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SUSTAINABILITY OR SOCIETAL COLLAPSE, DYNAMICS AND
BIFURCATIONS OF THE HANDY MODEL.

ARNAUD TONNELIER∗

Abstract. The overexploitation of natural resources by our industrial society questions its long-
term sustainability. Recently, a simple nature-society interrelation model, called the HANDY model,
has been proposed by Montesharrei et al (2014) to address this concern with a special emphasis on
the role of the stratification of the society. In this paper we analyse the dynamics of this model and
we explore the influence of two parameters: the nature depletion rate and the inequality factor. We
characterize the asymptotic states of the system through a bifurcation analysis and we derive several
quantitative predictions. We show that some collapses are irreversible and, depending on the wealth
production factor, bistability regimes can be obtained. In particular, a sustainable equilibrium can
coexist with cycles of prosperity and collapse. We discuss the possible policies to prevent undesirable
fates.
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1. Introduction. There is a serious concern about the impact of human activ-
ities on the environment and several indicators show an increase of natural resources
scarcity questioning the long-term viability of our society. The interplay between
population and natural resources has been identified as a key feature to understand
how a society can reach an equilibrium with a possible overshoot. Agricultural and
industrial activities exploit natural resources at a rate faster than its regeneration ca-
pacity. In turn, the decrease of natural resources results in a deterioration of human
welfare and standards of living with a risk of society instability. This raises the ques-
tion of a possible societal collapse, a phenomenon that has been observed in numerous
civilizations throughout history [4, 11].
Detailed human-nature models have been developed to describe how a society enters
a route to collapse but their complexity often prevents any in-depth mathematical
analysis [8]. Simplified models based on predator-prey type dynamics provide a sim-
ple framework to understand the dynamics of human societies [3]. However, unlike
animals, the human population does not interact directly with its environment and
the pressure on natural resources is exerted via industrial production and agricultural
exploitation. These outputs can be aggregated into a simple variable, the so-called
accumulated surplus or Wealth. The wealth is not equally distributed in the popula-
tion and a small portion of the population, called the Elite, controls the distribution
whereas the mass of the population is only allocated a portion of the accumulated
surplus. These features have been implemented in the HANDY (Human And Nature
DYnamics) model recently proposed by Motesharrei et al. (2014). Since then the
HANDY model has attracted great attention and has been largely discussed in differ-
ent scientific areas.
The HANDY model aims to elucidate the role of the economic stratification on the
possible societal collapse. The population is divided into two classes, the Common-
ers, or workers, who collect (harvest, hunt) and transform the natural resources and
the dominant class, the Elites, who control the wealth distribution. The HANDY
system is a minimal class-stratification model that can reproduce different historical
observations such as societal collapse, smooth transition to a sustainable equilibrium
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or cycles of rise-and-collapse. Numerical simulations [9] reveal two types of collapse
that have been named type-L collapse and type-N collapse that correspond to a labor
exhaustion with a nature recovering and to a complete exhaustion (population and
nature), respectively. These scenario provide a plausible explanation of civilisation
collapses with the possible paths that the society could have taken. Collapse is used
here as the extreme case, the full collapse, where all the population dies out. A
broader description retains a significant decrease of the population size as it is the
case when society experiences an overshoot.
The goal of this work is to investigate the dynamics of the HANDY model and to
study the different scenarios proposed by Motesharrei et al [9] as illustrated in Fig.
1.1. A special attention is given to the study of the long-term dynamics of the model.
We aim to derive mathematical results to support and to understand the numeri-
cal simulations already presented on the possible asymptotic states. We focus on
the resource exploitation and the economic stratification in order to understand how
the human-environment interaction can lead to a population crash. Historical obser-
vations and numerical simulations show that very similar environments can lead to
radically different society outcomes motivating a bifurcation analysis of the model.
We combine qualitative exploration of the dynamics with quantitative results that
will be discussed in regards to the typical case of Easter island. Overall, our study
shows how an unequal wealth distribution leads to collapse and how the ressource
exploitation influences the long-term development of a society.
The paper is organized as follows. In section 2 we present the model in details with a
rescaling on the original parameters and variables. Preliminary results on dynamics
and bifurcations are presented. The next sections are devoted to the different scenar-
ios that describe different societies. In section 5 we summarize our results and discuss
their possible implications.

2. The HANDY model. The HANDY model describes the interaction be-
tween the human population and the natural resources. The formal structure of the
model originates from the Lotka-Volterra predator-prey system [7, 13] that has been
reformulated by Brander and Taylor (1998) to model the Easter Island’s population
dynamics. The HANDY model includes two additional features : an economic strat-
ification of the population and a wealth production process. The HANDY model is a
four dimensional dynamical system that gives the evolution of the poor and rich pop-
ulations (Commoners and Elites), noted xc and xe, respectively, the natural resources
or Nature, noted y, and the accumulated Wealth, w. The model equations are the
following: 

dxc
dt = (βc − f(w, xc, xe))xc,
dxe
dt = (βe − f(κw, xc, xe))xe,
dy
dt = γy(λ− y)− δyxc,
dw
dt = δyxc − g(w, xc, xe)(xc + κxe).

(2.1)

The birth rates of the two populations, βc and βe, are assumed to be constant but
the death rates depend on wealth and are described with the function:

f(w, xc, xe) = αm + (αM − αm)

(
1− w

wth

)
h(wth − w),

where h is the Heavside step function

h(x) =

{
1, if x > 0,
0, if x ≤ 0.
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Fig. 1.1. Population evolution of the HANDY model. The total population (in blue) is composed
of two classes: Commoner (fulled black line) and Elite (dotted line). We assume that at a given time
(that is arbitrarily choosen at t = 800 years) the distribution of wealth changes within the population.
When t < 800, the wealth is equally distributed between the two classes (equitable society) and after
a period of prosperity a sustainable equilibrium is reached (shaded grey region). At time t = 800,
indicated by a red vertical line, the society becomes unequal and a full collapse is observed. Variables
and parameters are taken from the original HANDY model [9] where the inequality factor is switched
at time t = 800 from 1 to 2.

Alternatively, one can use the sign function such that h(x) = (1+sgn(x))/2. Recently,
a smooth version of the model has been proposed and studied [10]. The wealth
parameter wth is a threshold value below which famine and deprivation start and is
defined by

wth = ρ(xc + κxe),

where ρ > 0 stands for a consumption per capita. The two constant parameters αm
and αM (αM > αm > 0) are the normal and the famine death rates, respectively.
The per capita death rates are constant and equal when the accumulated wealth is
sufficiently high, i.e. greater than a threshold value that is different for the two pop-
ulations (weighted by κ ≥ 1 for the Elite)). When the wealth is not sufficient to
guarantee the well-being of the population (food is scarce, i.e. w < wth), the death
rates decrease proportionally to w/wth. Note that the death rate of the poor popula-
tion is always greater than the one of the wealthy part of the society.
The natural resources are aggregated into a single variable, the Nature. The regen-
eration of the natural reources is described by the logistic function with a saturation
at λ > 0. Parameter γ > 0 is the regeneration factor. The depletion term δyxc is
proportional to both Nature and the number of workers (Commoners) and is modu-
lated by a rate of depletion per worker noted δ > 0. Elites are not involved in the
extraction and valorisation of resources.
The gathering and transformation of natural resources are done by the workers and
participate to the wealth production. Depletion of natural resources leads to a pos-
itive flux of accumulated wealth. The accumulated wealth decreases because of the
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Table 2.1
Description of the parameters of the HANDY model with their values.

Parameter Description Estimate
αm Minimum death rate 0.01
αM Maximum death rate 0.07
βc Commoner birth rate 0.03
βe Elite birth rate 0.03
s Subsistence salary per capita 0.0005
ρ Threshold wealth per capita 0.005
γ Regeneration rate of nature 0.01
λ Nature carrying capacity 100

consumption of the population and each Elite always takes κ times as much wealth
as a Commoner. The rate of consumption is weighted by g(w) given by

g(w, xc, xe) = s+ s

(
w

wth
− 1

)
h(wth − w),

where s > 0 is a subsistence salary per capita. The consumption rate has two distinct
regimes: it is constant when the wealth is sufficiently high and is reduced proportion-
ally to w/wth when the wealth becomes too small.
The dimensionless parameter κ ≥ 1 is a weight parameter that measures the degree
of inequality of the society and determines the balance of class power between elites
and masses. This factor takes part in the consumption of accumulated wealth for
both populations and reduces the death rate of the Elite population in comparison to
Commoner.

2.1. Rescaling and Model parameters. Let us first discuss a possible gener-
alization of the HANDY model where the Nature dynamics is given by

dy

dt
= γy(λ− y)− µyxc,

with µ > 0, the nature depletion factor, that can be different from the wealth pro-
duction factor δ (in the Wealth equation). The following change of variables

Xc =
µ

δ
xc, Xe =

µ

δ
xe, W =

µ

δ
w

allows to recover model (2.2). The use of a depletion factor different from the pro-
duction factor does not qualitatively affect the dynamics. However if we increase,
respectively decrease, the depletion factor of the HANDY model (i.e. we have µ > δ,
respectively µ < δ), the population and the produced wealth are decreased, respec-
tively increased, in comparison to the original HANDY model (2.2). As an alternative
to the resource degradation factor that appears in the Nature dynamics, the wealth
production factor can be used to study the HANDY dynamic. A rescaling of variable
could be used to eliminate δ in one equation but we have chosen not do this so that
the role of δ could be more easily interpreted.
In what follows, we use the parameter values that were proposed in the original paper
[9] and are recalled in table 2.1. A change of variables (see Appendix A) allows to

4



consider the equivalent HANDY model
dxc
dt =

(
1 + 3

(
w

xc+xe
− 1
)
h(xc + xe − w)

)
xc,

dxe
dt =

(
1 + 3

(
κw

xc+xe
− 1
)
h(xc + xe − κw)

)
xe,

dy
dt = 0.5y(100− y)− δyxc,
dw
dt = δyxc − 5(xc + xe) + 5(xc + xe − w)h(xc + xe − w)

(2.2)

where parameters κ and δ are varied to study different scenarios while other pa-
rameters are fixed. Setting parameters to numerical values simplifies the analytical
treatment of the model and allows a direct comparison with the analysis made by Mon-
tesharei et al [9] . Numerical simulations (not shown) suggest that the two parameters
(κ.δ) capture the main aspects of the dynamics while other parameters mainly act on
the respective time scales of the variables. However a comprehensive analysis of the
model remains to be done.
The HANDY model has been used to understand the collapse of multiple types of
pre-industrial societies and has been proposed to explain Polynesian, Mayan or Greek
population crash. It can provide a guide for present society that faces to resource
constraints and population growth. The HANDY model is consistent with several
historical records but its quantitative predictions were mainly applied to the histori-
cal case of Easter Island. We will discuss the possible consequences of our results in
this case. In our rescaled version of the model (2.2), the time is expressed in units of
standard variation rate ((βc − αm)−1 = 50) so that one unit of time in the rescaled
model (2.2) corresponds to 50 years. The Commoner population, xc, and the equiva-
lent Elite population, κxe, are recovered multiplying by a factor ρ−1 = 200 the values
of the corresponding variables in the rescaled model. The original δ parameter is
recovered multiplying by a factor 10−4 . Without loss of generality we set λ = 100
(using the change of parameters δ̃ = λδ

ρ(β−αm) and γ̃ = λγ). As previously mentioned,

it is also possible to set δ = 1 in the Nature equation. We have decided to take the na-
ture carrying capacity at 100 and to keep the depletion factor in the Nature equation
mainly for numerical reasons and to facilitate the interpretation of the results. The
nature variable is not rescaled and a direct comparison to the simulations previously
published can be done.
The vector field is continuous but its derivative has a jump discontinuity on the two
planes w = xc + xe and κw = xc + xe. Both switching planes are crossed transver-
sally and they do not generate sliding solutions [1]. The accuracy of the numerical
scheme is slightly affected at the crossing point but the global order of the scheme
is preserved (simulations not shown). In this paper, simulations are done with an
adaptative fourth order Runge-Kutta scheme.

2.2. Overview of the model dynamics and bifurcations. We examine the
dynamics of the HANDY model using κ and δ as parameters. Changing parameter
κ allows to explore three distinct types of society. The egalitarian case where we
formally take κ = 0 in the equations describes a society without Elites (or equivalently
xe(0) = 0). When κ = 1, we obtain the equitable society that is composed of workers
and non-workers and the case κ > 1 models the unequal society (with Elites and
Commoners). Within each type of society, we study the influence on the dynamics
of the parameter δ. The goal is to elucidate the long-term dynamics of the model.
For this purpose, a special attention is given to the properties of the two trivial fixed
points, the nature state Pn = (0, 0, 100, w) and the desert state Pd = (0, 0, 0, w) (the
value of w is not relevant and will be discussed hereafter). The convergence to Pn
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Fig. 2.1. Bifurcation diagram that shows the fixed points or periodic orbits (maxima and
minima) of the population as a function of δ. Dotted lines indicate unstable states. The dark curve
is for the fixed point, the green curve indicates small amplitude limit cycles and the blue curve is
for large amplitude limit cycles. The points, labeled H, Flc1 and Flc2 indicate bifurcation points.
The carrying capacity of the system is reached at (δ∗, x∗). The unstable branches of the limit cycle
have been computed using AUTO (with its interface using XPP [5] ).

has been reported as a type-L collapse and is related to the disappearance of Labor
whereas the case y = 0 is categorized as a type-N collapse with the exhaustion of
nature. The stability of the corresponding fixed point indicates if the collapse is
reversible or not.
Our investigations reveal that a rich dynamic can be obtained for the Egalitarian
society whereas the Unequal society shows a stereotyped long term evolution. The
different scenarios are examined in separate sections and the structure of the paper
reflects this asymmetry with a great attention given to the first scenario (where xe =
0). The solutions of the Egalitarian system are studied in terms of bifurcations using
the depletion factor δ as a bifurcation parameter. Results overview on the dynamics of
the model s provided by the co-dimension one bifurcation diagram shown in Fig. 2.1.
Let us briefly discuss the bifurcations obtained. A transcritical bifurcation occurs at
δ = δTr where the two fixed points, the nature state Pn and the sustainable state Ps,
interchange their stability. For δ < δTr the fixed point Ps does not exists (condition
xs ≥ 0).
At δ = δH the sustainable equilibrium loses its stability through a supercritical Hopf
bifurcation. There exists stable limit cycle for δ > δH that disappears via a fold
of limit cycles at δFlc2. Another stable limit cycle associated with large amplitude
oscillations occurs at a lower value of δ, noted δFlc1, associated with a fold of limit
cycles.
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3. The Egalitarian society, κ = 0, xe = 0. In the egalitarian society there is
no Elites, xe is set to 0, and the HANDY model becomes:

dx
dt = x+ 3(w − x)h(x− w),
dy
dt = 0.5y(100− y)− δyx,
dw
dt = δyx− 5x+ 5(x− w)h(x− w)

(3.1)

where x = xc is the total population that is composed of workers only.

3.1. Fixed point and stability. The egalitarian society has two trivial steady
states, Pd = (0, 0, 0) and Pn = (0, 100, 0), that exist for every values of the depletion
factor δ. The state Pd is the desert state where both population and nature vanish
whereas in the nature state Pn the natural resources are fully restored to its maximum
value.
Another fixed point, noted Ps = (xs, ys, ws) with xs 6= 0, reported as the sustainable
equilibrium, may exist in the phase space region x > w. We have 3ws = 2xs,

0.5(100− ys) = δxs,
5ws = δxsys,

that defines the following one-parameter family of fixed points xs = 5
δ

(
10− 1

3δ

)
,

ys = 10
3δ ,

ws = 10
3δ

(
10− 1

3δ

)
,

The Wealth is directly related to the population (ws = 2/3xs) and, as expected, the
Nature steady state strictly decreases as δ increases. Fixed points exist only for xs ≥ 0
that gives the necessary and sufficient condition of existence

δ ≥ δTr =
1

30
.(3.2)

Expression (3.2) shows that a sustainable equilibrium is possible only if the depletion
rate is sufficiently high. This condition indicates the minimal resource exploitation
that can guarantee a subsistence for the population. The steady state xs is termed
the carrying capacity for the population and represents the population level that the
resources can sustain over the long term. As δ increases, the population xs grows and
a maximum is reached when the so called optimal value of δ, noted δ∗, is reached. As
δ further increases, the population declines and collapses. We have

δ∗ =
1

15
,(3.3)

and the maximum carrying capacity is thus given by

x∗s = 375,

that gives 75000 units of people in the original (not rescaled) variables of the HANDY
model. The carrying capacity is maximized when ys = 50 that is the point of nature’s
maximal regeneration rate. A generalization of the two expressions (3.2) and (3.3)
for arbitrary model parameters is proposed in appendix B.
The two fixed point Pd and Pn are related to the collapse of the society whereas Pe
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corresponds to a sustainable equilibrium. The stability indicates if these states are
reversible or not.
Near the desert state Pd, the Nature dynamics is described by the linearized equation
ẏ = 50y showing that the state is unstable so that the nature always regenerates.
Therefore the type-N collapse in the HANDY model is a reversible collapse and after
a while, the nature starts to recover. The analysis of the system at small y values (see
Appendix C) reveals that the wealth decreases first and is followed by a population
decline. When the population is sufficiently small, the nature regenerates.

3.1.1. Stability of the nature state. The fixed point Pn is singular because
it lies on the discontinuity plane x = w. Its stability is determined by the piecewise
linear system 

dx
dt = x+ 3(w − x)h(x− w),
dy
dt = −50(y − 100)− 100δx,
dw
dt = 100δx− 5x+ 5(x− w)h(x− w).

(3.4)

Let us focus on the dynamic in the (x,w) plane that is given by{
dx
dt = 3w − 2x,
dw
dt = −5w + 100δx,

(3.5)

for x ≥ w, and {
dx
dt = x,
dw
dt = −5x+ 100δx,

(3.6)

otherwise. We distinguish between three different configurations that are given by
the respective location of the two nullclines w = 2/3x, w = 20δx, and the threshold
line w = x. The geometrical analysis is presented in Appendix C. The asymptotic
stability of the nature state holds for

δ ≤ 1

30
.(3.7)

From the eigenvectors analysis, we find the following asymptotic relations between
the population and the Wealth:

w ∼ −3 +
√

9 + 1200δ

6
x,(3.8)

when δ ≤ 0.06, and

w ∼ (−5 + 100δ)x,(3.9)

otherwise, that shows the dependence between the depletion factor, the Wealth and
the population at small y values.

3.1.2. Stability of the sustainable equilibrium. The Jacobian matrix of the
HANDY system near Ps is given by −2 0 3

− 10
3 −µ 0

10
3 50− µ −5
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where

µ =
5

3δ
.

The associated characteristic polynomial is

P (x) = x3 + (µ+ 7)x2 + 7µx− 10µ+ 500.(3.10)

Condition (3.2) implies µ ≤ 50. The polynomial coefficients are positive and from the
Routh-Hurwitz criterion (the polynomial a0 + a1x+ a2x

2 + a3x
3 is stable if and only

if a1a2 > a0a3) the characteristic polynomial (3.10) is stable if and only if

7µ(µ+ 7) > 500− 10µ,

that gives

7µ2 + 59µ− 500 > 0.(3.11)

Condition (3.11) reads µ > µ+ where µ+ is the largest root of the polynomial in the
lefthand side of (3.11). We obtain the following necessary and sufficient condition

δ < δH :=
70

3
√

17481− 177
≈ 0.32(3.12)

for Ps to be asymptotically stable. In order to guarantee the existence of the sus-
tainable state, it is necessary to have a depletion factor sufficiently large, above the
critical value δTr. However to ensure the long-term stability of the state, this factor
has to be lower than δH and therefore there exists a range of depletion values for
which the system convergences towards a sustainable equilibrium. This interval has
an amplitude of order ten, i.e. we have δH ≈ 10δTr.
Beyond stability, an important feature of the qualitative behavior of trajectories is the
existence of overshoots in the population dynamic. Overshoots generate a maximum
in the population and is followed by a decay to the resting value that is interpreted as
a partial collapse of the society. To determine under which conditions the approach
towards the equilibrium corresponds to a soft landing (monotone convergence) rather
than cyclical overshootings (oscillatory convergence), we examine the roots of the
characteristic polynomial (3.10). This is done in appendix D and we find that an
oscillatory approach to the sustainable equilibrium can occur for δ > 0.07. If the
damping is too important the oscillatory part of the trajectory is not observed and
the adjustement path is almost monotonic. Numerical simulations reveal that an
overdamped population trajectory is obtained for δ < 0.078 and several overshoots
are observed for δ > 0.12.

3.2. Limit cycle - Qualitative analysis. The HANDY model exhibits sus-
tained periodic oscillations with successive cycles of population growth and decline.
This is shown in Fig. 3.1 where rescaled variables are plotted. The qualitative be-
havior of these solutions can be described as follow. Exploitation of natural resources
by the population improves wealth per capita that in turn participates to population
growth. As the population increases, stress on the nature becomes important and
wealth shrinks due to nature scarcity. When the wealth is low, the population starts
to decline that subsequently decreases the pressure on nature. At low population
level, natural resources can regenerate and the cycling activity restarts. The different
phases of the cycle are the following:
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Fig. 3.1. The different phases (A-D) of the cyclic activity of the egalitarian HANDY model.
Variables are scaled to unity so that only the variation of the variables over time is meaningful.
Simulation is done for δ = 0.6 and for an initial condition (x0, y0, w0) = (1, 100, 0) at time t = 0.
The transitory regime is not shown. Note that phase D is almost pointwise.

• Phase A: Prosperity. This phase is characterized by a population growth, a
wealth increase, and a stress on nature. Let us consider that the system is near
the nature state Pn = (1, 100, 0). This situation represents the settlement of a
small population in a preserved environment. From the analysis done near the
nature state for δ > 0.06 , the system is locally attracted by the hyperplane
(3.8) and there exists a so called hitting time at which the system reaches
the switching plane w = x and subsequently we have w > x. The Wealth
dynamic is approximated by ẇ = (−5 + 100δ)x and the population evolution
is described by ẋ = x so that both population and accumulated Wealth have
an exponential growth (we have −5 + 100δ > 1).
Population growth generates a stress on the nature. The decline of natural
resources is described by ẏ = y/2(100 − y − δx). For y large enough and
x small, the Nature variable evolves much faster than the Population and
Wealth. Considering y as a fast variable, the instantaneous adjustment of
Nature to the critical manifold gives y(t) = 100 − 2δx(t). We have ẇ =
x(−5 + δy) and thus the accumulated Wealth is increasing until the Nature
reaches the critical value y = 5/δ. At this time the system enters a new mode.

• Phase B: Population peak and nature exhaustion. This phase shows a decline
in accumulated wealth, a population peak and a nature exhaustion. When
the natural resources become lower than 5/δ, the accumulated wealth starts
to decrease whereas the population is still increasing and thus there exists
a hitting time at which the hyperplane w = x is reached (and subsequently
x(t) > w(t)). Right after the hyperplane crossing, the population continues
to grow (we have ẋ = 3w−2x ) until the population nullcline is crossed (when
x = 3/2w) and the population peak is reached. The natural resources are
still declining and are almost totally consumed at the end of this period.

• Phase C: Full type-N collapse. The resource scarcity does not allow to restore
a sufficient level of wealth and population is declining that in turn affects the
wealth production. Thus, both population and wealth are decreasing and the
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system approaches the desert state Pd = (0, 0, 0), with x(t) > w(t).
• Phase D: Fast Nature regeneration. Near the desert state, the Nature dynam-

ics is approximated by ẏ = 50y that implies a fast nature regeneration. The
second order term in the Nature equation can no longer be neglected and the
Nature dynamics is governed by the logistic growth ẏ = y/2(100 − y). The
Nature dynamics can be approximated by an instantaneous jump from y ∼ 0
to y ∼ 100; the system switches from the desert state to the nature state and
the cycle can restart.

The trajectory during the oscillations successively lies on the two parts of the
Nature nullcline, one part is associated with a fast adjustment of the Nature and is
described by the surface y = 100−2δx, while the other is related to the slow variation
of the Nature near the branch y = 0. Both surfaces are unstable, the former because
of the positive interactions between wealth and population, and the latter due to the
fast nature regeneration.
Critical questions that are not addressed by the qualitative analysis are: what are the
characteristic values of the system variables in each mode?, what is the period of the
oscillations?, what are the time durations of the different phases?. To tackle these
issues, a quantitative analysis is presented in the next section.

3.3. Sustained oscillations - Analytical results. The quantitative analysis
of the model exploits the piecewise linear structure of the (x,w) vector field and
several approximations of the nonlinear Nature dynamics.
Let us consider an initial condition (x0, 100, w0) in a region of the state space where
x0 � 1 and w0 � 1. The quasi static approximation of the Nature dynamics gives

y(t) = 100− 2δx(t)(3.13)

that is valid as long as y is large enough. If we neglect the initiation period where
x(t) > w(t), i.e. we assume that the system quickly reaches the state space region
x < w (see Appendix C), the population dynamics is thus given by

dx

dt
= x,(3.14)

and the accumulated Wealth is

dw

dt
= −5x+ δxy = x(−5 + 100δ − 2δ2x)

that gives, using (3.14),

w(t) = 100δx(t)− 5x(t)− δ2x(t)2,(3.15)

where we neglect the terms in x0 and w0. In the regime where natural resources are
available, the population growth exponentially and the time evolution of the accumu-
lated wealth can be expressed as the transformation of the nature capacity minus two
terms: one reflecting the nature depletion and the other representing the consumption
of the population.
From (3.15), the accumulated Wealth reaches a maximum for x = 50/δ given by

wmax = 2500− 250

δ
,(3.16)

where terms in 1/δ2 have been neglected. After peak wealth, the nature is almost
totally transformed and the production term can be neglected in the Wealth dynamics
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so that the decrease of wealth is governed by ẇ = −5x. If we shift the time so that
t = 0 at the wealth peak, the leading order approximation of the Wealth is given by

w(t) = 2500− 5x(t)(3.17)

that shows a decline of the accumulated wealth proportional to population size. The
population continues to grow according to (3.14) until the threshold plane w = x is
reached. From (3.17), the crossing point is given by

w = x =
1250

3
∼ 416.67.(3.18)

After this switching point, the accumulated wealth is not sufficient to ensure popula-
tion growth and population begins to experience famine. The time evolution of the
population is described by ẋ = 3w − 2x. If we take the switching point as the time
origin, the population and the accumulated Wealth are given by

x(t) =
1250

3

(
2e−2t − e−5t

)
, w(t) =

1250

3
e−5t,(3.19)

respectively. The population reaches a maximum given by

xmax = 500

(
4

5

) 2
3

∼ 430.89,(3.20)

and the corresponding Wealth value is

w =
1250

3

(
4

5

) 5
3

.(3.21)

In comparison with the values at the threshold point, there is only a small increase
of the population size (around 3%) whereas a wealth fall is observed (31%). It is
interesting to observe that the maximum reaches by the population in the sustainable
regime (the maximum carrying capacity) is 13% lower than the maximum reaches
during the cycling activity of the system. After population peak, both wealth and
population decay exponentially and we have w < x.
The different approximations are illustrated in Fig 3.2. In panel (a), we plot the
population trajectory that is used to compute the approximations of the Nature and
Wealth dynamics. The two insets show that the initiation period (x > w in phase
A) is very narrow and that the threshold crossing in phase B is very close to the
population peak. Numerically we have x = w ≈ 452.4 at the threshold point and
we have maxt(x(t)) = 467.9 that should be compared to the analytical results (3.18)
and (3.20), respectively. Panel (b) shows the Nature trajectory and its approximation
(3.13) in phase A, the two curves almost coincide. In panel (c), we plot the accu-
mulated Wealth and the three different approximations (3.15), (3.17) and (3.19) in
the phases A, B and C, respectively. The quasi static approximation (3.13) yields an
under-estimation of the Nature that implies an under-approximation of the wealth
production. The discrepancy is illustrated in Fig. 3.2 (c) with the inset near the peak
wealth where we have maxt(w(t)) = 2292 that has to be compared with wmax = 2143
given by (3.16) for δ = 0.7.
The time evolutions of both the population and the accumulated Wealth illustrate
the co-called Seneca effect: the decline is faster than the growth. The population

12



(a) (b)

x

t

A B C

-0.4

4 ×
-410

3
2
1

-0.8

t

y A B C

5 0

(c) (d)

A B C

t

w

0

B C

t

A

t

t

t

T

t

A

A

C

C

B

∼ ∼

t

Fig. 3.2. Trajectories of (a) the population, (b) the Nature and (c) the accumulated Wealth and
the corresponding approximations in the different phases of the oscillations. Fulled lines represent
the computed trajectories and the associated approximations (panels (b) and (c)) are shown in
dotted lines. In (a), the trajectory of the Wealth variable is also shown (red line) near the beginning
of the cycle and near the peak population (see the two insets). In panel (b), the Nature and its
approximation are almost indistinguishable (see the zoom in phase A). In phase B, a more accurate
approximation starting at y = 5/δ (dotted horizontal line) is plotted and can be viewed more precisely
in the lower inset. In (c), the Wealth trajectory and its approximation are shown in two distinct
zooms, one near the transitions from phase A to B and the other near the transition from B to
C. The dotted red line indicates the time at which the threshold w = x is crossed (in region B).
In (d), the normalized trajectories are presented with the different notations for the characteristic
times of the dynamics. In (a)-(c), simulations are done for δ = 0.7 and with an initial condition
(x0, y0, w0) = (1, 100, 0). In (d) we use δ = 0.5. The initial transient has been removed and the
origin of time (t = 0) is set at the point y = 5/δ when the nature is regenerating (that graphically
appears as an instantaneous jump from 0 to 100).

decreases twice as fast as it increases (compare (3.14) with (3.19) and a factor 5
is obtained for the accumulated Wealth (compare (3.15)) in phase A with the after
threshold dynamic in phase C (see (3.19)).
To describe more precisely the characteristic time scales of the dynamics (see Fig.3.2
(d) ), we have the following theorem:
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Theorem 3.1. The period of the oscillations is approximated by

T ∼ 45δ(3.22)

where the duration of the prosperity period (phase A) is given by

tA ∼
2T

3
,(3.23)

the duration of the population collapse (phase C) is

tC ∼
T

3
(3.24)

The asymptotic approximation of the inter-peak interval (phase B) is

tB ∼ ln δ + ln
25

3
+

1

3
ln

5

4
(3.25)

Proof. Let x0 be the value of x(t) at the beginning of the cycle (phase A) and let
t̃A be the time at which the system reaches the threshold point x = w. Using (3.14)
and (3.18), we have

x0e
t̃A =

1250

3
.(3.26)

Let us consider t̃C the time interval from the crossing point x = w (in phase B) to
the endpoint of the cycle, i.e. x(t̃C) = x0. From (3.19) we have

x0 =
2500

3
e−2t̃C(3.27)

where the term e−5t̃C has been neglected, i.e. we assume t̃C � 1. We thus have
t̃A = 2t̃C where the term ln 2 is assumed to be small comparing to t̃C . By definition,
the period of the cycle is T = t̃A + t̃C and we obtain

T = 3t̃C .(3.28)

The time t̃C corresponds to the duration of the after threshold dynamics, i.e. the
time interval where w < x, whereas tC is associated with the decaying phase of the
population. Therefore, the time interval t̃C − tC is the time to peak population when
the origin of time t = 0 is taken at the threshold point. Using (3.19) we solve dx

dt = 0
and we obtain

t̃C − tC =
1

3
(ln 5− ln 4) ∼ 0.07,(3.29)

showing that the peak population is reached just after crossing the threshold, i.e. the
population begins to decline shortly after the starvation point. Therefore, t̃C is an
approximation tC and using (3.28) we obtain (3.24).
Peak wealth is reached when y = 5/δ. Using (3.13) and (3.14), the time duration of
phase A is given by

x0e
tA =

−5 + 100δ

2δ2
.(3.30)
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Using (3.27), we find

etA =
3

50δ
e2t̃C(3.31)

where we assume δ � 0.05. We assumed that t̃C � 1 so we can ignore the terms
outside the exponentials in (3.31) and we find tA = 2t̃C . Using (3.28) we obtain
(3.23).
From (3.26) and (3.30) we have

et̃A−tA =
2500δ2

300δ − 15
∼ 25

3
δ(3.32)

By definition the time duration of the phase B is tB = t̃A− tA+ t̃C − tC . Using (3.29)
and (3.32), we find (3.25).
The estimation of the period T requires a more accurate approximation of the y
dynamics. Let us consider system at the time of peak wealth tA where the Nature
is given by y = 5

δ . For δ sufficiently large we have y � 50. Thus we consider the
following approximation of the Nature equation

dy

dt
= y(50− δx)(3.33)

For t ∈ [tA, t̃A], we have x(t) = x1e
t where x1 = 50

δ −
5

2δ2 . Integration of (3.33) gives

y(t) =
5

δ
e50(t−tA)+δx1(1−et−tA ).(3.34)

The corresponding approximation is plotted in Fig. 3.2 (b) (see the inset near the
transition from phase A to phase B). Using (3.32), we obtain the following approxi-
mation of the nature state at time t̃A

y(t̃A) = y1 ∼
5

δ
e−

1250
3 δ,(3.35)

where we keep only the terms of order one in δ in the exponential. Now consider the
dynamics of the Nature in the last time interval of the cycle. Using approximation
(3.33) and the population evolution (3.19), we find

y(t) = y1e
50t+ 1250δ

3 (e−2t−1)− 250δ
3 (e−5t−1),(3.36)

where t = 0 is set at time t = t̃A. Approximation of t̃C) is obtained when the nature
starts to regenerate and we fix this value at y(t̃C) = 5/δ (the exact value does not
affect the approximation since the constant terms are neglected in the asymptotic
expansion of t̃C .). Using (3.36) we find the leading order approximation

t̃C ∼ 15δ(3.37)

that gives (3.22) using (3.28).
The different approximations that have been used in the proof rely on the smallness
of constant parameters compared to δ (more precisely, 10δ � 1 is sufficient). The
assumptions on the characteristic times can be easily checked a posteriori for δ large
enough.
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During the repetitive pattern of collapse-and-regeneration, the system stays succes-
sively near the nature state Pn and near the desert state Pd. The trajectory is trapped
near these two unstable fixed points for a significant amount of time that increase lin-
early with δ and with a time ratio of 2/3 and 1/3, respectively. The reason of the
apparent stability of the desert state relies on the smallness of the Nature variable
y(t) when the system is approaching Pd. The regeneration of the nature is fast but
it requires a drastic decrease of the population and the system can leave the desert
state only when the population size is sufficiently small. Conversely, at the beginning
of the cycle, the stress on the nature appears to be very small due to the smallness
of the population size x(t). Nature starts to decrease only when the population has
sufficiently recovered from its depletion. More precisely, at the end of the cycle, when
society collapses, the population size, noted x0, is given by (using (3.27) and (3.37))

x0 ∼
2500

3
e−30δ.(3.38)

The population grows again when a sufficient level of wealth is produced. Since wealth
creation needs workers, the nature remains in a preserved state before suffering alter-
ation. The fast transition from Pd to Pn together with the slow dynamics near these
two unstable states suggest the possible existence of Canard solutions. Additional
work is necessary to clarify this point but is beyond the scope of this paper.
The accuracy of the results presented in theorem 3.1 is assessed by comparing the
asymptotic approximations to numerical simulations. Plot reveals that even for small
δ values, the time features of the oscillations are well predicted. The main discrepancy
is observed for the duration of the phase A where the approximation of tA corresponds
to the total duration of the two phases A and B. Further calculations (not shown) at
0(1) order gives

T ≈ 45δ − 3 ln δ − 10(3.39)

ensuring a better fit of the period. Expression (3.39) should be compared with the
least squares regression line that is given by T = 44.5δ − 5.7 (see Fig. 3.3).

3.4. Consequences for the Easter Island population dynamics. The pa-
rameters used for the simulations of the egalitarian society (see Table 2.1) are com-
patible with Easter Island records. In this case, as depicted in Fig. 2.1, the cyclic
population dynamics is determined by two fold limit cycle bifurcations. One bifurca-
tion occurs for a depletion rate given by

δFlc2 ≈ 0.33

that leads for δ > δFlc2 to the oscillatory cycles previously analysed. The other fold
bifurcation is at the origin of the large amplitude oscillations and occurs at a lower
value of δ, noted δFlc1, and is approximated by

δFlc1 ≈ 0.23.

At the fold bifurcation Flc1, oscillations have a minimal period of T ≈ 3.81 that
corresponds to 190 years (238 years is obtained using approximation (3.39)). The large
amplitude oscillations give rise to a periodic pattern of prosperity-and-collapse where
the maximum reaches by the population during prosperity is almost independent of δ.
We have xmax ≈ 450 that is higher than the population capacity previously calculated
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Fig. 3.3. Period of the oscillations (solid black curve) as a function of δ. The grey regions
indicate the duration of the different phases of the cycle: phases A, B and C, from bottom to top,
respectively. The dotted black lines are the approximations of the phase durations given in theorem
(3.1). The approximated durations of phase A and phase C are calculated using the period obtained
from the numerical integration. The approximation for the phase A almost coincides with the total
duration of the two phases, A and B, whereas phases B and C are accurately estimated. The dotted
blue line is obtained from the approximation of the period given by (3.39). The green line is the least
squares regression line and is given by T = 44.5δ−5.7. The insets show the two simulations (rescaled
variables) of the system trajectories associated with the bounds of the delta interval, δ = 0.237 (left)
and δ = 0.5 (right). A time simulation of t = 10 and t = 30 is considered, respectively. To fit in
one plot, the population is divided by 3 and the accumulated Wealth by 7.

(x∗s = 375). The minimum population during the cycle is almost zero indicating a full-
collapse even near the bifurcation point. This regime is avoided by a policy that keeps
the depletion factor below the critical value δH . When the sustainable threshold value
δH is exceeded, the society first experiences small-amplitude oscillations (with a fairly
high frequency, T ≈ 1.0, i.e. 50 years) before falling into large periodic variations
when the critical value δFlc2 is exceeded. To return in the sustainable regime, the
depletion factor must be reduced but, due to the hysteresis effect, a stronger reduction
of δ is necessary, up to the value δFlc1, to recover the stable sustainable equilibrium.
The system presents two bistability regimes. One occurs in a narrow range of δ values,
δ ∈ (δH , δFlc2) ∼ (0.32, 0.33), and is associated with the coexistence of small and large
amplitude oscillations. For δ between δFlc1 and δH (i.e. δ ∈ (0.23, 0.32)), the system
is also bistable and the society can evolve in two radically different ways. Depending
on the initial condition, the trajectories converge towards a steady state or towards
a limit cycle. The boundary between the two basins of attraction is shown in the
(x, y, w) space in Figure 3.4. The separatrix is a tunnel-shaped surface that poorly
depends on the nature state except at small y values where a strong deformation is
observed as y tends towards 0. The abrupt variation of the cross sections occurs in a
small range of y values (see Fig. 3.4b).
An external input on the bistable HANDY oscillator can initiate a regime shift with
the transition from the limit cycle to the sustainable equilibrium and vice versa. In
response to a stimulus, the system may turn from one state to another. Let us consider
that the system is oscillating and that a simple impulsive control on the Wealth or on
the Nature is applied in order to recover a sustainable equilibrium. As indicated by
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Fig. 3.4. Bistable HANDY oscillator for δ = 0.29. (a) Coexistence in the (x, y, w) state space
of a large amplitude stable limit cycle (blue curve) and a stable fixed point (blue point). The red
curves are cross sections of the separatrix surface of the two basins of attraction that are obtained
for different values of y. The corresponding level curves are shown in the (x,w) plane in panel (b)
and the associated y values are indicated. The fixed point is also shown (we have ys ≈ 11.5). In
(a), the green lines show parts of the limit cycle where it is possible to switch from the limit cycle
to the fixed point using an impulsive control on w (in the flyover zone of the separatrix) or on y (in
the collapse phase where y and w are small). Another view on the dynamic is shown in the inset.

the green zone on the limit cycle in Figure 3.4(a), there is a window of opportunity to
operate such transition. For a Nature induced transition, a small additional amount of
nature when the system is on the attracting manifold of the desert state can initiate a
switch from the limit cycle to the fixed point. Alternatively, a strong wealth reduction
in the flyover zone of the basin of attraction of the fixed point (region of the state
space where the limit cycle passes over the separatrix) is able to make a transition to
the sustainable region. This is illustrated in Figure 3.5 where an external control on
the Nature (a) or on the Wealth (b) is applied.
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Fig. 3.5. HANDY oscillator as a bistable switch. The rows show the time evolution of the
population, the Nature and the accumulated Wealth, respectively. On the left, an external input is
applied on the Nature that shifts y from almost zero to 5. In the right column, a strong wealth
reduction is carried out. The external input is applied at the time marked by a vertical dashed line
and is indicated by an arrow. In both cases, the system switches from a cycle of prosperity-and-
collapse to a sustainable equilibrium. Simulations are done for δ = 0.29 with an initial condition on
the cycle near the nature state ((x0, y0, w0) = (4.8, 97.2, 16.7)).

An increased nature recovery in the collapse period (y and w small and x near
200) or a severe wealth contraction near the peak wealth allow to switch the system
from the cycle of prosperity-and-collapse to the sustainable equilibrium. To do this,
there is a set of possible values for the external control signal that depends on the
state of the system, i.e. its position on the cycle, at the time of the signal. In Figure
3.5(a), adding a small amount of nature avoid the complete collapse of the society.
The severe wealth reduction shown in Figure 3.5 (b) stops the population growth and
stabilizes the system to the fixed point. The control on the Nature is done later on
the society cycle in comparison to the one performed on the Wealth. Conversely, it
is more easy to leave the sustainable equilibrium. This is suggested by the size and
the shape of the basin of attraction of the sustainable equilibrium shown in Figure
3.4 (a). Different distinct scenario destabilize the society through cycles of prosperity
and decline: an increase of wealth or an almost total nature exhaustion or the arrival
(or departure) of population.
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4. The non-egalitarian society, κ ≥ 1. In this section, we consider a stratified
society with an inequality factor κ ≥ 1. For κ = 1 the HANDY model describes
an equitable society and we will show that the long-term dynamic can be directly
derived from the egalitarian society. The case κ > 1 leads to the destabilization of
the sustainable equilibrium and to the global stability of the nature state, i.e. the
population dies out.

4.1. The equitable society, κ = 1. For κ = 1 the society is said to be equitable
and the population can be classified into workers and non-workers. The rescaled
equations that describe the evolution of the equitable society are

dxc
dt = xc + 3xc

(
w

xc+xe
− 1
)
h(xc + xe − w),

dxe
dt = xe + 3xe

(
w

xc+xe
− 1
)
h(xc + xe − w),

dy
dt = 0.5y(100− y)− δyxc,
dw
dt = δyxc − 5(xc + xe) + 5(xc + xe − w)h(xc + xe − w).

Both population have the same per capita change rate and we have

ẋc
xc

=
ẋe
xe
,

that implies

xe(t) = rxc(t)

where the ratio r is determined by the initial condition, r = xe(0)/xc(0). For xc(0) =
0, it is easy to show that the system converges to the nature state. If we note

x = xe + xc = (1 + r)xc,

the total population and

∆ =
δ

1 + r
,(4.1)

the rescaled depletion factor then the variables (x, y, w) satisfy the egalitarian HANDY
model (3.1) with a depletion factor given by (4.1). Therefore, the evolution of the eq-
uitable society is obtained from the one of the egalitarian society where the depletion
rate is increased by a factor r. This factor is determined by the initial configuration
of the equitable society and increases as the initial Elite population grows. The egal-
itarian society presents the same asymptotic states than the equitable society but, in
contrast with the egalitarian society, the interactions of the various bifurcations gives
rise to different multistability regimes: bistability with the coexistence of the nature
state and the sustainable equilibrium , tristability with the additionnal existence of a
stable limit cycle and a quadrastable configuration as illustrated in Figure 4.1.

Depending on the initial condition the ratio r > 0 changes so that the equivalent
egalitarian society, with the rectified depletion (4.1), can be shifted into different
regimes. Let us consider δ = 0.4. For an initial condition such that r is small we have
∆ ∼ 0.4 and the equivalent egalitarian society has a large amplitude limit cycle so that
the egalitarian system also presents large sustained oscillations. The initial condition
can be tuned so that the narrow regime of small oscillations is reached (r = 0.25 gives
∆ = 0.32). For an initial condition such that r = 2, we have ∆ = 0.13 < δFlc and the
egalitarian society presents a sustainable equilibrium and thus the equitable society
too. For r = 20, we have ∆ ∼ 0.019 < δTr and the system converges towards the
nature state.
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t

Fig. 4.1. Quadrastable egalitarian HANDY model. We use δ = 0.4 and four different initial
conditions are considered for the Elite population. A zoom near the origin is shown in the inset.
The red curve shows a full collapse while the green curve indicates that a sustainable equilibrium is
reached. The blue curve represents small oscillations originating from a supercritical Hopf bifurca-
tion of the fixed point. The black curve show repetitive cycles of collapse-and -regeneration.

4.2. The unequal society. Model (2.2) with κ > 1 represents the unequal
society. For parameter values used in [9], the HANDY model is Elite-dominated,
i.e. the rate of change of individuals in the Elite population is always greater than
the one of the Commoner population. Akhavan and Yorke (2020) proved that for a
large class of Elite-dominated models, the commoner population always collapses, i.e.
xc(t)→ 0. The proof is based on three arguments : the existence of a trapping region
in the phase space, the non existence of a (strictly positive) equilibrium in this region,
and the existence of a Lyapunov function. More precisely, we have(

xc
xe

)′
=

(
x′c
xc
− x′e
xe

)
xc
xe
,

so that the ratio xc(t)/xe(t) is strictly decreasing when the per capita change rate
for the Elite population is greater than the per capita change rate of the Commoner
population. Models considered in [2] include a modified HANDY system where a
leak term is added in the Wealth equation. Numerical simulations suggest that both
populations decline to extinction in the original Elite-dominated HANDY model. The
economic stratification of the society with an unequal wealth distribution induces the
global stability of the type L collapse. The only way to maintain a population over
time is to decrease the inequality factor. In the following, we give more details on the
dynamics of the unequal society.
Clearly, the desert state Pd = (0, 0, 0, 0) and the nature state Pn = (0, 0, 100, 0) are
both trivial fixed points. No other fixed point exists in the region xc + xe ≤ w.
The desert state Pd is unstable because of the self-regeneration of the nature. The
sustainable equilibrium Ps = (xc,s, 0, ys, ws) where (xc,s, ys, ws) is given by (3.2)) is
also a fixed point that lies in the region xc + xe < κw of the phase space. This fixed
point exists only when κ > 3/2 (condition xc,s < κws). Since the Elite dynamic is
given by ẋe = xe, the Elite population is growing and the fixed point is unstable.
Therefore, the existence of an Elite population yields to the destabilisation of the
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sustainable equilibrium. It is easy to see that there is no equilibrium in the region
xc + xe > κw.
Let us now determine the behavior of the system near the nature state Pn. The
linearized system near the fixed point is not defined in the region xe + xc > w.
Motivated by the results on Elite-dominated models [2], we assume that the dynamics
near the nature state is dominated by the Elite population, i.e. xe � xc and xe > κw.
Thus, we approximate the HANDY model by ẋc = −2xc,

ẋe −2xe + 3κw,
ẇ = 100δxc − 5w,

and it is straightforward to show that (xc(t), xe(t), w(t)) → (0, 0, 0). The size of the
Commoner population with respect to the produced wealth is given by

w(t)

xc(t)
→ 100δ

3
.

The evolution of the ratio between the Elites and the Commoners is described by

xe(t)

xc(t)
= 100δκt+

xe(0)

xc(0)
,

showing that the Elite population is expected to dominate with a growing rate causing
society to collapse.
Numerical simulations indicate that the nature state is globally stable and, depending
on parameter values, long term oscillations can be observed before population dies
out. When the initial Commoner’s population is sufficiently large, a cyclical activity
can be observed with several peaks that eventually leads to the irreversible society col-
lapse (see Fig. 4.2 for κ = 2, δ = 0.3, and (xc(0), xe(0), y(0), w(0)) = (100, 1, 100, 0)).
This pattern (damping cycles of prosperity and crisis) is easily obtained for δ suffi-
ciently large and for κ close to 1 (almost equitable society).
Let us conclude with few remarks: the Commoner’s population collapse occurs inde-
pendently of the Nature or Wealth dynamics and is inherent to the Elite domination in
the model. For 0 < κ < 1, the society can be thought of as a two classes society with
workers and non-workers where the non-workers have deteriorated living conditions
and we have xe/xc → 0.

5. Discussion. The rigorous analysis of detailed models of nature-society in-
teractions reveals to be considerably complex and mathematically tractable models
are desirable for a better understanding of the dynamics and to increase our ability
to identify the crucial elements to avoid society collapse. In their pioneering work,
Brander and Taylor (1998) have proposed a simple model that exploits the simi-
larities between human-nature interrelations and prey-predator interactions with a
particular emphasis on the role of the regeneration rate (or the intrinsic growth) of
renewable resources. In contrast with two species competition models, the interaction
in the HANDY model is mediated by an additional variable, the so called accumulated
Wealth, and the focus is placed on the effects of the depletion rate on the dynamics.
In addition, the HANDY model incorporates another salient feature of the society:
the economic stratification.
Similarly to the Brander and Taylor (BT) model, different stable fixed points can
be obtained in the HANDY model with either a monotonic adjustment or cyclical
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Fig. 4.2. Unequal society. (a) Plot of the two classes of population (blue is for the Commoner
and black for the Elite), the Nature (in green) and the accumulated Wealth (in red). After a transient
where the system presents several peaks, a full collapse of the society is observed. Before oscillatory
death, the system shows different cycles with an increasing part of the Elite’s population whereas
the accumulated Wealth presents a maximum followed by a Commoner’s population peak. In (b) the
evolution of the ratio between the Commoner and the Elite is shown.

overshootings, a feature that has been proposed as an explanation of the Easter Is-
land declines compared with the evolution of other Polynesian Islands. For all social
stratifications, type N collapses, i.e. exhaustion of nature and population extinction,
are reversible because of the self-regeneration of the nature inherited from the BT as-
sumption on natural resources. However, unlike the HANDY system, the BT model
does not capture a recurrent pattern observed in the history of civilizations: the peri-
odic cycles of rise-and-collapse. In the one-class HANDY model (egalitarian society,
i.e. without an Elite population) this pattern repeats indefinitely for a sufficiently
strong nature-wealth transformation factor. As the production wealth factor changes,
the one-class HANDY model presents different asymptotic states: the nature state, a
sustainable equilibrium, small oscillations and large cycles of prosperity and collapse.
For moderate values of the production factor, there are two bistability regimes. One
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is associated with the coexistence of a sustainable equilibrium and a large amplitude
limit cycle. A perturbation on a variable can cause the system to initiate or terminate
oscillations. In the second bistability regime, the society first experiences small am-
plitude oscillations as a premise of a more dramatic pattern of collapse-and-recovery
that finally occurs when the production continues to grow. The two-classes society
with an equal wealth distribution (equitable society), presents similar dynamics to
the one-class society provided that the production factor is adapted to the size of
the Elite population. In particular the production factor has to be increased in or-
der to maintain the same population size. Depending on the initial size of the Elite
population, the equitable society supports the multistability between the different
asymptotic states found for the egalitarian society. In the unequal society, a sustain-
able equilibrium can not be reached and the only way to avoid an irreversible society
collapse is to return to the egalitarian society.
The subsystems for industrial production and for the agricultural sector are not de-
scribed explicitly in the HANDY model but are aggregated into a single variable,
the accumulated Wealth. However, despite its simplicity, the HANDY model extracts
some generic properties of society collapse. At first, the natural resources play the role
of the motor of growth and population increases over time. However, this trend can-
not be sustained indefinitely due to the depletion of natural resources. The economic
variable, the wealth in the HANDY model, reaches a maximum which poorly depends
on the productivity factor but which is directly related to the complete transforma-
tion of the nature. Subsequently, a population peak is generated. The population and
wealth maxima are greater than those associated with the carrying capacity (15% and
900% greater for the population and wealth, respectively) indicating that the limits
of growth are reached and that the society is on track for a global collapse. Popu-
lation decline follows a simple pattern initiated by the scarcity of natural resources
that induces a wealth reduction that in turn affects the population. If the wealth
is reinterpreted as industrial outputs and agricultural production, the HANDY tra-
jectories are reminiscent to what is observed in more realistic models as the world3
model [8, 12]. In particular, the decreasing phase is more abrupt than the growing
phase. This property does not rely on the different time constants in the dynamics
but is rather due to the nature capacity compared to the small ecological footprint
at the beginning of the prosperity period. In the HANDY model, the prosperity-and-
collapse cycle with a population growth (2/3 of the period) followed by a population
decline (1/3 of the period) illustrates the well known Seneca effect : ” fortune is of
sluggish growth, but ruin is rapid ”. After crossing the critical wealth threshold, the
living conditions are deteriorating and there is only 15 years of population growth
before the society begins to fall apart.
Exploitation of natural resources generates industrial and agricultural outputs that
improve human welfare and induce population growth. In turn, population increase
creates stress on nature. The balance between positive and negative feedbacks can
become unstable and the crucial question is that of the policy to be adopted to avoid
human population collapse. Despite detailed models are more suitable to address
this issue [8, 6], some general observations can be drawn from the HANDY model
analysis. A high population size requires a significant rate of nature depletion that
automatically leads the society towards a prosperity-and-crises pattern. Therefore,
limiting the nature transformation is fundamental to avoid collapse. The deliberate
choice of reducing industrial outputs has been recognised as essential to reach sustain-
ability. However this policy is not sufficient if the wealth is not equally distributed
and prioritizing an equal wealth distribution or favorizing social mobility [2] is also
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essential.

Appendix A. The HANDY model and parameters. The general form of
the HANDY model is given by

dxc
dt =

[
1 + a

(
w

xc+xe
− 1
)
h(xc + xe − w)

]
xc,

dxe
dt =

[
b+ a

(
κw

xc+xe
− 1
)
h(xc + xe − κw)

]
xe,

dy
dt = γy(100− y)− cxy,
dw
dt = cxy − d ((xc + xe)− (xc + xe − w)h(xc + xe)) ,

(5.1)

where parameters (a, b, c, d, e) are related to the original parameters of the model as
follows:

a =
αM − αm
βc − αm

,

b =
βe − αm
βc − αm

,

c =
δ

ρ(β − αm)
,

d =
s

ρ(β − αm)
.

The following rescaled variables have been used:

x̃c = ρxc,

x̃e = ρκxe,

t̃ = (βc − αm)t,

where the tilde has been dropped in (5.1) for convenience. Parameter values used in
[9] (see Table 2.1) give

a = 3,

b = 1.

Appendix B. Transcritical bifurcation and optimal capacity. One can
easily calculate using the original parameters of the HANDY model that the trans-
critical bifurcation occurs at

δ =
s(βc − αM )

λ(αm − αM )

that gives the transcritial bifurcation for the rescaled model at

δTr =
s(βc − αM )

ρλ(αm − αM )(βc − αm)

and its numerical value calculated in (3.2) using table 2.1.
The optimal value of δ, noted δ∗, can be expressed in terms of the original parameters
as

δ∗ =
2s(βc − αM )

ρλ(αm − αM )(βc − αm)

that gives expression (3.3) using the numerical values table 2.1.
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Fig. 5.1. Vector field of the HANDY model in the (x,w) plane for small y values. The
switching line (x = w) and the population nullcline are depicted in black and blue, respectively.
Two representative trajectories are shown in red. In the grey region, the population grows before
decreasing. After threshold crossing, a full collapse is observed where both population and wealth
decline.

Appendix C. Stability of Pd and Pn in the egalitarian society. We study
the stability of the desert state Pd = (0, 0, 0) and the nature state Pn = (0, 100, 0) in
the egalitarian society (HANDY model with xe = 0). The vector field is nonsmooth
at x = w, and classical techniques of local analysis based on the Jacobian matrix
cannot directly applied. The discontinuity occurs in the equations for the population
and for the accumulated Wealth whereas the Nature equation is smooth. We analyze
the vector field in the (x,w) plane using simple geometrical considerations.

Desert state, Pd. The linearization of the Nature dynamics near the desert state
indicates that the complete exhaustion of nature is an unstable state and regeneration
will occur. However, as long as x > 1

δ (50− y/2) the Nature variable is decreasing and
remains small until the population itself becomes sufficiently small. To understand the
evolution of the system we analyze the behavior of the population and the accumulated
Wealth when y is small. At small y values, population and Wealth equations are given
by {

dx
dt = −2x+ 3w,
dw
dt = −5w,

for x ≥ w, and

{
dx
dt = x,
dw
dt = −5x,

for x ≤ w.

The corresponding vector field is shown in Fig. 5.1. Simple geometrical considera-
tions allow to show that trajectories in the (x,w) plane are attracted by the invariant
line x = 0 and converge to the origin. The Wealth variable is always decreasing and
is followed by a decrease in population. Depending on the initial condition (with
respect to the population nullcline w = 2/3x) population shows a phase of growth
before declining.

Nature state, Pn. Near the maximum nature capacity y ∼ 100, the approxima-
tion of the HANDY model is given by{

dx
dt = −2x+ 3w,
dw
dt = −5w + 100δx,

for x ≥ w, and

{
dx
dt = x,
dw
dt = −5x+ 100δx,

for x < w.

Depending on the position of the Wealth nullcline w = 20δx with respect to the
switching line w = x and the population nullcline w = 2/3x , we distinguish between
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20

Fig. 5.2. Vector field of the HANDY model in the (x,w) plane for a state variable y near
the nature capacity (y ∼ 100). The switching line is depicted in black. The blue line represents
the population nullcline and the green line is for the Wealth nullcline. The light grey region is the
attracting region corresponding to the δ range indicates below the associated plot. The dotted line is
the attracting eigenvector associated with the numerical value used for the plot: (a) δ = 0.025, (b)
δ = 0.04 ,and (c) δ = 0.07.

three different configurations that are illustrated in Fig. 5.2. Simple geometrical
considerations allow to show the stability of the nature state for δ < 1/30.

In the critical case where δ = 1/30, the approximated system does not allow to
conclude on the stability of the nature state and higher order terms have to be consid-
ered in the local approximation of the HANDY system. From the Nature equation, it
can be shown that the Nature variable converges inferiorly to 100 and the non linear
term δxy will be slightly lower than 100δx when y is close to 100 that can be reinter-
preted as δ slightly smaller than 1/30. Therefore, this configuration is similar to the
case depicted in Fig. 5.2(a) and the system converges towards the nature state.

Appendix D. Oscillatory approach to the sustainable equilibrium in
the egalitarian society. We determine when the characteristic polynomial (3.10)
has imaginary roots. We use the following property: the third order polynomial
a0 + a1x+ a2x

2 + x3 has imaginary roots if and only if

4p3 + 27q2 < 0,

where

p = a1 −
a22
3

and q = a0 −
a1a2

3
+

2a32
27

.

Using (3.10) we find

7436000− 430720µ− 17761µ2 + 3106µ3 − 89µ4 < 0

that gives the approximation µ > 24.31, or equivalently,

δ > 0.069.
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