
HAL Id: hal-03659677
https://hal.science/hal-03659677

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DeepSpot: a deep neural network for RNA spot
enhancement in smFISH microscopy images

Emmanuel Bouilhol, Anca Flavia Savulescu, Edgar Lefevre, Benjamin
Dartigues, Robyn Brackin, Macha Nikolski

To cite this version:
Emmanuel Bouilhol, Anca Flavia Savulescu, Edgar Lefevre, Benjamin Dartigues, Robyn Brackin, et
al.. DeepSpot: a deep neural network for RNA spot enhancement in smFISH microscopy images.
Biological Imaging, 2022, pp.1-18. �10.1017/S2633903X22000034�. �hal-03659677�

https://hal.science/hal-03659677
https://hal.archives-ouvertes.fr


Biological Imaging (2021), 1: 1–18

doi:10.1017/blg.2021.xx

RESEARCH ARTICLE

DeepSpot: a deep neural network for RNA spot enhance-
ment in smFISH microscopy images
Emmanuel Bouilhol1,2* , Anca Flavia Savulescu3, Edgar Lefevre2, Benjamin Dartigues2, Robyn
Brackin4 and Macha Nikolski1,2*

1Université de Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33000, France
2Université de Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, 33000, France
3University of Cape Town, IDM, Faculty of Health Sciences, Cape Town, 7935, South Africa
4Advanced Medical Bioimaging CF, Charité – Universitätsmedizin, Berlin, 10117, Germany
*Corresponding author. Email: emmanuel.bouilhol@gmail.com; macha.nikolski@u-bordeaux.fr

Received: April 6, 2022

Keywords: smFISH image analysis, mRNA spot detection, Deep learning

Abstract
Detection of RNA spots in single-molecule FISH microscopy images remains a difficult task, especially when
applied to large volumes of data. The variable intensity of RNA spots combined with the high noise level of
the images often requires manual adjustment of the spot detection thresholds for each image. In this work, we
introduce DeepSpot, a Deep Learning-based tool specifically designed for RNA spot enhancement that enables spot
detection without the need to resort to image per image parameter tuning. We show how our method can enable
downstream accurate spot detection. DeepSpot’s architecture is inspired by small object detection approaches. It
incorporates dilated convolutions into a module specifically designed for Context Aggregation for Small Object
(CASO) and uses Residual Convolutions to propagate this information along the network. This enables DeepSpot
to enhance all RNA spots to the same intensity, and thus circumvents the need for parameter tuning. We evaluated
how easily spots can be detected in images enhanced with our method by testing DeepSpot on 20 simulated and
3 experimental datasets, and showed that accuracy of more than 97% is achieved. Moreover, comparison with
alternative deep learning approaches for mRNA spot detection (deepBlink) indicated that DeepSpot provides more
precise mRNA detection. In addition, we generated smFISH images of mouse fibroblasts in a wound healing assay
to evaluate whether DeepSpot enhancement can enable seamless mRNA spot detection and thus streamline studies
of localized mRNA expression in cells.

Impact Statement
Our paper introduces DeepSpot, a Deep Learning-based tool specifically designed to enhance RNA spots
which enables downstream spot detection without the need to resort to image per image parameter tuning.
DeepSpot’s architecture is inspired by small object detection approaches by integrating dilated convolutions
into a module specifically designed for Context Aggregation for Small Object (CASO) and using Residual
Convolutions to propagate this information along the network.
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1. Introduction
Single cell microscopy together with RNA single molecule fluorescence in-situ hybridization (smFISH)
technologies allow gene expression profiling at subcellular precision for determining molecular states
of various cell types (1) and that in high-throughput fashion (2). The repertoire of mRNA expression
quantification methods is large and includes smFISH, clamp-FISH, amp-FISH and multiplexed versions
such as e.g. MerFISH, all allowing the localization of RNA at sub-cellular level. There are technological
differences between these methods in terms of number of detected RNAs and number of processed
cells, however all produce imaging data with mRNA spots that can be further matched to the spots’ x,
y coordinates. With such increased image acquisition automation and the consequent growing number
of high-throughput projects focused on spatially resolved transcriptomics, the need for automated and
highly accurate detection of mRNA spots in fluorescent microscopy images has become increasingly
important.

Single Molecule FISH (smFISH) is a method for visualizing individual RNA transcripts in fixed
cells. smFISH is based on targeting RNA molecules with a set of 24-48 oligonucleotide probes, each
individually labeled with one fluorophore. The combined fluorescence intensity level obtained from
this high number of probes makes each RNA transcript visible as a spot that can be computationally
identified and quantified (3).

Despite the progress made in recent years, it is still difficult to detect the localization of spots corre-
sponding to different mRNAs in a fully automated manner. First, background intensity is often irregular
due to various factors, including autofluorescence that can be caused by intrinsic cell properties and
fixative-induced fluorescence phenomenon (4) or growth medium and buffers. An additional contrib-
utor to the background noise is off-target binding of probes, which depends on a various number of
parameters, including the length of the transcript, its sequence, the cell type used and others. Second,
spot detection is affected by the non-homogeneous intensity distribution and indistinct spot bound-
aries relative to the background. Moreover, FISH images may have a low signal-to-noise ratio (SNR).
Additionally the boundary between background (noise) and signal (spots) is usually not evident (5).

The main drawback of classical mRNA spot detection methods is the requirement of a strong human
input to determine the best parameters to handle variable image to image properties such as SNR and
presence of artifacts. Even small differences in these characteristics lead to the necessity for param-
eter fine-tuning (6). Other than being time-consuming, the quality of detection largely depends on the
capacity of the user to correctly choose the method’s parameters according to each image properties
(contrast, spots, artifacts, noise). Some recent deep-learning based approaches for mRNA spot detection
try to circumvent this limitation, such as deepBlink (7).

Here we introduce DeepSpot, a Convolutional Neural Network method dedicated to the enhance-
ment of fluorescent spots in microscopy images and thus enabling downstream mRNA spot detection
by conventional widely used tools without need for parameter fine-tuning. With DeepSpot we show
that it is possible to avoid the manual parameter tuning steps by enhancing the signal of all spots so that
they have the same intensity throughout all images regardless to the contrast, noise or spots shape. All
the code as well as the pretrained model is available on GitHub and a plugin for the image analysis tool
Napari, is also distributed https://github.com/cbib/DeepSpot.

DeepSpot gives a new twist to the ResNet network architecture and learns to automatically enhance
the mRNA spots, bringing them all to the same intensity. In parallel, a multi-network architecture is
integrated, trained by minimizing the binary cross-entropy (BCE) while providing context for mRNA
spots thanks to the atrous convolutions. We evaluated the impact of the spot enhancement on the down-
stream mRNA spot detection, by performing spot detection using ICY with fixed parameters on both
simulated images and experimental images manually annotated. Moreover, we compared the quality of
mRNA spot detection from images enhanced by DeepSpot with deepBlink, and have shown that our
method achieves greater generalization to effectively handle full variability of smFISH data. Finally,
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Figure 1. RNA spots on a noisy background (image A). Spots’ intensity is increased after the
enhancement by 𝑒 (image B).

to illustrate the end-to-end use of DeepSpot in projects where detecting sub-cellular localization with
high precision is essential, we generated smFISH images from mouse fibroblasts in a wound healing
assay, where enrichment of expression of 𝛽-Actin towards the location of the wound is expected in the
migrating 3T3 mouse fibroblasts.

2. Related Work
Methodologically mRNA spot detection can be related to the detection of small objects topic in image
analysis. The goal of spot detection is to find small regions in an image that differ from the surroundings
with respect to certain properties, such as brightness or shape, more precisely, regions with at least one
local extremum (8). Spots can be considered as a particular case of more or less circular objects of
small extent. Object detection has been one of key topics in computer vision which goal is to find the
position of objects. However, small object detection, such as mRNA spots, remains difficult because of
low-resolution and limited pixels (9).

In this work we propose a deep learning network inspired by small object detection approaches for
mRNA spot enhancement and we show how it can enable the downstream accurate detection of spots.

2.1. mRNA spot detection
In the case of FISH images, mRNA spots are small, compact and smaller than the resolution limit
of the microscope (10), therefore images of mRNA spots correspond to the maximum intensity pixel
surrounded by the diffraction of the fluorescence signal defined by the Point Spread Function (PSF)
which can be modeled by a Gaussian within small radius disk (see Figure 1, image B). This radius
depends on several imaging parameters and optical properties of the microscope such as the diffraction
limit or the excitation state of the fluorophore.

While there is no universal solution to the detection of small objects such as mRNA spots in fluo-
rescent cellular images, a large plethora of work is available on the subject. A number of approaches
have gained wide popularity thanks to the development of software tools embedding the algorithms and
providing user with a graphical interface. In particular, ImageJ/Fiji (11,12) is widely used, largely due to
the plugin-based architecture, recordable macro language and programmable Java API. Another pop-
ular tool is CellProfiler (13), based on similar paradigms and FISH-Quant (14). A more recent platform,
ICY (15), also provides the possibility to develop new algorithms as well as a user interface for image
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analysis, including the ICY spot detector for the detection of mRNA spots, method based on wavelet
transform decomposition (10).

Deep-learning networks have been introduced for mRNA spot detection (16,17), and more recently
deepBlink (7). The latter focuses on a fully convolutional neural network based on the U-Net archi-
tecture. deepBlink not only provides the code, but also annotated smFISH data and implements a
threshold-independent localization of spots.

2.2. Detection and enhancement of small objects
Consistently with the mRNA spot detection difficulty, detection of small objects remains a challenging
part of the general object detection problem due to the limited information contained in small regions
of interest. For instance, it has been shown that the object size has a major impact on the accuracy
of Deep Learning object detection networks such as VGG, ResNet or Inception V2 (9). Indeed, small
objects do not contain sufficient semantic information (18) and thus the challenge is to capture semantic
features while minimizing spatial information attenuation (19).

Expectedly, adding more context improves the detection of small objects (19–21). An elegant solution
is to use the dilated convolution (a.k.a. atrous convolution), because the receptive field can be expanded
without loss of resolution and thus capture additional context without loss of spatial information (22,23).

Of particular interest to our work is the signal enhancement, an image processing technique aiming
to reinforce the signal only in those regions of the image where the actual objects of interest are, and
potentially to weaken the noise or the signal from other structures (24). In our case, the objects of interest
are mRNA spots.

Image enhancement is the transformation of one image 𝑋 into another image 𝑒(𝑋) (see Figure 1).
Pixel values (intensities) of 𝑋 at spot locations are modified according to the transformation function
𝑒, the resulting pixel values in image 𝑒(𝑋) measuring the certainty of mRNA presence at that position.
Thus, 𝑒(𝑋) can be considered as a probability map that describes possible mRNA spot locations (24).

Small object enhancement has been developed in other fields than mRNA spots in fluorescent imag-
ing, such as in astronomy to enhance stars or galaxies over the cosmic microwave background (25) or
in the biomedical imaging to facilitate the human detection of larger spots such as nodules (26). In the
microscopy field, Deep-STORM (27) propose to enhance the resolution of Single Molecule Localiza-
tion Microscopy (SMLM) mRNA spots, with deep learning. However, these images don’t have the
same characteristics as smFISH data in terms of noise or signal. For example, human nodules are much
larger objects than typical mRNA spots. As for the star enhancement method proposed by (25), it is not
suited for low intensity spots (28), which is a major concern in spot detection for smFISH images.

3. Materials and Methods
3.1. Materials
3.1.1. smFISH datasets with alternatively established spots’ localization
We constructed a dataset DSexp of 1553 images from the experimental smFISH data acquired in (29), by
applying 256× 256 pixels patches to better fit in the GPU memory (see Table 1). The authors have per-
formed spot detection using image analysis techniques such as local maximum detection, implemented
in the BIG-FISH pipeline (30). Along with the scripts, the authors provided a list of 57 parameter com-
binations that were used to detect the spots in 57 different image acquisition series of 32 genes used in
their study. We ran the pipeline with these parameters and performed an additional manual curation to
keep patches with number of spots between 10 and 150 and remove those with a visually obvious over-
or under-identification of spots. The resulting DSexp dataset of 1553 images representing 27 different
genes is thus experimentally generated and guarantees high confidence in the ground truth annotation
of mRNA spot coordinates.
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We have also downloaded the dataset DSdB from the deepBlink publication (7), composed of 129
smFISH images acquired from 4 different cell culture conditions of the HeLa 11ht cell line. The authors
provided their annotation of mRNA spots’ locations which was performed using TrackMate and curated
by experts.

To estimate the variability of spot intensity, we also calculated the Coefficient of Variation (CV) of
spot intensities for each gene of DSexp as well as for the entire DSexp and DSdB datasets (Supplementary
Figure S1). While for most images and genes, the CV ranges from 0.25 to 0.50, some have a very high
CV. The global CV for all the spots of all the images in the DSexp dataset is 0.72 and 0.22 for DSdB.

3.1.2. Novel smFISH dataset from a wound healing assay
To evaluate whether DeepSpot enables precise mRNA spot detection in a biological context, we made
use of the wound healing assay (31) to generate a second experimental dataset DSwound. In the wound
healing assay, migrating cells, such as fibroblasts, are grown on a coverslip and serum starved for
synchronization. A scratch in the middle of the coverslip is then generated, mimicking a wound, fol-
lowed by induction of the cells to polarize and migrate towards the wound, to generate wound closure,
done using replacement of serum starved medium with 10 % FBS-containing medium. We used 3T3
mouse fibroblasts in a wound healing assay, followed by cell fixation. Fixed samples were taken for
single molecule FISH experiments to visualize and quantify 𝛽-Actin mRNA and imaged on a custom
built Nikon Ti Eclipse widefield TIRF microscope. 𝛽-Actin has been previously shown to be enriched
in neuronal growth cones of extending axons, as well as the leading edges of migrating cells and this
enrichment has typically been associated with cell polarity and neuronal plasticity (32–34). Based on this,
we hypothesized that 𝛽-Actin would be enriched in the leading edge of migrating 3T3 fibroblasts. The
dataset is composed of 96 images, 48 images of non migrating cells (control) and 48 images of migrat-
ing cells. Each image was divided into 4 patches, yielding a total of 384 patches of 256 × 256 pixels
size.

3.1.3. Simulated and hybrid datasets
In addition to the experimental datasets, we have built 20 simulated datasets with images 256 × 256
pixels of width and height, same as the patches of DSexp. Briefly, the background was generated by
a combination of Poisson noise and Perlin noise with a random intensity between [80, 150]. Elastic
transformations were added to this noise to approximate the variety of textured background noise in
the experimental images. Spots were generated as circles, randomly placed in the image, and then
convolved with a Gaussian function that approximates PSF. Their size randomly ranges from 4 to 9
pixels in diameter, including Gaussian smoothing.

Two different types of simulated datasets were generated DSfixed and DSvar, each containing 10
datasets defined according to the number of spots per image 𝑖 ∈ {[10..100] mod 10}, see Table 1.
For example, in the DS20

fixed dataset each image contains 20 spots and in the DS70
var dataset each image

contains 70 spots. Each image in the DSfixed dataset has the same fixed spot intensity for all spots
randomly chosen in the interval [160, 220], while in the DSvar dataset the spot intensity is randomly
chosen from the same interval for each spot, resulting in images with variable spot intensity.

In addition to the experimental and simulated datasets, we have built a hybrid dataset DShybrid
where the experimental data from DSexp is augmented by appending an additional 25% of simulated
images generated with both variable spots’ intensity and variable spots’ number per image, within the
[160, 220] and [10, 100] intervals, respectively. The intensity of the spots is calculated with respect
to the intensity of the background noise, so that the generated images have a SNR between 10 and
40. These values correspond to the minimum and median SNR values in our experimental images
respectively (Supplementary Figure S2).

3.1.4. Ground truth
Since the goal of our network is to learn to transform an image 𝑋 into 𝑒(𝑋), where intensity at spots’
location is enhanced, the training step has to be provided with the enhanced counterpart of each image
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Table 1. List of datasets used for training (22 training datasets) and evaluation (21 test datasets) of
the DeepSpot network. Images in the DSi

var datasets have spot intensities between 160 and 220 for
each image. For the fixed intensity datasets DSi

fixed the spot intensity is set to one value within
[160..220] for a given image, but varies from image to image. 10 variable intensity DSi

var and 10 fixed
intensity DSi

fixed datasets are named according to the number of spots in the images, 𝑖. The dataset
DShybrid combines DSexp with 25% simulated images.

Datasets #spots
per image

intensity #images
train

#images
test

#datasets
train/test

DSexp 10 ≤ 𝑖 ≤ 150 variable 1453 100 1/1
DSi

var 𝑖 ∈ {[10..100] mod 10} variable 2000 400 10/10
DSi

fixed 𝑖 ∈ {[10..100] mod 10} fixed 2000 400 10/10
DShybrid 10 ≤ 𝑖 ≤ 150 variable 2000 NA 1/NA

in the training set. That is, training sets include pairs of images ⟨𝑋, 𝑒(𝑋)⟩ where 𝑒 is the procedure that
is used to produce ground truth enhanced images: for each spot (Figure 1, image A), the ground truth
enhancement procedure 𝑒 is applied at the spots’ locations 𝐴(𝑋), resulting in images where spots are
enhanced as shown in Figure 1, image B.

In this work we implement 𝑒 as a kernel of 3×3 pixels at all locations where the spots were annotated
in the experimental dataset DSexp or generated for DSfixed, DSvar and DShybrid (see Table 1). The kernel
has the same pixel values for all the spots, in order to drive the network to learn to enhance all spots up
to the same level of intensity, regardless of the initial intensity in the acquired data. The enhancement
kernel of DeepSpot is smaller than the smallest spot size in our datasets, therefore it is not expected to
augment the size spot. This is particularly important for spatially close spots. Moreover, background is
kept the same between 𝑋 and 𝑒(𝑋) so the transformation does not affect the background.

3.2. Method
In this section, we present the DeepSpot enhancement network in detail. We first overview the network
architecture and then we discuss the custom loss function.

3.2.1. Network architecture
DeepSpot network is composed of two main components as presented in Figure 2. The first component
is a multi-path network shown in panel A. The second component is an adapted residual network as
shown in panel B.

Context Aggregation Module
As pointed out in (22), finding small objects is fundamentally more challenging than large objects,
because the signal is necessarily weaker. To solve this problem in the context of mRNA spot detec-
tion, we developed a new module, that we called the Context Aggregation for Small Objects module
(CASO). (35) demonstrated that using image evidence beyond the object extent (context) always
enhances small object detection results, we therefore developed our CASO module to aggregate context
around the mRNA spots. The CASO module is a multi-path network as shown in panel A. It takes the
input image and processes it along three different paths each with different types of convolution blocks
to collect specific information from the input image. Each path contains 3 convolution blocks.

1. The first path is composed of traditional convolution blocks (2D convolution, batch
normalization, activation and max pooling). These blocks, often used in CNNs, are particularly
efficient to reinforce the semantic information at the expense of spatial information.

2. The second path uses only 2D convolutions, batch normalization and activation. As Max
Pooling is known to keep mostly the maximum intensities in images, some of the faint spots
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Figure 2. DeepSpot network architecture is composed of the Context Aggregation for Small Objects
module (CASO) constituted of a multi-path network (panel A) and a customized ResNet component

(panel B). A custom loss function is used for training the network.

may be eliminated during the max pooling operation. In this path we used strided 2D
convolutions instead of a max pooling layer, to keep the information of low intensity of spots.
To make sure to end up with the same receptive field as the first path, we set the stride to 2.

3. The third path makes use of the atrous convolution pooling (22), implemented as a 2D
convolution with the dilatation rate of 2. The following layers are batch normalization,
activation and max pooling.

The CASO module is a multi-path neural network and can learn more comprehensive and comple-
mentary features than a single path. In particular, the goal of the atrous convolution is to bring more
context around the small spots (see section 2.2), while the two other paths aggregate the semantic infor-
mation of the bright spots and faint spots for the first and second path respectively. The results of the
three encoding paths are then concatenated to construct a longer feature vector containing information
extracted by each path. For all convolutional blocks, the activation function is the Rectified Linear Unit
(ReLU). The number of filters for the 2D convolutions in the are 32, 64, 128 for the first, second and
third block, respectively.

Custom ResNet
For the second component (panel B) we customized the ResNet architecture to create a residual
neural network composed of ten consecutive convolutional residual blocks (ResBlock), using full pre-
activation blocks described in (36), where the authors suggested that the better results obtained by the
full pre-activation blocks are due to the pre-activation by the batch normalization that improves regu-
larization of the model due to the fact that the inputs to all weight layers have been normalized. Each
ResBlock is composed of three sub-blocks as presented in Figure 3. A sub-block is constituted of a
batch normalization followed by an activation (ReLU) and a 2D convolution. After the 3 sub-blocks a
spatial dropout layer with rate 0.2 is applied. Each ResBlock ends by the residual connection.

To obtain an output image with the same size as the input image, we used a particular type of up
convolutional blocks. Recently, (37) demonstrated that the use of Up Residual Blocks (UpResBlocks)
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Figure 3. Full pre-activation residual block, composed of Batch normalisation, Activation,
Convolution, repeated three time before Dropout and residual connection.

instead of classic up-convolution blocks improves the performance of generative networks by preserv-
ing the effective features from the low dimensional feature space to the high dimensional feature space.
Our decoding path is composed of three UpResBlocks and reconstitutes an output with the same size as
the input while propagating low dimension feature information of the enhanced spots from the custom
ResNet to the last layer. Each UpResBlock is constituted of three sub-blocks containing a 2D trans-
posed convolution, batch normalization and activation (ReLU). The three sub-blocks are followed by a
spatial dropout layer with rate 0.2. UpResBlocks then end with a residual connection. A sigmoid acti-
vation function is applied to the last convolution, so that all the pixels have values in the [0, 1] interval.
The final image is obtained by normalizing the pixel intensities between 0 and 255.

3.2.2. Loss
We defined our custom loss function as a combination of binary cross-entropy (BCE) and Mean Squared
Error (MSE) functions. The main term of the loss function is the BCE loss, defined by LBCE (𝑥, 𝑥) =

−(𝑥 log(𝑥) + (1 − 𝑥) log(1 − 𝑥)) that measures the difference between the images predicted by the
network 𝑥 and the ground truth images 𝑥. While mostly used for classification, it can also be used for
segmentation and enhancement due to its performance for pixel-level classification (38).

To this main LBCE term we added a regularization term defined by Mean Squared Error, MSE =
1
𝑛

∑𝑛
𝑖=1 (max(𝑥𝑖) − max(𝑥𝑖))2 that is computed between the maximum value of the predicted image

max(𝑥𝑖) and the maximum value of the ground truth image max(𝑥𝑖). This regularization drives the
network to produce spots whose intensity is close to 255 (see Table 2), and therefore standardizes
the signal enhancement intensity in the output images, which in its turn facilitates the downstream
automatic detection of the spots. The total loss function is LBCE + LMSE.

4. Results
We trained the DeepSpot network on our 20 simulated training datasets DSfixed and DSvar as well as on
the experimental and hybrid datasets DSexp and DShybrid, resulting in 22 models Mfixed, Mvar, Mexp and
Mhybrid. Training parameters were optimized with HyperOpt algorithm (39) and the ASHA scheduler (40).
The best configuration obtained and used for further trainings had the learning rate of 0.0001, the
dropout rate of 0.2 and the batch size of 32 and 128 filters per convolution.
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Figure 4. Spot matching by 1-neighbor 𝑘-d tree between the detected mRNA spots {𝑝1, . . . , 𝑝9}
depicted in blue and annotated spots {𝑞1, . . . , 𝑞7} depicted in red. The 𝑘-d tree construction for

{𝑝1, . . . 𝑝9} is shown on the left. Using the matching radius depicted by circles, the 𝑘-d tree queries
for 𝑞1 and 𝑞2 shown in red, lead to the same leaf 𝑝2 and correspond to an ambiguous match, while

query for 𝑞3 leads to an unique match. mRNA spots 𝑝1, 𝑝4 and 𝑝8 are the False Negatives.

Each of the resulting 22 models was evaluated on the 21 test data sets from Table 1, yielding 462
enhanced test datasets (8100 images total). To assess whether DeepSpot enhancement enables easy spot
detection, we applied the ICY spot detector (10) to the images enhanced by different models. Moreover,
we defined an unique set of ICY parameters that matches the shape and intensity of the enhancing
kernel of the DeepSpot network: scale 3, sensitivity 20 and scale 7, sensitivity 100. We then evaluated
whether the detected spots from the enhanced images matched well with the annotated ground truth of
spots’ coordinates.

4.1. Evaluation procedure
We denote by 𝐷 (𝑋) = {𝑝1, . . . 𝑝𝑛} the point pattern detected by ICY from the enhancement of of an
image 𝑋 by DeepSpot and by 𝐴(𝑋) = {𝑞1, . . . 𝑞𝑚} the ground truth annotation of spots coordinates.
Notice that 𝑚 is not necessarily equal to 𝑛, corresponding to under- or over-detection and even for a
well-detected spot, the coordinates in 𝐴 and 𝐷 may slightly differ. To account for these remarks, we
used the 𝑘-d tree algorithm (41) to query the detection 𝐷 for nearest neighbors in 𝐴 as proposed in (42,43).
Number of neighbors was set to 1 and matching radius 𝑡 to 3 (coherent with the enhancement kernel
for ground truth images).

This allows to establish a matching for all annotated points under 𝑡 = 3 and thus also defines
the number of False Negatives or False Positives corresponding to the missing matches from 𝐷 (𝑋)
or 𝐴(𝑋), respectively. True Negatives are defined by all pixels 𝑝 of the confusion matrix such
that 𝑝 ∈ 𝑋 \ {𝐴(𝑋) ∪ 𝐷 (𝑋)}. However, given that |𝑋 | ≫ |𝑋 \ {𝐴(𝑋) ∪ 𝐷 (𝑋)}| implies inflated TN
values, this makes measures such as accuracy, AUC and ROC curve irrelevant.

The drawback of matching 𝑚 versus 𝑛 points is the possibility of ambiguous matching. With the 𝑘-d
tree approach it happens when two points 𝑞𝑖 , 𝑞 𝑗 ∈ 𝐴 can match to one 𝑝𝑘 ∈ 𝐷 (see Figure 4). This can
happen if annotated spots 𝑞𝑖 , 𝑞 𝑗 are close and the detected matching point for both of them, 𝑝𝑘 , lies
within the same distance 𝑡, which can correspond to an over enhancement and thus blurring between the
two spots in the enhanced image. While alternative solutions such as the Linear Assignment Problem
can be used, they do not avoid the problem of matching two different numbers of point. The 𝑘-d tree
approach has the advantage to keep the ambiguous matches explicitly to measure this effect. We thus
also report the number of ambiguous matches (AM).
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4.2. DeepSpot enhances the mRNA spot signal to the same intensity
To avoid the manual selection of the detection threshold, it is imperative to have a homogeneous spot
intensity for the whole dataset in order to use unique set of parameters for all images. Table 2 summa-
rizes the intensities obtained after enhancement by DeepSpot for each category of datasets described in
Table 1 (experimental, hybrid, simulated with variable and fixed intensities).

Table 2. Spot enhancement performance in terms of resulting spot intensity. The measures displayed
correspond to the spot intensity between [0,255] after enhancement by the neural network and
averaged by category of models and datasets. Between brackets are shown the 95% confidence

intervals. Models categories are listed in rows, while columns correspond to the dataset categories on
which the different models were applied.

Train
Test DSexp DSfixed DSvar

Mexp
249.55 250.81 247.07

[249.29, 249.82] [250.68, 250.93] [246.68, 247.45]

Mhybrid
241.15 248.71 243.3

[240.79, 241.52] [248.57, 248.85] [243.14, 243.45]

Mvar
248.92 251.99 254.57

[248.47, 249.37] [251.93, 252.05] [254.53, 254.62]

Mfixed
242.93 254.73 249.33

[242.16, 243.71] [254.71, 254.75] [249.09, 249.57]

As expected, intensities were closer to 255 when training and test datasets belong to the same
category. For example, models trained on data with fixed intensities Mfixed and applied to data with
fixed intensities DSfixed produced enhanced spot intensities very close to 255. Similarly enhancement
close to 255 could be observed when models Mvar were evaluated on DSvar Of particular interest are
the enhancement results from the Mexp training, that are close to 250 for every dataset, experimen-
tal or simulated. Hybrid model enhances intensities to 241 on the experimental dataset. In general,
the enhanced spot intensities were between 241 and 255, representing a variation of only 5.4% from
the maximum intensity which is sufficient to fully separate smFISH spots from the background in the
enhanced images.

Table 3. Models’ performance per model type. Metrics (F1-score, precision, recall, Ambiguous
Matches (AM)) were calculated by averaging the values obtained for each image of the 21 test

datasets. Top values in cells correspond to the mean value, bottom values between brackets show the
95% confidence interval. Best values are highlighted in bold.

Model F1-Score(%) Precision(%) Recall(%) AM(mean/img)

Mexp
87.8 99.6 80.1 2.7

[87.6, 88.1] [99.5, 99.7] [79.8, 80.5] [1.4, 4.0]

Mhybrid
97.3 99.3 95.5 0.94

[97.2, 97.3] [99.2, 99.4] [95.4, 95.6] [0.56, 1.32]

Mvar
94.3 99.5 91.4 1.19

[94.3, 94.4] [99.5, 99.5] [91.3, 91.5] [1.03, 1.35]

Mfixed
91.6 99.9 85.7 2.05

[91.5, 91.7] [99.9, 99.9] [85.6, 85.8] [1.77, 2.32]
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4.3. DeepSpot enables accurate mRNA spot detection
Summary statistics of performance of each model type are shown in Table 3 including the mean F1-
score, precision, recall and ambiguous matches, with 95% confidence interval. For a given model 𝑀
each metric was computed for all enhanced images (8100 total). The mean metric value 𝑥 and 95%
confidence interval𝐶 were then calculated separately for each model type. Due to the high prevalence of
True Negatives, instead of the Accuracy measure, we calculated the F1-Score, which gives an indication
of the model accuracy with a better balance between classes than the actual accuracy measure, by not
including True Negatives. We compared the F1-scores for each of the 14 genes present in the test
dataset, no major difference in DeepSpot performance can be observed for these genes (Supplementary
Figure S3). This consistency in performance across different SNR values (Supplementary Figure S2)
shows that DeepSpot has the capacity to enhance spots in images with varying characteristics.

The results in Table 3 indicate that the number of FP is very low for all models, given that both
precision and recall are high. Importantly, Mhybrid has shown best overall performance in terms of
precision, recall and F1-score, thus indicating that the mRNA spot enhancement by Mhybrid leads to the
least FP and FN counts in the downstream mRNA spot detection.

Figure 5. Heatmap of the F1-scores obtained by each of the 22 models when evaluated on the 21 test
datasets described in Table 1.

Figure 5 shows the mean F1-scores for each of the 22 models evaluated on the 21 datasets. This
heatmap indicates that (i) models trained on the DSi

fixed training sets perform better on the corresponding
DSi

fixed test sets rather than on variable intensity test sets, (ii) models trained on DSi
var training sets show

better performance on the corresponding test sets rather than on fixed intensity test sets. It also shows
that Mvar models are globally better than Mfixed models. A plausible hypothesis is that training on
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variable intensities makes models better at generalizing on other data. Finally, Mhybrid is the model that
has the best overall performance, including the experimental dataset. Again, the diversity of training
data drives this model to be more robust to newly encountered data.

More generally, given that the F1-score is above 90% for all the models, we can conclude that
the architecture of the DeepSpot neural network is particularly suited for the task of mRNA spot
enhancement.

4.4. DeepSpot enables more accurate spot detection compared with deepBlink
The main objective of our DeepSpot method is to circumvent the parameter fine-tuning and enable
the downstream spot detection with an unique parameter set. As such, this objective fits well with the
one that the authors of deepBlink (7) have pursued, despite the fact that the latter proposes a new spot
detection method, while our goal is to fit a spot enhancement step into commonly used workflows.
Consequently, deepBlink constitutes a relevant comparison target.

deepBlink

Experimental data 
from DSexp

Simulated fixed 
intensity

Simulated variable 
intensity

DeepSpotOriginal
deepBlink
Zoom In

DeepSpot 
Zoom In

Ground 
truth

Experimental data 
from deepBlink 

Figure 6. Examples of the results obtained with DeepSpot and deepBlink on the experimental test
datasets DSexp (first row) and deepBlink (second row), and the simulated spots with fixed (DSfixed)
and variable (DSvar) intensity datasets for the third and fourth rows, respectively. Colored circles

indicate where the spots were detected by DeepSpot and deepBlink (blue and green, respectively). In
the ground truth column, pink circles indicate the spots that were previously annotated as ground truth
by alternative methods. The last two columns show the magnification at the positions indicated by the

colored rectangles for DeepSpot and deepBlink, respectively.

We compared the accuracy of spot detection by the model MdB made available on deepBlink associ-
ated GitHub with that of DeepSpot when trained on hybrid data Mhybrid, both on our datasets as well as
on the dataset provided by the authors of deepBlink, DSdB. Table 4 shows the F1-scores for each dataset
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category. It should be noted that deepBlink’s precision is close to 99% while its recall is very low for
certain datasets (Supplementary Figure S4), meaning that the main drawback of deepBlink is in terms
of false negatives (missing true spots). We illustrate this on Figure 6 where we provide a comparison of
deepBlink and DeepSpot on both experimental and simulated data example.

Table 4. Models’ performance for deepBlink and DeepSpot for smFISH spot detection. Overall
F1-scores are calculated by averaging the values obtained for each image of the test datasets

corresponding to each dataset category. Top values in each cell correspond to the mean value, bottom
values between brackets show the 95% confidence interval. Best values are highlighted in bold.

Model
F1-score(%) DSexp DSvar DSfixed DSdB

MdB
78.7 47.97 67.4 94.2

[75.26, 82.14] [46.86, 49.07] [66.28, 68.51] +- 0.141(std)

Mhybrid
94.43 96.67 98.04 87.92

[93.41, 95.45] [96.58, 96.75] [97.96, 98.12] [85.36, 90.49]

DeepSpot clearly outperformed deepBlink on our datasets (Table 4). However, we found that MdB
performed better on experimental data than on simulated data, presumably because deepBlink model
has only been trained on experimental data. Mhybrid results were consistent on all of our datasets. We
have also applied our Mhybrid model to the smFISH test dataset DSdB provided by the authors of deep-
Blink. Results reported in Table 4 for the detection of spots by MdB from the images of the DSdB dataset
are those obtained by the authors and originally reported in (7). Not surprisingly, deepBlink model per-
formance is better on their own smFISH images, however DeepSpot managed to have an F1-score of
nearly 88%, a noticeable achievement since the model has not been trained on the DSdB data. Together,
the results of Table 4 indicated that DeepSpot is a robust methodology that offers a generalist model
for mRNA spot enhancement and ensures high quality downstream spot detection without parameter
tuning.

4.5. DeepSpot’s use in an end-to-end smFISH experiment
To evaluate whether DeepSpot can be effectively used in an and-to-end smFISH experiment, we have
performed a wound healing assay in which cells migrate towards a wound to close it. To investigate
whether 𝛽-Actin was enriched at the leading edges of 3T3 migrating fibroblast cells (see 3.1.1). The
wound location was manually annotated as shown on a typical image example in panel A, Figure 7.

All the cell images were segmented by manually, yielding cell and nucleus masks. Wound location
defined the cell migration direction as schematically shown in panel C, Figure 7. We partitioned the cell
masks into three sections by computing 120◦ section centered at the nucleus centroid, and anchoring
one of these sections as oriented towards the wound location Swound at 60◦ angle to the left and to the
right of the line between the nucleus centroid and the wound location. This cell segmentation allowed
us to compute the normalised number of detected mRNA spots in the cytoplasmic part of each section
𝑆1, 𝑆2, 𝑆3.

Using the DypFISH framework (44), we further compared the cytoplasmic mRNA relative density
in Swound (light blue) and in sections that are not oriented towards the wound (dark blue), as shown in
Figure 7, Panel B. We used the Polarity Index (44), that measures the enrichment of mRNA in differ-
ent sections. Briefly, the Polarity Index measures how frequently the relative concentration within the
wound section is higher than in the non-wound section. The Polarity Index lies between [−1, 1], a pos-
itive value implying a wound-correlated enrichment of RNA transcripts while a negative values implies
enrichment away from the wound and a value of zero implies no detectable enrichment.
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A

C

B

D

120°

Wound location

Non Leading 
edge

Leading 
edge

 Cell

Figure 7. Processing steps for the end-to-end wound healing assay. Panel A is a typical smFISH
image of the wound healing assay is shown. Panel B shows the cell quantization procedure in three

sections and the direction of the wound (red arrow). Swound section is oriented towards the wound and
is shown in light blue, other sections are in dark blue. Panel C represent how the cell and nucleus were
manually segmented and mRNA spots were counted after enhancement within the cytoplasmic portion
of each section. Panel D presents the Wound Polarity Index (WPI) of cytoplasmic mRNA transcripts in

Swound compared to other sections for the 𝛽-Actin RNA. WPI was calculated in migrating and
non-migrating cells. The bars correspond to the median and the error bars to the standard deviation

from the median for 100 bootstrapped WPI estimates.

𝛽-Actin mRNA was highly enriched in the leading edge of migrating cells, whereas almost no
detectable enrichment of 𝛽-Actin was found in the leading edge of control cells. This is in line with
previously published data, showing enrichment of 𝛽-Actin in leading edges of migrating fibroblasts (45).
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5. Discussion and conclusion
Recent FISH microscopy methods are capable of generating thousands of images, it has thus become
imperative to introduce algorithms capable to streamline the detection of mRNA spots and in particular
to avoid manual fine-tuning of numerous parameters.

5.1. Limitation
The impact of the non-specifically bound probes was not evaluated in this work. Consequently, even
if DeepSpot is trained to distinguish between multiple signal intensity variations, in cases where the
signal intensity of the non-specifically bound probes is too similar in shape and intensity to the signal
of the specifically bound probes, then DeepSpot will not be able to enhance only spots corresponding to
specifically bound probes. This issue, common to all detection methods deserves further investigation.

Moreover, it remains to be investigated whether DeepSpot would be suitable for more complex sys-
tems such as tissues and which adaptations in terms of its architecture and training data it would require.
Moreover, even if DeepSpot architecture was designed to be easily extensible to 3D by changing the
2D convolution layers to 3D layers in Tensorflow, the performance of DeepSpot in 3D has not been
evaluated.

5.2. Discussion
In this work we introduced DeepSpot, a novel CNN architecture specifically designed to enhance RNA
spots in FISH images, thus enabling the downstream use of well known spot detection algorithms, such
as the ICY spot detector, without parameter tuning. In particular, the architecture of our network intro-
duces the Context Aggregation for Small Object module that relies on sparse convolution to provide
more context for enhancement of small objects corresponding to mRNA spots. DeepSpot network has
been trained and tested on 21 simulated datasets, all with different signal and noise characteristics,
as well as on a previously published experimental dataset that was annotated for spot locations. We
have shown (i) that our approach achieves better performance when the training is performed on data
with highly variable intensity and (ii) that performing training on a combination of experimental and
simulated data is a viable approach in real-life setting.

Furthermore, we compared the performance of combining DeepSpot and ICY to that of the state-
of-the-art deep learning-based method deepBlink and have shown that on average, DeepSpot enables a
substantially better detection of mRNA spots than deepBlink. We found that DeepSpot / ICY workflow
provided excellent quality spot detection on the test datasets corresponding to the datasets on which it
has been trained, with the average F1-score above above 97%, but also achieved high precision results
on fully unknown datasets with the F1-score of 88% for the datasets provided with the deepBlink pub-
lication. Taken together, the good results on both known and unknown data indicate that DeepSpot is
a more generalist model than deepBlink and that it achieves a good balance between overfitting and
underfitting. We hypothesize that this generalization capacity is possibly due to both strong regular-
ization within the network and the diversity of signal provided by the carefully constructed training
data.

To evaluate how well our method is suited for end-to-end biological investigations, we have shown
the efficiency of the DeepSpot model trained on the combination of experimental and simulated data
in the context of an independent study of cell migration. We have performed single molecule FISH to
detect 𝛽-Actin in mouse fibroblasts in a wound healing assay and enhanced the resulting images using
our combination model, which allowed us to detect that the 𝛽-Actin mRNA enrichment is specific to
leading edge of migrating cells as contrasted by its expression in non-migrating cells.

To conclude, we have shown that DeepSpot enhancement enables automated detection and accurate
localization of mRNA spots for downstream analysis methods and can thus be a useful tool to streamline
not only spot detection, but also studies of localized mRNA enrichment within cells.
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