negligible.
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In this work, the optimization goal is obtaining a structure that maximizes the natural frequency separation interval around
a given operating frequency. This is done by finding the optimal material distribution along the domain. The corresponding
optimization problem [21] is stated as:

max 𝑓 (𝑥𝑖) = 𝜔2
0
+

⎡
⎢⎢⎢⎣

𝑛m∑
𝑗=1

1(
𝜔2
𝑗
− 𝜔2

0

)2

⎤
⎥⎥⎥⎦

−1∕2

s.t. 𝑉 ∗ −

𝑁∑
𝑖=1

𝑉𝑖𝑥𝑖 = 0

𝑥𝑖 = 1 𝑜𝑟 𝑥min

(2)

where 𝜔0 is the operating frequency around which the frequency separation interval is maximized. The parameter 𝑛𝑚 is the
number of considered eigenvalues. Its choice process consists in finding a value large enough so that the highest eigenvalues influence
little on the optimization process. However, the computational cost of the optimization procedure increases proportionally to 𝑛𝑚,
and, therefore, it must be properly adjusted by the user. In this work, this is done by choosing a value so that at least half of the 𝑛𝑚
natural frequencies are greater than 𝜔0. The design variable 𝑥𝑖 represents the current configuration of the 𝑖th finite element, which
can be either 1, for a solid element, or 𝑥min, for a void one. 𝑉

∗ is the imposed final volume and 𝑉𝑖 is the volume of the 𝑖th element.

Compared to directly maximizing the difference between adjacent eigenvalues, this function has the advantage of avoiding both
mode-shift and close eigenvalues problems. It is more robust to the emergence of local modes and instabilities along the process.
Additionally, it can be implemented with mode tracking procedures [27].

Having defined the objective function, the sensitivity analysis is performed via the differentiation of 𝑓 (𝑥𝑖):

𝛼𝑖 =

⎡⎢⎢⎢⎣

𝑛𝑚∑
𝑗=1

1(
𝜔2
𝑗
− 𝜔2

0

)2

⎤⎥⎥⎥⎦

−3∕2

𝑛𝑚∑
𝑗=1

1(
𝜔2
𝑗
− 𝜔2

0

)3

[
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𝑗

(
𝜕𝑲

𝜕𝑥𝑖
− 𝜔2

𝑗

𝜕𝑴

𝜕𝑥𝑖

)
𝜙𝑗

]
(3)

where the eigenvectors 𝜙𝑗 are normalized with respect to the mass matrix 𝑴 .

The derivatives of the mass and stiffness matrices are obtained from the interpolation schemes of the density and Young’s
Modulus:

𝜌(𝑥𝑖) = 𝑥𝑖𝜌0 (4)

𝐸(𝑥𝑖) =

[
𝑥min − 𝑥

𝑝

min

1 − 𝑥
𝑝

min

(
1 − 𝑥

𝑝

𝑖

)
+ 𝑥

𝑝

𝑖

]
𝐸0 (5)

where 𝜌0 and 𝐸0 are the density and Young’s modulus of the base material.

This interpolation scheme is used to avoid local modes in void elements [11]. In continuous methods, the penalization exponent
𝑝 is usually defined based on the Hashin–Shtrikmann bounds [37]. In the BESO, a calibration must be done by the user, testing
several different values and analyzing the evolution and the final topology. Usual values for 𝑝 are around 3 [9].

The derivatives of the finite element matrices are:

𝜕𝑴

𝜕𝑥𝑖
= 𝑴0 (6)

𝜕𝑲

𝜕𝑥𝑖
=

1 − 𝑥min

1 − 𝑥
𝑝

min

𝑝𝑥
𝑝−1
𝑖

𝑲0 (7)

where 𝑴0 and 𝑲0 are the mass and stiffness matrices of a solid element.

This sensitivity analysis is necessary for the update procedure of the BESO algorithm, which will be presented in Section 2.3.

2.2. Connectivity constraint for elongated structures

Optimization problems can have trivial, degenerated solutions. The maximization of the objective function given in Eq. (2) may
present such an issue, as there are cases where the optimal topologies correspond to disconnected structures, that is, structures in
which regions of the design domain become disconnected.

In this work, a novel method for measuring and imposing connectivity between two given regions is developed. At each iteration,
solid elements that are essential to maintain a minimal structural connectivity are identified. These elements are prevented from
turning into void elements during the update procedure of the BESO.

A heat conduction equation is used to measure the importance of each element in keeping the given regions connected. The
following are considered: only solid elements are thermally conductive, and a unitary heat transfer rate enters the domain through
a surface 𝛤𝑎 and leaves through a surface 𝛤𝑏. Under these conditions, the heat flux will be greater in thin connections between 𝛤𝑎

and 𝛤𝑏. As a consequence, the heat flux passing through a solid element can be used to measure its importance in keeping both
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 surfaces connected. In order to compute the heat flux, an auxiliary Finite Element Analysis is performed to solve the following 

equation:

∇ ⋅ (𝑘(𝒔)∇𝑇 (𝒔)) = 0 , 𝒔 ∈ 𝛺

∇𝑇 (𝒔) ⋅ 𝒏(𝒔) = 0 , 𝒔 ∈ 𝛤𝑜

𝑘(𝒔)∇𝑇 (𝒔) ⋅ 𝒏(𝒔) = −𝑞𝑎 , 𝒔 ∈ 𝛤𝑎

𝑘(𝒔)∇𝑇 (𝒔) ⋅ 𝒏(𝒔) = −𝑞𝑏 , 𝒔 ∈ 𝛤𝑏

𝑇 (𝒔) = 0 , 𝒔 ∈ {𝒔0}

(8)

where 𝑇 (𝒔) represents the temperature field in a spatial point 𝒔; 𝒏(𝒔) represents the unit normal vector, orthogonal to the boundary
surfaces and pointing outward; 𝑞𝑎 and 𝑞𝑏 represent the imposed fluxes. The conductivity 𝑘(𝒔) is adopted as 1 for solid elements and
𝑥min for void ones, ensuring that the heat flux passes only through solid elements. The domain 𝛺 is the optimization domain; the
surfaces 𝛤𝑎 and 𝛤𝑏 are the regions that must be connected; the adiabatic boundary 𝛤𝑜 comprises any other boundary point; 𝒔0 can
be any point of 𝛺, it serves only to make the problem well-posed. ∇ is the gradient operator.

Since a unitary heat transfer rate is considered, 𝑞𝑎 and 𝑞𝑏 must satisfy the conditions:

∫𝛤𝑎 𝑞𝑎 𝑑𝐴 = −1 (9)

∫𝛤𝑏 𝑞𝑏 𝑑𝐴 = 1 (10)

Once the scalar field 𝑇 (𝒔) is obtained, the vector field 𝒒(𝒔) can be calculated as:

𝒒(𝒔) = −𝑘(𝒔)∇𝑇 (𝒔) (11)

Finally, the value 𝑞𝑖 = ‖𝒒‖, evaluated at the center of the 𝑖th element, is used as a measure of its importance in keeping
connectivity. By defining a maximal value 𝑞max, elements with 𝑞𝑖 ≥ 𝑞max are excluded from the update procedure.

The parameter 𝑞max can be obtained by specifying a minimal surface area, 𝐴min, connecting 𝛤𝑎 and 𝛤𝑏. Assuming that 𝒒(𝒔) is
uniform and orthogonal to the minimal connecting surface, 𝑞max is given by:

𝑞max =
1

𝐴min
(12)

The essential elements are taken out from the design domain by setting their sensitivity values to the maximal value obtained
in the current optimization iteration. This procedure is given by:

𝛼𝑐
𝑖
= 𝛼𝑖 + 𝑐(𝑞𝑖)

[
max(𝜶) − 𝛼𝑖

]
(13)

where 𝛼𝑐 is the modified sensitivity vector, which is employed to update the topology, and 𝑐(𝑞𝑖) is an activation parameter.
To define a soft-activation, a minimal threshold must be considered. By specifying a reference surface area 𝐴max connecting 𝛤𝑎

and 𝛤𝑏, 𝑞min is defined by:

𝑞min =
1

𝐴max
(14)

Thus, the function 𝑐(𝑞𝑖) can be defined as a linear soft-activation:

𝑐(𝑞𝑖) =

⎧
⎪⎨⎪⎩

0 , 𝑞𝑖 ≤ 𝑞min
𝑞𝑖−𝑞min

𝑞max−𝑞min
, 𝑞𝑖 ∈ (𝑞min, 𝑞max)

1 , 𝑞𝑖 ≥ 𝑞max

(15)

In this work, the imposed boundary fluxes 𝑞𝑎 and 𝑞𝑏 are set as uniform through 𝛤𝑎 and 𝛤𝑏. Since bi-dimensional structures under
plane stress hypothesis are considered, the area parameters correspond to length parameters. 𝐴max is set to be the height of the
rectangular design domain, and 𝐴min is defined based on the problem specifications. The connectivity constraint imposes that the
left and right extremities of the design domain are kept connected.

Fig. 1 illustrates the flux 𝒒(𝒔) passing through the structure. The activation function is low in the low flux region, represented with
blue arrows. In this part of the structure, the topology optimization is performed with little influence of the connectivity constraint.
The activation function is high in the high flux region, represented with red arrows. In this part of the structure, topology changes
are limited by the connectivity constraint.

2.3. Topology optimization method

The topology optimization method is based on finding the design that maximizes the desired criterion via successive changes to
the topology. To each element, a design variable is assigned. As the BESO is a discrete procedure, these design variables can only
assume discrete values, meaning that elements can only be either solid (𝑥𝑖 = 1) or void (𝑥𝑖 = 𝑥min). Void elements are considered
as really flexible, instead of absent, to avoid numerical problems along the process. These design variables are updated at each
iteration based on a sensitivity analysis, where the influence of each element on the objective function is evaluated.

The BESO is a well-established algorithm for topology optimization and was chosen due to its simplicity and robustness. The
BESO is a gradient-based optimization procedure, meaning the sensitivity analysis is done based on the derivative of the objective
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Fig. 1. Connectivity constraint soft-activation.

function, as previously presented in Eq. (3). Despite having no convergence guarantees, the BESO proved to be a powerful method
for topology optimization. When used properly, it usually leads to local minima and produces feasible topologies at each iteration.
The BESO procedure is shown in Algorithm 1.

Algorithm 1: BESO procedure

Input: Define parameters: 𝑥min, 𝑝, 𝐸𝑅, 𝐴𝑅max, 𝑉
∗, 𝑟min, 𝐴min, 𝜏, 𝑁 , 𝑛𝑚

Define boundary conditions and mesh
Start iteration counter: k = 0
Calculate eigenvalues and eigenvectors
while error < 𝜏 or 𝑉 (𝑘) ≠ 𝑉 ∗ do

k = k + 1
Evaluate sensitivities 𝛼(𝑘)

𝑖
(Eq. (3))

Filter sensitivity numbers (Eqs. (16) and (17))
Perform connectivity procedure (Eq. (13))
Update topology 𝑥

(𝑘)
𝑖

Update volume 𝑉 (𝑘)

Calculate eigenvalues and eigenvectors

error =

|||||
𝑘−𝑁∑

𝑜=𝑘−2𝑁

𝑓 (𝑥
(𝑜)
𝑖

)−
𝑘∑

𝑜=𝑘−𝑁
𝑓 (𝑥

(𝑜)
𝑖

)
|||||

𝑘∑
𝑜=𝑘−𝑁

𝑓 (𝑥
(𝑜)
𝑖

)

end

Output: Optimized topology 𝑥
(𝑘)
𝑖

In Algorithm 1, the parameters defined at the ‘‘Input’’ field must be given by the user. 𝐸𝑅 is the Evolutionary Rate, which
corresponds to the rate of change in the volume for each iteration, and 𝐴𝑅max is the maximum Addition Ratio, indicating the
maximum percentage of element addition at a given iteration. Both parameters must be calibrated by the user. Higher values of 𝐸𝑅

and 𝐴𝑅max may reduce the number of iterations required, but they can also destabilize the procedure. Thus, they must remain low
enough to ensure a stable and coherent evolution. The parameter 𝑉 ∗ is the final volume imposed by the design constraints.

The stopping criterion is based on the historical average and calculated via the expression shown in Algorithm 1. The parameters
𝜏 and 𝑁 represent, respectively, the tolerance and the number of previous iterations considered in the averaging process.

The filtering scheme is implemented as presented by Huang and Xie [9]. It is required to avoid both checkerboard patterns
and mesh-dependent solutions. The former is a numerical problem originating from the bilinear finite elements, the latter must be
avoided to prevent exceedingly thin components in the optimized structure, which hinder manufacturability. It requires defining
a parameter 𝑟min, which is usually interpreted as the minimum admissible thickness of the topology. Its application is based on
performing two successive transforms on the sensitivity. Initially, a nodal sensitivity 𝛼𝑗 is defined by averaging the elemental
sensitivity to its nodes:

𝛼𝑗 =

𝑀∑
𝑖=1

1

𝑀 − 1

(
1 −

𝑟𝑖𝑗∑𝑀

𝑖=1
𝑟𝑖𝑗

)
𝛼𝑖 (16)

where 𝑀 is the number of elements that have the node 𝑗. The value 𝑟𝑖𝑗 is the distance between the center of the 𝑖th element and
the 𝑗th node, and 𝛼𝑖 is the elemental sensitivity calculated in Eq. (3). If 𝑀 is equal to 1, then 𝛼𝑗 is defined as equal to 𝛼𝑖.

These nodal sensitivities are then averaged back to the elements, weighted by the distance between the center of the elements
and the nodes:

𝛼𝑖 =

∑𝑃

𝑗=1
max(0, 𝑟min − 𝑟𝑖𝑗 )𝛼𝑗

∑𝑃

𝑗=1
max(0, 𝑟min − 𝑟𝑖𝑗 )

(17)
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Fig. 2. Optimization domain.

Table 1
Optimization parameters.

Parameter Value

ARmax 2%
ER 2%
rmin 2 mm
xmin 10−6

p 5
Amin 4 mm
V∗ 60%
𝜏 0.1%
𝑁 5
𝑛𝑚 10

Fig. 3. Optimal topology of the preliminary result.

where 𝑃 is the total number of nodes.

3. Optimization results

This section presents the first part of the design, aiming at adjusting the optimization procedures for the studied structure. During
this step, the system is optimized and initial assessments on its manufacturability are done. The heat flux connectivity constraint is
used to that end.

The studied domain is an elongated cantilever beam, as shown in Fig. 2.

This structure is modeled using the properties of the Polylactic acid (PLA), the polymer that will be used during the experimental
analysis. Its mechanical properties are: E = 3.5 GPa, 𝜈 = 0.36 and 𝜌 = 1250 kg/m3. The other optimization parameters are shown
in Table 1.

The operating frequency is set to f0 = 𝜔0∕2𝜋 = 400 Hz. As such, the optimization procedure is performed to increase the frequency
range free of resonance around it.

3.1. Preliminary results

As stated in Section 2.2, to apply the connectivity constraint, an input and an output surfaces must be defined. The proposed
ones are shown in Fig. 2, corresponding to an inflow on the left extremity and an outflow on the right one.

With the previously defined parameters, the optimization procedure is performed. After 40 iterations, the stop criteria from
Algorithm 1 are met, yielding the topology shown in Fig. 3.

An inspection of this topology indicates two main regions where the connectivity constraint operates, both are circled in Fig. 3.
The two regions have a width of roughly 3.7 mm, which is around the imposed minimum length Amin of 4 mm. For further
investigation, the activation parameter presented in Eq. (15) is plotted in Fig. 4.

The contrast between high and low values of the activation parameter illustrates the functionality of this process. The parameter
maintains the connectivity where necessary without compromising the rest of the domain.

To evaluate the performance of the obtained structure, the dynamic response to a sinusoidal 1 kN excitation is calculated and
shown in Fig. 5. Both the force and measurement points are placed vertically at the free end. The excitation frequency is sweeped
from 0 to 900 Hz.

The separation interval between the two natural frequencies around f0 is increased by 28%, passing from 611.3 Hz to 785.4 Hz.
Furthermore, the optimized structure is 60% lighter than the initial one.
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Fig. 4. Activation parameter on the final topology.

Fig. 5. Optimal topology frequency response.

Fig. 6. Optimal topology without connectivity constraint.

3.2. Optimization with design domain constraints

The results obtained in the previous section show the effectiveness of the proposed procedures. However, we aim at validating the
proposed procedures experimentally. To realize the experiments under the same conditions, the displacements should be measured
along the same external surface. Consequently, an exterior frame of 2 mm thickness is defined, and the optimization procedures
should concern only the inner volume.

Additionally, a manufacturing constraint of a minimum thickness of 1.5 mm is considered. This is implemented by changing the
sensitivity filter parameter rmin to 1.5 mm. All other parameters are kept unchanged from the preliminary result.

Initially, the topology optimization procedure is performed without the connectivity procedure. Fig. 6 shows the optimized
topology.

This topology is not a feasible solution. This structure would be both challenging to manufacture and could also present structural
problems during experimentation.

This indicates that, despite the imposed fixed 2 mm layer, the connectivity procedure is necessary to obtain a proper solution.
The input surface of the connectivity procedure is maintained as the left end, however, due to the fixed layer constraint, the output
one is changed to the entire right extremity. The minimum connectivity width Amin is also changed to 1.5 mm. Fig. 7 presents the
obtained optimized structure.

Much like the preliminary analysis, the connectivity coefficient of each element is calculated and shown in Fig. 8.
While the values of the coefficient are not as high as those previously noted, they still pose an important effect on the procedure.

The three most significant regions are shown in Fig. 8. A consequence of this procedure is that, although not strictly necessary to
maintain connectivity in this case, it guarantees the minimum thickness required by the design constraints.

The evolution of the two first natural frequencies is shown in Fig. 9.
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Fig. 7. Optimal topology with design constraints.

Fig. 8. Activation parameter on the final topology with design constraints.

Fig. 9. Evolution of the first two natural frequencies with intermediary topologies.

It is observed that the first natural frequency varies little, while the second one changes more. From the beginning, the
connectivity procedure maintains the connection near the base of the topology. Around iteration 25, a large decrease on the second
natural frequency is observed due to the removal of internal bars. However, the procedure manages to increase it again by reinforcing
other regions of the topology.

The natural frequency separation interval is visualized in Fig. 10.

The separation interval changes from 610 Hz to 703 Hz, totaling a 15% increase. This topology presents a satisfactory trade-off
between design constraints and performance. Therefore, this result is chosen to proceed to the following analyses.

4. Three dimensional model

The three dimensional models are generated by extruding the two dimensional structures along the 𝑍 axis by a thickness of 𝑡 =
20 mm. It is worth mentioning that this thickness was the suitable one following several simulations with different thicknesses.

Topology optimization procedures are applied during the preliminary design stage of an engineering project. Thus, the optimized
topologies obtained from it are still subjected to alterations that aim at specific goals, such as guaranteeing manufacturability.
Usually, smoothing techniques are employed to this end, enlarging or removing small features to ensure that the desired
manufacturing process can produce it. In this work, two changes are implemented. First, sharp edges are smoothed, and internal
bars are adjusted to guarantee a minimum thickness of 1.5 mm, ensuring the manufacturability of the specimens. Additionally, a
rectangular base is added at the fixed end as an extension to the clamping device.

The Ansys® Workbench 17.0 software is employed to simulate the system and to generate the appropriate STL files for the 3D
printer. The resulting model for the optimized structure is shown in Fig. 11.

A model for the initial structure is generated via a similar procedure. The FRFs of both structures are compared in Fig. 12.
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Fig. 10. Frequency response of optimal topology with design constraints.

Fig. 11. Three-dimensional model of the optimized structure. A and B represent the points of force application and displacement measurement, respectively.

Fig. 12. Simulated FRFs from 3D initial and optimized structures.

Comparing the response of the three dimensional optimized structure to its two dimensional model counterpart, no significant

difference is seen for the first resonance, around 104.5 Hz. The two resonances at 789.2 Hz and 850.2 Hz are also seen on the two

dimensional model, although their values change slightly. Moreover, two new peaks are observed at 551.1 Hz and 716 Hz.
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Fig. 13. Mode shape for the simulated model.

To study these new peaks, the eigenvalues and eigenvectors of the optimized topology are calculated. The mode shapes are
shown in Fig. 13, along with their corresponding natural frequencies.

Modes 1, 5 and 6 are those that were optimized by the two dimensional topology optimization procedure and that were seen in
both FRFs. Modes 2, 3 and 4, on the other hand, are the modes exclusive to the three dimensional analysis. Modes 2 and 4 correspond
to the first and second bending modes in the 𝑋–𝑍 plane and Mode 3 is the first torsional mode. During the experimental analysis,
as long as the force is as centered and as aligned to the 𝑍 direction as possible, these modes will be only slightly excited, so they
are expected to exert little influence.

Having obtained a topology that satisfies the desired criteria, the experimental analysis can begin.

5. Experimental analysis

The experimental conditions and procedures will be presented first, then we will discuss the results obtained.

5.1. Experimental procedure

To manufacture the samples, a Lulzbot® Taz 6 printer was used. The specimens were built using a layer resolution of 0.1 mm,
the printing direction was set parallel to the length of the structures (𝑋 axis), thereby the mechanical properties would be as close
to the nominal ones as possible in this direction. The two manufactured structures are shown in Fig. 14.

The structures were clamped at one end and excited by using an electromagnetic shaker 40 mm from this clamped edge (Fig. 15).
A force transducer placed between the push-rod and the structure enabled the measurement of the applied force. Decoupling the
effects of the clamping support and the shaker from the dynamic behavior of the structure was a hard operation due to the small
dimensions and mass of the samples. The shaker was suspended by elastic links, supervising that its influence would not affect the
studied frequency range.

The laser vibrometer was set to sweep through several points on the structure surface to measure their velocity. It was placed 1.5
m from the surface of the sample, and its lens was aligned at 50 mm from the clamped end. White noise signal from 0 to 2000 Hz
was used. It covered the studied frequency range and enabled easy and rapid measurements.

The measurement points were chosen in a distribution with a 13 × 5 grid along the surface of the structure (Fig. 16). The
vibrometer was commanded and controlled via a software provided by the manufacturer. The sampling frequency was 2.5 kHz.
The velocities and the force were measured and processed through 10 repetitions for each assessed point. The final responses were
obtained by averaging each measurement. The list of equipment is shown in Table 2.

A general view of the setup and the equipment used is shown in Fig. 16.
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Fig. 14. Initial (a) and optimized (b) structures.

Fig. 15. Representation of the experimental setup.

Table 2
List of equipment.

Equipment Model

Laser Doppler vibrometer Polytec PSV-400
Force shaker TIRA Vibration Exciter S 50018
Power amplifier TIRA Power Amplifier BAA 60
Force transducer Bruel & Kjaer Type 8200
Signal conditioner Nexus Charge Conditioning Amplifier 2692-A
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Fig. 16. General view of the experimental setup.

Fig. 17. Comparison between experimental and simulated FRFs, optimized structure.

5.2. Results and analysis

The post-treatment of the measured responses and the excitation enabled the representation of the FRFs, identifying the
resonances and the corresponding mode shapes. The comparison between simulation and experimental FRFs is shown in Fig. 17.

For low frequency, due to the flexibility of the test rig and the shaker flexible suspensions, several peaks appeared. However,
those suspension modes were low and were outside the studied frequency range.

The experimental response had a more complex dynamic behavior and several modes that had not been observed in the numerical
simulations appeared. Those modes were due to the environment of the experiment. Numerical and measured resonance frequencies,
for the considered frequency range, were similar as shown in Table 3.

The mode shapes of the identified resonances are shown in Fig. 18.

Comparing the experimental mode shapes with the numerical ones (Fig. 13), shows a good agreement. The modes in the
orthogonal plan cannot be clearly seen in the experimentation. This is due to the capacity of the vibrometer. The fact that the
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Table 3
First two bending frequencies (Hz).

Numerical
simulation

Experiment Difference

104.5 107.0 2.4%
789.2 790.0 0.1%

Table 4
First two bending frequencies (Hz).

Resonance 1 Resonance 2 Difference

Initial structure 110.2 660.2 550.0
Optimized structure 107.0 790.0 683.0

Frequency separation interval increase 133.0

Fig. 18. Mode shape of the studied frequencies.

Fig. 19. FRFs of the optimized and the initial structures.

predicted behavior of the optimized structure matches correctly the measured one is important for the development of further

studies on more complex structures.

Finally, the measured responses from both initial and optimized structures were compared experimentally, as illustrated in

Fig. 19.

The first two bending frequencies of the initial and optimized structures are shown in Table 4.
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The method produced a clear improvement of the dynamic response at the desired frequency range, as the frequency separation
interval increased by 24%. Additionally, the optimized structure has a mass 40% lower than the initial one, decreasing from 108.0
g to 64.8 g.

The developed methodology enabled an increase of the frequency separation interval. The vibration levels, for almost all
resonances in the studied frequency range decreased. Furthermore, the optimized topology had the desired behavior with a lower
mass, which is of interest from a cost and an environmental points of view.

6. Conclusion

In this work, the design of an optimized elongated structure was performed. The optimization was done via the BESO method and
was based on natural frequency separation criterion. The multi-domain topology optimization technique was employed to consider
certain restrictions due to the manufacturing constraints. Also, a connectivity procedure based on the energy balance of an auxiliary
problem was proposed to avoid non-physical solutions and to maintain certain geometric constraints.

The topology optimization analyses were performed on 2D structure. A 3D model was then generated by extruding the optimized
2D structures, considering several constraints in order to obtain a feasible topology for the experimental analysis. Numerical
simulations were performed to compare the dynamic behavior of the initial and the optimized structure. An increase of 24% on
the separation interval was obtained. Additional modes were observed in the analyzed frequency range for the optimized structure.
This was expected when passing from 2D to 3D analysis.

Several prototypes were manufactured for the experimental analysis. The same trends were observed, few differences were noted
due to the boundary conditions but they did not modify the obtained conclusions. The structure was excited by an electromagnetic
shaker placed near the clamped end. In order to obtain the modal shapes for the studied frequency range, the displacements were
measured using a laser Doppler vibrometer, along a grid of 5 × 13 points uniformly distributed.

Then, numerical predictions and experimental results were compared. The model describes the studied phenomena satisfactorily.
The experimental response had a more complex dynamic behavior and several modes that were not observed in the numerical
simulations appeared. Those modes were due to the environment of the experiment that could not be considered in the numerical
simulations. This step was important in order to validate the proposed optimization strategy for further studies.

Finally, the measured dynamic responses of the initial and optimized structures were compared, and the frequency separation
range increased by 133 Hz. Also, the vibration levels for almost all the observed modes decreased. The mass of the system was
reduced by 40%.

The optimization algorithm can be readily applied for more complex structures. Further investigations must be conducted for
more complete design problems. For example, techniques to couple dynamic and static requirements, such as stress constraints.
Moreover, additional studies must be made on the BESO method and on the connectivity procedure to improve their robustness at
producing feasible final topologies.
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