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Abstract

This paper’s purpose is the contact of a rolling body on a viscoelastic multi-layered half-space.

Firstly, the contact is formulated with the classical definition of the gap and the pressure states in

the contact zone and outside. L layers are considered on a substrate, L being any positive inte-

ger. Secondly, the influence coefficients related to an elastic multi-layered half-space are found,

using the Papkovich-Neuber potentials. Tractions and displacements continuity is assumed at the

interfaces, and then a construction of matrix systems corresponding to a unit pressure and a unit

shear imposed at the top surface, leads to the general problem to solve. Further, the solution for

any kind of pressure and/or shear distributions at the contact surface is inferred by convolution

with the influence coefficients found earlier, using the Fast Fourier Transform (FFT) algorithms.

Throughout the steps, an Elastic/Viscoelastic correspondence is used in order to take into account

not only the change of behaviour of the half-space during time, but also to superpose the load his-

tory. Conjugate Gradient Method (CGM) algorithms are used to solve the variational problem that

yields from the contact problem definition. In the present paper, a parametric study is performed

to highlight the effects of the elastic modulus and the relaxation time on some relatively simple

cases of rolling contact.

Key words: Viscoelastic material, Multi-layered half-space, Semi-Analytical Method, Transient

analysis.
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1. Introduction

Various motions can occur when two bodies get into contact. One of the most common among

them is the rolling contact. When the bodies in contact are considered completely elastic, the pure

rolling and the pure sliding contacts are the same if there is no Coulomb’s friction at the contact

interface. Otherwise, when friction is considered at the contact interface, under tangential forces,

the rolling contact shows sliding zones beside adhesion zones. This kind of rolling, called tractive

rolling, is the general case of rolling contact. It comes clear that when there is no tangential (or

tractive) force, the tractive rolling case coincides with the pure rolling contact. And, when the

tractive force is higher than the product of the normal force by the friction coefficient, the contact

becomes a pure sliding contact (Coulomb’s law).

The general tractive rolling contact has been tackled first by Carter (1926), followed by a cer-

tain number of scientists (see for example Kalker (1967), Bentall and Johnson (1967), Johnson

(1985), Nowell and Hills (1988)) among whom Kalker (1967, 1990, 1991) has given the most

complete theory. The Kalker’s theory covers the rolling contact in its various aspects.

In more recent works, the tractive rolling is modelled taking advantage of improvements in numer-

ical techniques. For instance, Guler et al. (2012) developed a semi-analytical method for solving

the tractive rolling contact but for graded coatings. Wang et al. (2012) developed a numerical ap-

proach for analysing three-dimensional steady-state rolling contact including creep using a semi-

analytical method. Manyo et al. (2020) further designed a similar semi-analytical method based

on the Kalker’s theory coupled with Conjugate Gradient algorithms and Fast Fourier Transforms.

Besides, the modelling of multi-layered structures is certainly of great interest for those who

work with coated bodies or composites for example. The latter structures are widely popular and

used in many fields. For an elastic bilayer structure i.e. a single elastic layer on an elastic sub-

strate, a first resolution has been proposed by O’Sullivan and King (1988) and followed by others

( Nogi and Kato (1997), Plumet and Dubourg (1998), Polonsky and Keer (2000), Liu and Wang

(2002), Stepanov and Torskaya (2018), ...). For two elastic layers on an elastic substrate, Chen

(1971) performed an exact analysis for a two dimensional case. For a general case of L layers, L

being any positive integer, most of the literature works are based on finite element methods ( Chen
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and Bull (2009), Djabella and Arnell (1994), Gorishnyy et al. (2003), Kot (2012), Komvopoulos

(1988), Assogba et al. (2020)). However, Yu et al. (2014) solved the problem analytically in the

Fourier frequency domain by constructing a matrix system and used numerical algorithms to find a

semi analytical solution for the influence coefficients. In geology science, the study of the ground

lead to the modelling of the multi-layered systems (see for instance Kuo (1969), Bufler (1971),

Farrell (1972), Peltier (1974)) but in 2-D.

In addition to the multi-layered structure’s influence, when some of the layers in a multi-layered

structure have a non negligible viscoelastic behaviour, it changes the whole behaviour of the struc-

ture. This can easily be seen by observing roads in summer, when the top layer’s viscoelastic

properties are emphasized by higher temperature. Then, the whole road does not respond me-

chanically as in winter. The modelling of viscoelastic contacts has been treated by many authors

from Lee and Radok (1960) to recently Xu et al. (2020), Zhang et al. (2020), Nguyen and Hwu

(2020), Wallace et al. (2020), Menga et al. (2021), through Kalker (1991), Goryacheva et al.

(1995), Wayne Chen et al. (2011) Koumi et al. (2014, 2015), Putignano and Carbone (2014);

Putignano et al. (2015, 2016), Menga et al. (2014, 2016), Stepanov and Torskaya (2016, 2018),

Kusche (2017), Scaraggi and Comingio (2017), Putignano and Carbone (2018), Goryacheva and

Miftakhova (2019), Torskaya and Stepanov (2019), and others. The modelling of viscoelastic

contacts is now widely known and solved for various motions (rolling, sliding, reciprocating, fret-

ting), various punches (in term of geometry and mechanical properties) and with different methods

(Boundary Element Methods, Semi-Analytical Methods, Finite Element Methods).

For the first time a method is proposed to solve the 3D contact problem with a viscoelastic

multi-layered half space. Some examples are also provided to illustrate the performances of the

numerical techniques used to tackle the problem. The exposed method allows to solve the tractive

rolling contact for any geometry of punch and in both transients and steady state regimes, how-

ever in this paper we only focus on the effect of viscosity for a multi-layered half-space and a

frictionless contact with a rolling or sliding sphere. A further paper will complete this work with

details on the tractive rolling modelling in viscoelasticity. In the following, firstly we present our

problem, find the elastic influence coefficients for the multi-layered half-space in a second time,

perform an Elastic/Viscoelastic correspondence to account for the viscoelastic behaviour of each
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layer, and then we make a parametric study in a pure rolling case in transient and steady-state

regimes.

2. Formulation

Figure 1: System being considered. A pressure and a shear distributions are applied at the surface of a viscoelastic

multi-layered half-space, where the L layers and substrate have different viscoelastic behaviours

The system being considered consists of two bodies (1 and 2) in contact over a region Γc.

Body 1 can be of any kind of geometry, rigid, elastic or even viscoelastic, and body 2 is the

actual viscoelastic multi-layered half-space. In this framework, we consider that the layers are

perfectly bonded to one another. It means that the displacements are continuous at the interfaces.

In addition, we add the traction continuity condition at the interfaces.

The classical definition of the contact for numerical applications begins with the definition of

the gap between the bodies: the surface separation g(x, y, t) between the two bodies is defined at

every point at the contact surface as the sum of the initial separation gi(x, y), the elastic and the

viscoelastic normal displacements of both bodies under the load history u
(B1+B2)

3
(x, y, t) and, if there

is some, the rigid body displacement δ(t) at every time t. Then, we have the following equation:

g(x, y, t) = gi(x, y) + δ(t) + u
(B1+B2)

3
(x, y, t) (1)
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Once the gap is defined, let us call p(x, y, t) the local pressure at a point (x, y) on the surface at

a time t. Then we can identify the contact conditions:

(x, y) ∈ Γc; g(x, y, t) = 0 and p(x, y, t) > 0 (2a)

(x, y) < Γc; g(x, y, t) > 0 and p(x, y, t) = 0 (2b)

The above contact conditions take into account the non-penetration and the pressure positivity

conditions. We add the load balance: if a normal force FN(t) is applied on the system, it must be

equal to the integral of the contact pressure distribution p(x, y, t) over the contact zone Γc. This

reads as follow:

FN(t) =

∫

Γc(t)

p(x, y, t)dS (3)

It is important to remark that the contact is solved at every time step. It means that whatever

the load history is, it is taken into account at the present step. This allow us to solve transient

contact problems, as shown later in the results section.

In the above contact definition, the elastic and viscoelastic displacements remain unknown. In the

next part, we will find the elastic response of the multi-layered half-space under a unit pressure

and a unit shear. This response is the influence coefficient that we will formulate in terms of

Papkovich-Neuber potentials.

2.1. Influence coefficients for multi-layered elastic half-space

Consider a multilayered half-space with L linear elastic and homogeneous layers on a linear

elastic and homogeneous substrate. From the top to the bottom, the layer j shear modulus is µ j,

its Poisson’s ratio is ν j and its thickness is h j ( j = 1, ..., L). For the substrate, the shear modulus

is µL+1 or µsub and the Poisson’s ration is νL+1 or νsub. We use the Papkovich-Neuber potentials φ j

and ψ
j

i
to express the elastic field. φ j and ψ

j

i
are harmonic functions of (x, y), and when no body

forces are present, Malvern (1969) showed that ψ
j

2
can vanish. Then we can write displacements

and stresses as functions of the potentials φ j, ψ
j
x and ψ

j
z :

2µ ju
j

i
= φ

j

,i + xψ
j

x,i + z jψ
j

z,i − (3 − 4ν j)ψ
j

i
(4a)
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σ
j

ik
= φ

j

,ik
− 2ν j(ψ

j
x,x + ψ

j
z,z)δik − (1 − 2ν j)(ψ

j

i,k
+ ψ

j

k,i
) + xψ

j

x,ik
+ z jψ

j

z,ik
(4b)

where the Einstein’s notation is used and j = 1, ...L + 1.

In the above equations, the coma stand for the partial derivative (eg: φ,x =
∂φ

∂x
). To avoid performing

those partial derivatives, a linearization of Eqs. (4a) and (4b) is done using Fourier Transform

(FT). Recalling the properties of FT:

FTx

[

∂

∂x
φ(x)

]

= imφ̃(m) (5a)

FTx[−ixφ(x)] =
∂

∂m
φ̃(m). (5b)

Furthermore, we define the transformed Papkovich-Neuber potentials using bi-harmonic func-

tions:

˜̃φ j = A j exp
(

−αz j

)

+ A
j
exp

(

αz j

)

(6a)

˜̃ψ j
x = B j exp

(

−αz j

)

+ B
j
exp

(

αz j

)

(6b)

˜̃ψ j
z = C j exp

(

−αz j

)

+C
j
exp

(

αz j

)

. (6c)

Therefore, we have linear equations in the Fourier frequency domain to solve.

Let’s introduce the following notations: w
j
+ = eαz j and w

j
− = e−αz j , where α =

√
m2 + n2 is the

radius in the frequency domain; (m, n) represents the Fourier Transform of (x, y).

We can, then, infer the forms of displacements and stresses in the Fourier frequency domain (see

Appendix A).

In those displacements and stresses, the following A j, A
j
,B j, B

j
,C j and C

j
terms are unknown.

Note that A
L+1
= 0, B

L+1
= 0 and C

L+1
= 0 because the elastic field must vanish at infinity. Thus,

we need a system of 6L + 3 equations for finding the unknowns.

To construct the system to solve, we have to set the boundary conditions first. They are:
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• At the top surface, which is the contact surface of the whole multi-layered half-space i.e. at

z1 = 0, pressure and shear fields are imposed:

σ1
zz(x, y, 0) = −δp(x, y), σ1

zx(x, y, 0) = −δq(x, y), σ1
zy(x, y, 0) = 0. (7)

where δp and δq are Dirac distributions, with subscripts p and q for normal and tangential

loading, respectively.

• At all the interfaces, tractions and displacements continuity is required:

σ j
zx(x, y, h j) = σ

j+1
zx (x, y, 0) u j

x(x, y, h j) = u j+1
x (x, y, 0)

σ j
zy(x, y, h j) = σ

j+1
zy (xxy, 0) u j

y(x, y, h j) = u j+1
y (x, y, 0)

σ j
zz(x, y, h j) = σ

j+1
zz (x, y, 0) u j

z(x, y, h j) = u j+1
z (x, y, 0)

(8)

Hence, applying double Fourier Transform (FT) to the above boundary conditions, a system of

6L+3 equations with 6L+3 unknowns comes. Following the steps of Yu et al. (2014), the system

can be split into two matrix systems: one keeping the applied shear contribution and the other, the

contribution of the applied pressure. Thus, the matrix systems to solve are:



















































































































2α(1 − ν1) −2α(1 − ν1)

. . .
. . . 0

−4(1 − ν j)θ
j
− −4(1 − ν j)θ

j
+ 4(1 − ν j+1)µ( j, j+1) 4(1 − ν j+1)µ( j, j+1)

2α(1 − ν j)θ
j
− −2α(1 − ν j)θ

j
+ −2α(1 − ν j+1) 2α(1 − ν j+1)

. . .
. . .

. . .
. . .

0 −4(1 − νL)θL
− −4(1 − νL)θL

+ 4(1 − νL+1)µ(L,L+1)

2α(1 − νL)θL
− −2α(1 − νL)θL

+ −2α(1 − νL+1)
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(9)
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and



































































































































α α 2(1 − ν1) −2(1 − ν1)

α −α 1 − 2ν1 1 − 2ν1 0

. . .
. . .

X1 j X2 j

. . .
. . .

α α(θL
+)

2
αhL αhL(θL

+)
2 −αµ(L,L+1)θL

+ 0

α −α(θL
+)

2
3 − 4νL + αhL (3 − 4νL + αhL)(θL

+)
2 −αµ(L,L+1)θL

+ −µ(L,L+1)(3 − 4νL+1)θL
+

0 α −α(θL
+)

2
1 − 2νL + αhL (1 − 2νL − αhL)(θL

+)
2 −αθL

+ −(1 − 2νL+1)θL
+

α α(θL
+)

2
2(1 − νL) + αhL −[2(1 − νL) − αhL](θL

+)
2 −αθL

+ −2(1 − νL+1)θL
+
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S L
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(10)

where θ
j
+ = eαh j , θ

j
− = e−αh j , µ( j, j+1) =

µ j

µ j+1
and the sub-matrices X1 j and X2 j are written as follow:

X1 j =



















































α α(θ
j
+)

2
αh j αh j(θ

j
+)

2

α −α(θ
j
+)

2
3 − 4v j + αh j

(

3 − 4v j − αh j

)

(θ
j
+)

2

α −α(θ
j
+)

2
1 − 2v j + αh j

(

1 − 2v j − αh j

)

(θ
j
+)

2

α α(θ
j
+)

2
2
(

1 − v j

)

+ αh j −
[

2
(

1 − v j

)

− αh j

]

(θ
j
+)

2



















































X2 j =



















































−αµ( j, j+1)θ
j
+ −αµ( j, j+1)θ

j
+ 0 0

−αµ( j, j+1)θ
j
+ αµ( j, j+1)θ

j
+ −µ( j, j+1)

(

3 − 4v j+1

)

θ
j
+ −µ( j, j+1)

(

3 − 4v j+1

)

θ
j
+

−αθ j
+ αθ

j
+ −

(

1 − 2v j+1

)

θ
j
+ −

(

1 − 2v j+1

)

θ
j
+

−αθ j
+ −αθ j

+ −2
(

1 − v j+1

)

θ
j
+ 2

(

1 − v j+1

)

θ
j
+



















































(11)

In Eqs. ((10)), the right hand terms remain to be defined. Those S 0
1
, · · · , S L

4
are functions of the

B j and B
j
found solving Eqs. ((9)) and their derivatives. All those functions are given in Appendix

B.

The systems of equations ((9)) and ((10)) can be solved to find explicit expressions of the variables

A j, A
j
, B j, B

j
, C j and C

j
. Those explicit solutions have been given by Yu et al. (2014). In the

present work, we have chosen to find the exact analytical solution only for the Eq. ( (9)). For the

system of equations ((10)), a numerical inversion is performed. This will help us avoid errors that

can be made since the solutions are long and complex. Thus, we use a Gauss-Jordan algorithm to

make the inversion of the (4L+ 2)× (4L+ 2) matrix. The cost of the numerical inversion depends,

of course, on the number of layers, and also on the size of the computational area.

At this point, the Green functions are found in the Fourier frequency domain. For finding them

in the space domain, we have to perform an Inverse Fourier Transform (IFT) (see Liu and Wang

(2002)). In the present work, the IFT is handled with Fast Fourier Transform (FFT) algorithms as

proposed by Liu et al. (2000).

Once the solution is found, we have the solution of the elastic contact on a multi-layered half-
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space with any L layers.

In the next section, we find a way to turn this elastic field to a viscoelastic one, and, to transform

the static solution in order to make a quasi-static rolling motion.

2.2. Viscoelastic rolling contact 𝝁𝟎

𝝁𝟏
𝝁𝒏

𝜼𝟏
𝜼𝒏

Figure 2: Generalized Maxwell model

A viscoelastic material is a one which mechanical behaviour’s changes in time. In this work

we will consider a generalized Maxwell model (see Fig. 2) and its Prony series decomposition:

R(t) =















µ0 +

n
∑

i=0

µi exp(−t/τi)















H(t) (12)

where,

µi is the spring stiffness,

ηi the dashpot viscosity,

τi = ηi/µi the relaxation time of one elementary model and

H(t) the Heaviside function.

The Relaxation function in Eq. ((12)) is related to the creep function with the relation:

∫ t

0

J(ξ)R(t − ξ)dξ = t. (13)

For one relaxation time, the creep and relaxation functions can directly be written as:

J(t) =

[

1

µ0

− 1

µ1

exp

(

− t

τ

)

]

=

[

1

µ∞
+

1

µ1

(

1 − exp

(

− t

τ

))

]

(14)
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R(t) =















µ0 + (µ∞ − µ0) exp















− t
µ0

µ∞
τ





























(15)

0 1 2 3 4 5 6 7

t==

0

1

2

3

4

5

6

7

8

9

10

7
1
#

J
(t

)

(a)

0 0.5 1 1.5 2

t==

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
(t

)=
7

1
(b)

Figure 3: Creep function (a) and relaxation function (b)

Further, we will use this model (see Fig. 3) to compute simple configurations in section 3.

2.2.1. Elastic/Viscoelastic correspondence

The Elastic/Viscoelastic correspondence that we use is the same as explained in Wallace et al.

(2020). We first discretize the computation time interval into regular time steps. Then, at a time

step t we (i) replace the elastic modulus 1
2µ j

by the corresponding creep function J j(t) and (ii)

integrate the history.

Let’s recall first the correspondence in the case of homogeneous bodies. For a viscoelastic

body, the displacement ui at a time t can be written as:

ui(x, y, t) =

∫ t

0

∫ ∫

R2

Fi j(x − x′, y − y′, t − t′)σ̇ j(x′, y′, t′)dx′dy′dt′

=

∫ t

0

∫ ∫

R2

Fi j(x′, y′, t − t′)σ̇ j(x − x′, y − y′, t′)dx′dy′dt′
(16)

where σ j are the components of the applied stress at the surface and Fi j(x, y, t) the viscoelastic

influence coefficients. The dot˙represents the partial derivative with respect to time.

Consider a homogeneous semi-infinite body, the viscoelastic influence coefficients Fi j(x, y, t) can
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be written as:

Fi j(x, y, t) = J(t)Gi j(x, y), (17)

where the term Gi j is included in the elastic influence coefficient and does not depend on the elastic

properties of the body. J(t) is the creep function defining the viscoelastic behaviour of the body.

The reader may find this correspondence method for a homogeneous half-space in Wayne Chen

et al. (2011) for instance. Thus the above displacement can be written as:

ui(x, y, t) =

∫ t

0

J(t − t′)

∫ ∫

R2

Gi j(x′, y′)σ̇ j(x − x′, y − y′, t′)dx′dy′dt′. (18)

This means that a convolution is performed between the elastic influence coefficients Gi j - which

are constant - and the applied stress at every time step. And then the time integral, containing the

creep function and the history of the loading, is calculated.

Now, when moving to the case of a multi-layered half-space, the factorisation in Eq. (17) is

not possible in that same way.

What we have done for this model is:

✧ Firstly, we have observed that the use of the potentials of Papkovich-Neuber implies the

following forms of the displacements:

2µrur
i = φ

r
,i + xψr

x,i + zψr
z,i − (3 − 4ν)ψr

i , (19)

where µ is the shear modulus of the layer r and φ and ψi are the potentials of Papkovich-

Neuber.

In the left hand term, the factor 2µ is ideal for the correspondence since it has to be replaced

by its viscoelastic equivalent J(t).

✧ Secondly, solving the boundary conditions, it has come that the right hand term depends

on the ratios µk/µk+1, k being the subscript corresponding to the layer k according to the

convention in the paper. Since we have supposed that the Poisson’s ratios do not change

with time, the change of behaviour of the material is given only by those ratios µk/µk+1.
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✧ The last remark have lead us to propose the following equation for the viscoelastic displace-

ments:

ui(x, y, t) =

∫ t

0

J(t − t′)

∫ ∫

R2

Ḡ1
i j(x′, y′, Jk(t′)/Jk+1(t′))σ̇ j(x − x′, y − y′, t′)dx′dy′dt′. (20)

This equation is an approximation of the exact solution. It meets the exact solution in steady

state regime and in some other cases as discussed in Appendix C. In transient regime, we

believe the error made is marginal with regard to the behaviour of the Fourier transform (see

Appendix C for details).

Therefore, we can perform the correspondence but we need to recalculate the right hand term

of Eq. (19) at every time step. This recalculation of the influence coefficients has an additional

cost on the overall simulation time. However, the simulation remains straight and fast.

The resulting equation for the normal displacement at the contact surface that we are seeking

for in Eq. ((1)) is:

uB2
z (x, y, t) =

∫ t

0

J1(t − ξ)
[

Ḡ1 (x, y, ξ) ∗ ∂p(x, y, ξ)

∂ξ

]

dξ (21)

where,

• * represents the convolution product,

• J1(t) is the creep function of the top layer,

• Ḡ1 is contained - as explained above - in the Green function (the influence coefficients) for

the normal displacement at the surface z = 0 of the half-space, in which the ratios µk/µk+1

are replaced by their equivalent Jk(t)/Jk+1(t).

This correspondence can be applied for the two bodies in contact and then a contact between

two viscoelastic multi-layered bodies can be simulated. For simplicity, we will restrain the results

in this paper to the case an elastic body 1 in contact with a viscoelastic multi-layered body 2.
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2.2.2. Rolling/sliding approach

The rolling contact can be a pure rolling motion (i.e with no traction force, so there is no need

to take into account the friction coefficient) or a tractive rolling contact (where a traction force is

present). Note that a frictionless sliding motion is equivalent to pure rolling (Koumi et al. (2015)).

In this paper, we consider a free rolling motion for a body of revolution over the half-space. A

further paper will present the tractive rolling contact.

Let’s assume that the time range of simulation is divided into Nt uniform time steps of size ∆t, the

elementary displacement of the body 1 is then ∆~r = ~v × ∆t. From an initial framework where the

fixed coordinate system is represented by the superscript 0, to the actual framework, the normal

displacement is:

uB2
z (x, y, t) =

∫ t

0

J1(t − ξ)












Ḡ1 (x, y, ξ) ∗
∂p(x0 − α∆r0

x, y
0 − α∆r0

y , ξ)

∂ξ













dξ. (22)

It shows that we make a translation of the actual pressure field and the relaxed pressure fields from

the previous step in the fixed framework with a vector α∆~r0
(

α∆r0
x, α∆r0

y

)

, α being the actual time

step index.

2.2.3. Numerical approach

The numerical implementation needs a discretization of both space and time. The contact

surface is discretized into N1×N2 elements, while the time domain is subdivided into Nt time steps

∆t. Then, using the finite difference method for
∂p

∂ξ
the discretized form of Eq. ((22)) becomes:

uB2
z (i, j, α) =

α
∑

k=0

J1[(α − k)∆t] ×
















N1
∑

i′=1

N2
∑

j′=1

Ḡ1
(

i − i′, j − j′, k∆t
) × (

p(i′, j′, k) − p(i′, j′, k − 1)
)

















,

(23)

where one can infer that i, j and α are the indices for x, y and t respectively. For k = 0, the term

with k − 1 has to be zero.

Note that the translation process explained in the previous section does not clearly appear in the

notation of the pressure here; so, the reader should make sure to perform the translation between

the actual and the precedent time steps.

To find the solution of the contact problem, we apply the variational formulation and use the

Conjugate Gradient Method (CGM) algorithm to solve it (see Gallego et al. (2010) for the com-
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plete method). The convolution product terms are evaluated using a Discrete Convolution-Fast

Fourier Transform (DC-FFT) algorithm to reduce the number of operations from (N1 × N2)2 to

(N1 × N2× log(N1 × N2)) (see the algorithm of Liu et al. (2000)).

At the time step α, the only unknown in the above equation is the actual pressure field. The

implementation gives:

1. For α = 0, the elastic solution of the contact is found: p(i, j, 0).

2. For any α, the Green functions are recalculated Ḡ1 (i − i′, j − j′, (α)∆t). Then, the term

H(α) =

α−1
∑

k=0

J1[(α − k)∆t] ×
















N1
∑

i′=1

N2
∑

j′=1

Ḡ1
(

i − i′, j − j′, k∆t
) × (

p(i′, j′, k) − p(i′, j′, k − 1)
)

















− J1[(α − α)∆t] ×
















N1
∑

i′=1

N2
∑

j′=1

Ḡ1
(

i − i′, j − j′, (α)∆t
) × (

p(i′, j′, α − 1)
)

















(24)

is calculated and stored.

The remaining term J1[(α − α)∆t] ×
[

∑N1

i′=1

∑N2

j′=1
Ḡ1 (i − i′, j − j′, (α)∆t) × (p(i′, j′, α))

]

con-

tains the unknown pressure field and so is solved with the CGM algorithm.

When the surface pressure is known at the time step α, the 3D stresses can be computed using

the actual contact pressure and the elastic stresses influence coefficients.

For the calculation of the three-dimensional stresses, two possibilities can be considered:

➢ Applying the correspondence to the stresses.

In this case, the above correspondence for the displacements has to be performed also for

the stresses. This will induce a big amount of time for the calculation of the stresses. We

have not chosen this option because this process leads to a precision which we have judged

not necessary compared to the demand of memory and time.

➢ Instead, we have chosen to use the contact field which is solved in viscoelasticity with no

restriction, as input for the calculation of the stresses. The elastic influence coefficients are

taken for the purpose. It is a modelling choice that has been made by evaluating the cost

versus the accuracy brought.
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Using the developed model, a parametric study is performed in order to highlight the effects

of some of the viscoelastic parameters on the rolling contact. The results are presented in the next

section.

3. Results

3.1. Framework

For the presentation of some illustrative cases, let’s first describe the chosen framework.

We apply a normal force Fn or impose a normal rigid displacement δ on a sphere of radius

R = 10mm which goes in contact with a multi-layered viscoelastic half-space. The sphere is

free-rolling at velocity v along the direction x. Since we want to focus on the effects related to the

viscoelastic multi-layered half-space, we set for the sphere a shear modulus µsphere = 1020MPa

and its Poisson’s ratio is νsphere = 0.3; this very high shear modulus will free us of its elastic effect.

For the layered half-space, we use the notations in Fig. 1 and set L = 10 layers, each of thickness

h j = a0/10 ( j = 1, · · · , 10). The viscoelastic creep and relaxation functions are the ones in Eqs.

((14)) and ((15)). In those equations we will use the subscript j for the layer j (from top to bot-

tom) and the subscript L + 1 = 11 or sub for the substrate. For all, layers and substrate, we keep

µ∞ j/µ0 j = 10 ( j = 1, · · · , L + 1), and we do not change the substrate mechanical characteristics

which are: µ∞sub = µ∞11 = 3.86MPa and τsub = τ11 = 10s. It comes obviously that the substrate

which remains the same will serve us as the reference. Thus, the contact considering no layer gives

the useful Hertz parameters p0 (the maximum contact pressure) and a0 (the radius of the contact

zone) in the elastic case.

We will perform the studies by changing the instantaneous modulus of the layers µ∞ j or/and

its relaxation time τ j ( j = 1, · · · , 10). The instantaneous shear moduli will change following three

main cases (see Fig. 4):

• The ”Alternate Modulus”: the even index layers take the shear modulus value 4 × µ∞sub

while the odd index layers take the shear modulus value µ∞sub :

µ∞ j =
µ∞ j+1

4
= µ∞sub ( j = 1, 3, 5, 7, 9). (25)
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Figure 4: Different cases of variation of the instantaneous shear moduli of the layers, with 10 layers.

• The ”Decreasing Modulus”: the modulus decreases from 6 × µ∞sub with a constant step to

reach the substrate modulus µ∞sub:

µ∞ j =

[

6 − j − 1

2

]

× µ∞sub ( j = 1, · · · , 10). (26)

• The ”Increasing Modulus”: the modulus increases from µ∞sub to 5.5×µ∞sub in the 10th layer:

µ∞ j =

[

1 +
j − 1

2

]

× µ∞sub ( j = 1, · · · , 10). (27)

We can replicate the cases above to have similar changes of the relaxation times. Then we have,

τ j =
τ j+1

2
= τsub (with j = 1, 3, 5, 7, 9) for the ”Alternate Relaxation” time; τ j =

[

3 − j−1

5

]

× τsub

(with j = 1, · · · , 10) for the ”Decreasing Relaxation” time and τ j =
[

1 +
j−1

5

]

× τsub (with j =

1, · · · , 10) for the ”Increasing Relaxation” time.

3.2. Applied Normal Force

Let’s begin our analysis by applying a concentrated force Fn = 1.48N on the sphere. The

rolling velocity is given by vτsub/a0 = 0.8. Then, we compute in the time domain [0, 6τsub]

subdivided into 600 time steps. The contact surface is discretized with elements of size 0.2a0 ×

0.2a0.
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Figure 5: Normalized contact pressures along the rolling direction axis x, for a spherical contact on a multi-layered

viscoelastic half-space with 10 layers with different instantaneous shear moduli; normal force Fn = 1.48N prescribed

and the dimensionless rolling velocity is vτsub/a0 = 0.8. The results are plotted at (a) t = 0, (b) t = τsub/4, (c) t = τsub, (d)

t = 5 × τsub.
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Figure 5 shows the evolution of the contact pressure along the rolling direction axis x. Results

are plotted at (a) t = 0, (b) t = τsub/4, (c) t = τsub, (d) t = 5 × τsub for the homogeneous half-

space and the three non-homogeneous half-spaces where only the instantaneous shear moduli of

the layers vary (see section 3.1).

The first remark about Fig. 5 is that at t = 0, the elastic response correlates well with the results

of Yu et al. (2014) confirming that our method for solving the matrix system in Eq. ((10)) works

well. For the viscoelasticity, the method described in section 2.2.1 has already been validated by

Wallace et al. (2020), thus we will not show again a validation of it. In another hand, one can

observe the significant decrease of the contact pressure peak (at the edge of the contact zone) at

t = τsub/4 . At the time t = τsub, the pressure presents the shape of a steady-state regime but will

continue decreasing to reach the steady-state regime (t = 5τsub). One may also notice that the

more severe situation is found for a decreasing shear modulus, for which the maximum pressure

is always the highest. Note also that, since both surfaces in contact experience the same contact

pressure, it may impact the resistance of the counterface.

The calculations for an applied force is more time consuming as shown previously by Koumi

et al. (2015). This, because we need more time to reach the steady-state regime and also because

we have to perform the computation over a wider surface. Thus, we will perform most of the

parametric study with a prescribed normal rigid body displacement. Keep in mind that it will

activate a relaxation phenomenon.

3.3. Applied Normal Rigid Body Displacement

In this section, we prescribe a normal displacement δ = 0.1a0 and compute in the time domain

[0, 2τsub] with 80 time steps. We discretize the space with elements of size 0.2a0 × 0.2a0 × 0.05a0.

We still use the same rigid sphere, and the rolling velocity is still given by vτsub/a0 = 0.8. We, then,

analyse the effects of the variation of the instantaneous shear moduli, the effects of the variation

of the relaxation times, and the effects of both.

3.3.1. Variation of the instantaneous shear moduli

Despite the absence of Coulomb’s friction coefficient, the viscoelastic dissipation introduces

an assymetry of the contact pressure distribution along the rolling direction, which in fine produces
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a resisting force or a resisting torque. This phenomenon is also encoutered for frictionless elastic-

plastic rolling/sliding contact, as shown in Chaise and Nelias (2011). For more details regarding

frictionless rolling/sliding viscoelastic contact, the reader may refer to Fig. 3 in Koumi et al.

(2015) and Eqs. (22-24) in Wallace et al. (2020).

What is called here the apparent friction coefficient µapp, sometimes also called the viscous

friction elsewhere, is a representation of the hysteresis losses in the viscoelastic material. Again it

is observed for a frictionless contact when inelastic materials are in contact. These losses induce a

tangential resisting force given by:

FT (t) =

∫

Γc(t)

∂u3 (x1, x2, t)

∂x1

p (x1, x2, t) dx1dx2 (28)

where Γc(t) is the real contact area at time t.

Then the apparent friction coefficient is µapp = FT/FN , where FN is the normal load.

Firstly, we focus on the effect of the change of the instantaneous shear moduli of the layers.

For this purpose, we keep the relaxation times the same for all the layers τ j = τsub ( j = 1 · · · , 10)

and modify the instantaneous shear moduli following the cases described in section 3.1. Doing so,

we can plot various outputs such as the contact pressure at different times, the apparent friction

coefficient which expresses the resistance to the rolling, and the three-dimensional stresses.

Figure 6 shows the contact pressure along the rolling axis x at times (a) t = 0, (b) t = τsub/10,

(c) t = τsub/4 and (d) t = τsub. We compare to a homogeneous viscoelastic half-space with the

mechanical properties of the substrate, three non-homogeneous half-spaces with 10 layers having

the same relaxation time but with either increasing modulus, decreasing modulus or alternate

modulus (see Fig. 4).

In all the non-homogeneous cases, the overall stiffness of the layers is higher than the one of

the substrate. This is the reason why the contact pressure of the homogeneous shows the lowest

maximum with a wider profile. Moreover, among those cases, the top layer is stiffer for the

decreasing modulus. As shown for a bilayer by O’Sullivan and King (1988), Wang et al. (2012),

and Wallace et al. (2020), the top surface has the greater direct influence on the contact. Under this

remark, it comes comprehensive that the decreasing modulus shows a higher maximum pressure
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Figure 6: Normalized contact pressures along the rolling direction axis x, for a spherical contact on a multi-layered

viscoelastic half-space with 10 layers with different instantaneous shear moduli; normal rigid displacement δ = 0.1a0

prescribed and the dimensionless rolling velocity is vτ/a0 = 0.8. The results are plotted at (a) t = 0, (b) t = τsub/10, (c)

t = τsub/4, (d) t = τsub.
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Figure 7: Apparent friction coefficient, for a spherical contact on a multi-layered viscoelastic half-space with 10 layers

with different instantaneous shear moduli; normal rigid displacement δ = 0.1a0 prescribed and the dimensionless

rolling velocity is given by vτ/a0 = 0.8

with the smallest contact zone. For the alternate modulus case and the increasing modulus case,

the top layer is the same. Thus, the results allow us to say that the overall stiffness of the alternate

modulus case is lower than the one of the increasing modulus case.

Further, when the time increases, the trend will stay the same since all the layers have the same

relaxation time. In addition, we can see the evolution through a transient regime to achieve what

seems to be a steady-state regime in sub-figure (c) and (d) of Fig. 6. This transition from the

transient to the steady-state regime is confirmed by the apparent friction coefficient in Fig. 7 which

shows that the steady-state regime is achieved quite quickly; far before t = 0.5τsub. Moreover, one

can see the small effect of the instantaneous shear moduli on the resistance to the rolling. This

correlates with results found for only one layer lying on the top of the half-space ( Wallace et al.

(2020)).

Beside the contact results, the sub-surface stresses are of undeniable interest. Figure 8 shows

the dimensionless second invariant of the stress tensor
√

J2/p0, at t = 0 (left) which corresponds

to the elastic case, and at t = 2τsub which is in the steady-state regime.
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Figure 8: Normalized second invariant of the stress tensor
√

J2/p0 in the plane y = 0, for a spherical contact on a multi-

layered viscoelastic half-space with 10 layers with different instantaneous shear moduli; normal rigid displacement

δ = 0.1a0 prescribed and the dimensionless rolling velocity is vτ/a0 = 0.8. Results are plotted at t = 0 (left) and t = 2τ

(right)
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Again, the 3D-stresses distribution correlates well with the results of Yu et al. (2014) at t = 0.

One can clearly see that the effect of the alternate modulus induces a jump of the stress from a

layer to another. The higher stresses appear when we move (from top to bottom,) from a stiffer

layer to a less stiffer one; the exception being near the surface where the modulus is low (the top

layer has the modulus of the substrate). For the increasing and the decreasing modulus cases,

there is no jump of stresses between the layers and in the decreasing modulus case, the stresses

distribution is closer to a homogeneous modulus case distribution. This remark, can mean that for

a decreasing modulus case, the overall half-space behaves like a homogeneous half-space with a

greater instantaneous shear modulus. Otherwise, the increasing modulus case shows an increase

of the stress from top to bottom in the layers, and reaches a maximum at the interface with the

substrate. At that interface, there is a jump from a very high value (the maximum) to a very low

value in the substrate.

At the steady-state regime, for the three plotted cases, the stresses relax (their value decrease)

and the maxima change location. For each, the maximum goes then under the leading edge of

the contact and very close to the surface. This should be correlated with the contact pressure

distribution (see Fig. 6).

3.3.2. Variation of relaxation times

Let’s now focus on the effect of the change of the relaxation times of the layers. For this

purpose, we keep the instantaneous shear moduli the same for all the layers µ∞ j = µ∞sub ( j =

1 · · · , 10) and modify the relaxation times following the cases describes in section 3.1.

Figure 9 shows the contact pressure distribution along the x axis at different time steps. The

elastic response of the three cases is the same as expected since the instantaneous moduli are the

same for all the layers and the substrate. For the alternate, increasing and homogeneous relaxation

cases, the difference is not such significant. The reason lies in the fact that the top layer is the

same for those three cases; and as discussed earlier, the top layer influences the most the contact

behavior. Otherwise, for the decreasing relaxation case, the result is different. The top layer in

that case has a greater relaxation time. Thus, the contact pressure relaxes less rapidly. And, even

when the steady-state regime is achieved, the pressure profile is less wide and the maximum value
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Figure 9: Normalized contact pressures along the rolling direction, for a spherical contact on a multi-layered vis-

coelastic half-space with 10 layers with different relaxation times; normal rigid displacement δ = 0.1a0 prescribed and

the dimensionless rolling velocity is vτ/a0 = 0.8. The results are plotted at (a) t = 0, (b) t = τsub/10, (c) t = τsub/4, (d)

t = τsub.
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Figure 10: Apparent friction coefficient during time, for a spherical contact on a multi-layered viscoelastic half-space

with 10 layers with different relaxation times; normal rigid displacement δ = 0.1a0 prescribed and the dimensionless

rolling velocity is given by vτ/a0 = 0.8

is greater.

When we cast a look at the apparent friction coefficient, see Fig. 10, we see the similarity

of the behaviour for all the cases but the decreasing relaxation time one. For the latter, not only

the steady-state regime is achieved later, but also the apparent friction coefficient is nearly 20%

greater.

Figure 11 presents the 3D stress distribution. At time t = 0 there is no difference as expected.

In the steady-state regime, here for t = 2τ, the distribution of stresses is completely different due

to viscoelastic effects, however the difference between the various configurations of layers is not

very pronounced. We recall that for the calculation of the stresses, we perform a convolution of

the actual contact pressure with the elastic influence coefficients. This can explain that we do

not observe a huge change between the alternate and increasing relaxation cases since the contact

pressures also are close (see Fig. 9). The decreasing relaxation case shows again a narrower dis-

tribution of stresses with a higher maximum stress. However, in all the cases, there is a change of

the distribution in the steady-state regime; the stresses relax and the maximum moves under the
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Figure 11: Normalized second invariant of the stress tensor
√

J2/p0 in the plane y = 0, for a spherical contact on a

multi-layered viscoelastic half-space with 10 layers with different relaxation times; normal rigid displacement δ = 0.1a0

prescribed and the dimensionless rolling velocity is vτ/a0 = 0.8. Results are plotted at t = 0 (left) and t = 2τ (right)
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Figure 12: Normalized contact pressure along the rolling direction axis x, for a spherical contact on a multi-layered

viscoelastic half-space with 10 layers in the increasing modulus case coupled with the decreasing relaxation time case;

the dimensionless rolling velocity is vτ/a0 = 0.8. Results are plotted for an applied force (left) and for an applied body

displacement (right)

leading edge of the surface and closer to the surface.

3.3.3. Variation of both instantaneous shear moduli and relaxation times

We now consider a mixed framework: the increasing modulus case coupled with the decreasing

relaxation time case. The goal is to show a more complex case, under an applied force or an applied

body displacement. For both cases, we discretize the surface with elements of size 0.2a0 × 0.2a0.

And, we perform the computations in the time domain [0, 6τsub] for the applied force case and in

[0, 2τsub] for the applied body displacement.

Figure 12 shows the contact pressure profile along the x axis at various time steps for an

applied force (left) and for an applied body displacement (right). One can immediately see the

huge difference between the profiles in the transient and in the steady-state regime when there is

an applied force compared to an applied body displacement. Furthermore, we can see once again

that the steady-state regime is achieved earlier for an applied body displacement. Confirmation of
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Figure 13: Apparent friction coefficient during time, for a spherical contact on a multi-layered viscoelastic half-space

with 10 layers in the increasing modulus case coupled with the decreasing relaxation time case; the dimensionless

rolling velocity is vτ/a0 = 0.8. Results are plotted for an applied force (left) and for an applied body displacement

(right)

this is given with the apparent friction coefficient plotted in Fig. 13. The latter figure shows also

that for an applied force, the resistance to rolling is higher that for an applied body displacement.

4. Conclusion

In summary, for the first time, a viscoelastic multi-layered half-space is modelled for a rolling

contact problem with a semi-analytical method. Drawn from the method using the Papkovich-

Neuber potentials and Fourier transformation, we constructed matrix systems for the multi-layered

problem and then we applied an elastic/viscoelastic correspondence. Further, with the numerical

tools of semi-analytical methods (mainly CGM and FFT algorithms), we developed a code for

solving the problem efficiently. For example, a three-dimensional computation for L = 10 layers,

for 80 time steps as in section 3.3, for the calculation of both the contact pressure distribution and

the stress field within the viscoelastic multi-layered half-space, takes 8017s CPU (≈ 2h15min) on

a personnal computer.
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Using the developed model, we highlighted some effects of the variation of the instantaneous

shear moduli and of the variation of the relaxation time, in a pure rolling case. To do so, we

took the Prony representation of a generalized Maxwell viscoelastic model, with one relaxation

time. Then, setting a frictionless rolling motion, we have analyzed the evolution with time of

the contact pressure distribution and the 3D stress field. Alongside the known results for the

decreasing, increasing, and alternate elastic modulus within the layers, the main new observations

adding viscoelasticity are:

✔ The variation of the shear moduli of the layers does not have a significant effect on the

resistance to motion of the rolling contact; but its effect is undeniable on both the contact

pressure profile and the 3D stress distribution.

✔ When the relaxation time is changing from one layer to the other one, the top layer which

is interfering directly in the contact plays a key role on the contact pressure distribution and

on the apparent friction coefficient.

✔ In the steady-state regime, the maxima of stress in the half-space move below the surface at

the leading edge of the rolling sphere whatever are the properties of the viscoelastic layers.

Finally, this study has been voluntarily limited to the frictionless or pure rolling contact problem.

As perspective, a coupling of this model with the tractive rolling algorithm is to be done to cover

the complete rolling contact in viscoelasticity for multi-layered bodies.
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Appendix A.

With the notations of section 2.1, one can express the Fourier Transform form of the elastic

displacements and stresses with the Papkovich-Neuber potentials as follow:

2µ j
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x =im
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D jw
j
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j
w
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+
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+
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Appendix B.

The analytical solution of Eq. ( (9)) is derived from the steps below. First let’s use the following

notations:

t
(L+1)

0
= 1 (B.1a)

t
( j)
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Then we can write the B functions as:
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To write the second members of Eq. ((10)), we need the derivatives of the above functions.

These derivatives about m are:
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Here, we can express the functions of the second member of Eq. ((10)):
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and for j = 1, · · · , L:
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Appendix C.

Recall that the displacement uz at the surface of a layered body is:

uz(x, y, t) =FT−1{ûz(x, y, ω)} = FT−1{Ĵ1(ω) ˆ̄G(x, y, ω)iωp̂(ω)} (C.1)

=

∫

G(x, y, t − ξ)∂p(ξ)

∂ξ
dξ. (C.2)

=

∫

J1(t − ξ)F(x, y, ξ)dξ (C.3)

where

F(x, y, t) = FT−1{ ˆ̄G(x, y, ω)iωp̂(ω)} (C.4)

and

G(x, y, t) = FT−1{Ĵ1(ω) ˆ̄G(x, y, ω)} =
∫

J1(t − η)Ḡ(x, y, η)dη. (C.5)

Finding the exact solution by inverting the FT of the influence coefficients with respect to time

would demand a significant amount of ressources. We propose an alternative way.

Basically, we need to find the function F(x, y, t) which can be written as:

F(x, y, t) =

∫

ˆ̄G(x, y, ω)iωp̂(ω) exp (iωt) dω (C.6)

In our work we have hypothesized that:

F(x, y, t) = FT−1{ ˆ̄G(x, y,
Ĵk(ω)

Ĵk+1(ω)
)iωp̂(ω)} ≈ Ḡ

(

x, y,
Jk(t)

Jk+1(t)

)

∂

∂t
p(t). (C.7)

This assumption is not mathematically correct. However, it is exact under some conditions and we

believe that it is a good approximation in the other cases of our studies. In particular, it is exact if

the term ˆ̄G(x, y, Ĵk(ω)

Ĵk+1(ω)
) does not depend on ω, with regard to Eq. ((C.6)). In what follows next, we

give details to justify this assumption.
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We recall that we use the Maxwell generalised model for which the creep function of the layer

k can be written as:

Jk(t) = jk
0 −

Nk
∑

l=1

jk
l exp

(

−t/τk
l

)

, t > 0. (C.8)

The Fourier transform of this function is given by:

Ĵk(ω) = jk
0δ(ω) −

Nk
∑

l=1

jk
l
τk

l

1 + iωτk
l

. (C.9)

If one plots the norm of the ratio
Ĵk(ω)

Ĵk+1(ω)
, it can be seen that for the times where we want to

observe viscoelasticity, the ratio takes a constant value apart from the frequencies close to ω = 0.

This phenomenon is explained by the behaviour of the Fourier transform: ”Generally speaking,

the more concentrated f (x) is, the more spread out its Fourier transform f̂ (ξ) must be. In par-

ticular, the scaling property of the Fourier transform may be seen as saying: if we squeeze a

function in x, its Fourier transform stretches out in ξ. It is not possible to arbitrarily concen-

trate both a function and its Fourier transform.” (source: Wikipedia, ”Uncertainty principle” in

https://en.wikipedia.org/wiki/Fourier transform )

When we want to observe viscoelasticity, we need the regions where the creep functions

spread. Therefore, their transforms are concentrated around the frequency 0. On the basis of

this observation, we can write:

F(t) =

∫ β

0

ˆ̄G(x, y, ω)iωp̂(ω) exp (iωt) dω

=

∫ ε

0

ˆ̄G(x, y, ω)iωp̂(ω) exp (iωt) dω +

∫ β

ε

ˆ̄G(x, y, ω)iωp̂(ω) exp (iωt) dω

(C.10)

where β is the equivalent of t in the frequency domain; and ε is a small frequency which indicates

the frequencies over which the ratio
Ĵk(ω)

Ĵk+1(ω)
is not constant.

Over [ε; β], the ratio
Ĵk(ω)

Ĵk+1(ω)
is constant. Thus, it makes sense to write:

F(t) =

∫ ε

0

ˆ̄G(x, y, ω)iωp̂(ω) exp (iωt) dω + Ḡ

(

x, y,
Jk(t)

jk+1(t)

) ∫ β

ε

iω p̂(ω) exp (iωt) dω.

(C.11)
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It comes that the error in the calculation of F(x, y, t) lies in the term
∫ ε

0
Ĵ1(ω) ˆ̄G(x, y, ω) exp (iωt) dω.

This term corresponds to very low frequencies where we can physically assume that the viscoelas-

tic effects are not important. Thus, those low frequencies are not expected to bring a significant

effect on the viscoelastic response of the structure. In addition, the ignored points are in an area so

small in the frequency domain that in a discretised form they might be missed without significant

loss of informations. This explained the fact that our approximation allows to get good results

when compared to FEM as shown in the previous paper (see Wallace et al. (2020)).

Conclusion:. In summary, we give areas of validity of our approximation:

1. In steady state regime, the approximation meets the exact solution. Indeed, in the steady

state regime, the behaviour in ˆ̄G(x, y, ω) is constant; and according to Eq. ((C.6)), it is the

exact solution to write Eq. ((C.7)). Therefore, since all the final steps of our results are given

for the steady state regime, they are exact.

2. When the ratio of creep functions is a constant, the ratio of their FT gives a constant. Thence,

the term
∫ ε

0
Ĵ1(ω) ˆ̄G(x, y, ω) exp (iωt) dω is equal to 0. Consequently, the applied solution is

exact in the study of the effect of ”Variation of the instantaneous shear moduli” in the paper

(section 3.3.1).

3. For the other cases, the error made is contained in the term
∫ ε

0
Ĵ1(ω) ˆ̄G(x, y, ω) exp (iωt) dω.

This term involves very low frequencies where the viscoleastic behaviour is not physically

very significant. Thus, ignoring it implies an error which is not expected to by high.
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