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Abstract

The present work proposes a novel efficient numerical approach for the simulation of three-dimensional propagation of non-planar

frictional crack under Rolling Contact Fatigue (RCF). The developed model relies on a global-local strategy involving the Semi-

Analytical Method (SAM), dedicated to the resolution of 3D contact problems, and the eXtended-Finite Element Method (X-FEM),

dedicated to the solving of 3D crack problems. Similar to a submodeling technique, it consists in performing a local X-FEM analysis

of the 3D RCF crack problem by means of boundary conditions extracted from a prior global SAM analysis which solves the

contact problem between two semi-infinite bodies without considering the crack. A powerful procedure for the transfer of relevant

mechanical quantities between the SAM and X-FEM models is developed. It allows the use of non-matching and non-conforming

discretization scheme for the global SAM model and the local X-FEM model, particularly worthwhile for the pre-processing stage.

An initial arbitrary stress profile can be considered to investigate the influence of residual stresses on crack behavior. The non-

intrusive SAM/X-FEM coupling is integrated into a fully automatic crack propagation algorithm. This provides a powerful and

user-friendly tool suitable for industrial applications, which easily handles 3D long non-planar frictional crack growth in the region

of interest. After introducing some details concerning the implementation of the model, a validation of the innovative SAM/X-FEM

coupling is performed by using results from the literature. Furthermore, a practical example demonstrates the great potential of this

novel numerical technique to simulate in a fast, robust and accurate way the 3D complex behavior of fatigue crack under moving

contact.

Keywords: 3D Fatigue Crack Growth, Rolling Contact Fatigue, Numerical Modeling, eXtented-Finite Element Method,

Semi-Analytical Method

1. Introduction

Nowadays, it is well established that Rolling Contact Fa-

tigue (RCF) is the most common failure mode of mechanical

components such as rolling element bearings or gears [1]. In-

deed, the complex localized multi-axial and non-proportional

stress field, generated by the cyclic contact loading, can locally

affect the materials of the contacting bodies and subsequently

initiate micro-cracks. As already stated in the literature [2], two

groups of RCF failure mechanisms can be distinguished accord-

ing to the starting position of these micro-cracks, namely sub-

surface initiated contact fatigue and surface initiated contact

fatigue. The former failure process involves the development

of micro-cracks around sub-surface material defects including,

among other, inclusions, heterogeneities, voids, etc. Owing to

the constant improvement of the cleanliness of materials used

in modern machinery, sub-surface damage is now mostly pre-

vented. Consequently, the most observed RCF failure mode in

engineering application originates from surface contact fatigue.

As depicted by Nélias et al. [3], this failure mode is charac-
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terized by the apparition of micro-cracks near surface geomet-

rical imperfections like dents or scratches, which act as stress

raisers. In bearing applications, the presence of solid particles

transported through the contact zone by the lubricant is often

designated as the root cause of these failures [4]. Near-surface

plastic deformation, surface contamination, surface roughness,

finishing marks, insufficient lubrication and working conditions

have also been identified as potential contributors of the surface

initiated fatigue.

Over the time, coalescence of the surface originated micro-

cracks may produced a contact-scale crack, usually oriented in

the opposite direction to the friction force and inclined at shal-

low angle from the surface (15-30◦) [5]. After a stable propa-

gation stage in shear mode driven by the compressive contact

loading [6], several crack growth scenarios are possible [7] (see

Fig. 1):

➀ The main crack can branch towards the surface causing

the formation of a macro-crater related to the so-called

spalling phenomenon,

➁ The main crack can promote a sub-surface propagation

leading to the complete failure of the mechanical compo-

nent.
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The latter scenario is usually preceded by the initiation of sec-

ondary cracks that branch towards the surface. This promotes

the release of particles and facilitates crack detection in indus-

trial applications.

Movement

1

2

Fig. 1

Schematic representation of the main RCF crack growth scenarios.

It is important to emphasize that, besides stresses induced

by the contact, structural stresses and residual stresses due to

the hardening and fabrication processes can also have a signif-

icant influence on the crack growth, which demonstrates the

complexity of the problem.

To enhance the reliability of rolling element bearings and

gears, a great interest is being addressed by the aeronautic in-

dustry to tackle the complex crack behavior under RCF.

Although some experimental investigations have recently

been conducted [8, 9], analytical and numerical methods based

on the Linear Elastic Fracture Mechanics (LEFM) remain the

most widely used tool in the literature for investigating the in-

fluence of the numerous parameters involved in the RCF crack

growth problem. Keer and Bryant [10] were amongst the first

to propose a 2D numerical model dedicated to the analysis of

a surface breaking crack embedded in a half-space and loaded

by a simple Hertzian contact. The distributed dislocation tech-

nique has been employed by these authors to compute the Stress

Intensity Factors (SIFs) at the crack tip. Bower [11] has ex-

tended the model of Keer and Bryant to study the role of lubri-

cant which enters into the crack during the passage of rolling

elements. The body force method, described in details in Ref.

[12], has been used by Kaneta and Murakami in several papers

[13–15] to investigate the SIF variations for semi-elliptical and

semi-circular planar cracks under three-dimensional Hertzian

contact pressure ranging from spherical to line configuration.

Integral formulations involving Green’s functions [16, 17] and

Weight functions [18] as well as the Boundary Element Method

(BEM) [19] have also been employed to solve similar problems.

However, the models cited above are limited to idealized

crack geometry - edge crack in 2D and semi-circular or semi-

elliptical planar crack in 3D - embedded in an elastic half-space

and loaded by a theoretical Hertzian contact pressure. More-

over, residual stresses are generally defined as a constant value

that does not represent real in-depth variation. For this purpose,

the Finite Element Method (FEM) has been widely used to add

complexity in this kind of simulation, by considering, for exam-

ple, the true geometry of the contacting bodies [20–23], elastic-

plastic behavior [24] or complex lubricant behaviors along the

crack faces [25, 26].

Even though FEM models enhance the capabilities to pre-

dict realistic crack behavior, the modeling of 3D long crack

growth has not been tackled and most of the studies are usu-

ally restricted to one loading cycle. Indeed, despite the recent

numerical developments, FEM requires time-consuming and la-

borious operations of re-meshing and field projection when the

crack growths, which limits its usefulness for this kind of anal-

ysis. In addition, both specific elements and suitable fine dis-

cretization are needed around the crack front to accurately com-

pute the SIFs.

The use of the eXtended-Finite Element Method (X-FEM)

is an attractive alternative to alleviate these issues. Initially in-

troduced by the US Northwestern University in 1999 [27, 28],

X-FEM is now well recognized in fracture mechanics for the

simulation of 3D crack propagation. By using the partition of

unity method [29], it consists in enriching the standard finite

element basis with additional functions that capture the dis-

continuity and the singularity generated by the presence of the

crack in the structure. Thanks to this enrichment technique,

bulk mesh does not necessarily conform to the crack shape and

consequently field projections and re-meshing operations are

not needed during the crack propagation. Moreover, X-FEM

achieves an accurate mechanical solution even with a relatively

coarse mesh. It should be noted that the level-set technique

is usually combined with X-FEM to facilitate the representa-

tion and the tracking of 3D non-planar crack into the structure

[30, 31].

Over the past two decades, X-FEM has been widely devel-

oped by the scientific community to tackle a large range of en-

gineering issues related to crack propagation. Among others,

problems involving contact along the crack faces have been ad-

dressed. For instance, Dolbow et al. [32] and Géniaut et al.

[33] have respectively proposed a 2D frictional contact formu-

lation and a 3D unilateral contact formation for cracks submit-

ted to a static compressive loading. Bi-dimensional quasi-static

crack problems with frictional contact have also been treated

by Ribeaucourt et al. [34] and Liu et al. [35]. Pierres et al.

have further developed a two-scale X-FEM strategy dedicated

to 3D quasi-static crack problem with unilateral [36] and fric-

tional contact [37, 38]. The formulation is based on a three-field

weak formulation that allows the crack faces to be discretized

independently from the structure, and thus precisely describes

the complex sequences of closing, opening, sticking and sliding

along the interface. This model has already shown its ability to

investigate the crack behavior under fretting [39] and rolling

contact [40] loadings. Fretting issues have also been addressed

by Giner et al. [41, 42] with an implementation of X-FEM in

the Abaqus software [43]. The latter considers the contact be-

tween the crack faces [44] by using a mortar approach.

Although X-FEM is well-suited for 3D long crack propa-

gation, dealing with tribological loading remains a challenging
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task. Indeed, such problems require managing different scales

(structure scale, contact scale and local interfacial scale) induc-

ing complex and prohibitive meshes. In that respect, multi-scale

strategies and coupling algorithms within the X-FEM frame-

work have been developed to reduce computational efforts. For

example, Guidault et al. [45] have proposed a global-local ap-

proach using the domain decomposition concept, whereas Ran-

nou [46] and Passieux [47] have used the multi-grid technique.

More recently, Gibert [48] has combined X-FEM with an auto-

matic Adaptive Mesh Refinement (AMR) procedure to address

multi-scale issues. A non-intrusive multi-scale approach that

couples a 3D Generalized Finite Element Method (GFEM) and

Abaqus has been presented by Li et al. [49]. They have used the

non-intrusive global-local concept introduced by Allix and co-

workers [50]. However, most of these studies do not consider

the non-linear frictional contact arising along the crack faces

due to numerical difficulties.

To overcome the current limitations, a novel approach is

proposed in this work to efficiently simulate 3D RCF long crack

growth. The strategy is based on the coupling of the quasi-static

X-FEM formulation proposed by Pierres for frictional contact-

ing crack [37, 38] with the Semi-Analytical Method (SAM)

[51, 52]. SAM is a numerical technique that allows to perform

robust and fast modeling of three-dimensional contact problems

between two semi-infinite bodies. Derived from boundary in-

tegral formulations, it consists in decomposing a complex con-

tact problem into a sum of simple problems for which an an-

alytical closed-form solution is known. A numerical superpo-

sition of each elementary solution is then performed in a con-

tact solver algorithm to obtain the solution of the mechanical

problem. Owing to the use of FFT acceleration techniques,

computational costs are drastically reduced by several orders

of magnitude compared to FEM. SAM is also more precise for

a given mesh size and the pre-processing stage is straightfor-

ward. Through numerous works, SAM has been greatly de-

veloped to address a wide range of issues including the res-

olution of normal and tangential contact between bodies hav-

ing non-linear behaviors such as elastic-plastic behavior [53,

54], thermo-elastic behavior [55], thermo-elastic-plastic behav-

ior [56], heterogeneous elastic behavior [57–59], heterogeneous

elastic-plastic behavior [60], heterogeneous viscoelastic behav-

ior [61], elasto-plastic layered behavior [62], elastic-damageable

behavior [63] and more recently viscoelastic layered behavior

[64].

The proposed SAM/X-FEM coupling derives from a global-

local strategy [65, 66] similar to the so-called submodeling tech-

nique. It allows to benefit from the advantages of SAM and

X-FEM in a single model without any alteration of their exist-

ing implementation. The method consists firstly in performing

a global SAM analysis to solve the contact problem between

two semi-infinite uncracked bodies that may contain residual

stresses. Then, a data transfer procedure is employed to deter-

mine boundary conditions for the subsequent local analysis by

extracting and mapping the results from the global SAM anal-

ysis on the boundary of the local model. It permits the use of a

fully independent discretization scheme for the global and local

models while avoiding the introduction of numerical errors. Fi-

nally, the local analysis of the 3D crack problem is performed

only in the region of interest with the help of the aforemen-

tioned X-FEM formulation which accounts for the frictional

contact between the crack faces. As a consequence, computa-

tional efforts are just focused on the local X-FEM sub-domain

and thus CPU times are drastically reduced compared to the ex-

isting model. The implementation of the non-intrusive SAM/X-

FEM method within a crack propagation algorithm provides a

robust and accurate tool, particularly useful for engineering and

industrial applications.

This paper is organized as follows. Firstly, the developed

SAM/X-FEM coupling is introduced in Section 2. Specifically,

the data transfer procedure between the global model and the

local model is detailed. Then, the crack growth algorithm ded-

icated to the simulation of 3D RCF long crack propagation is

exposed in Section 3. In Section 4 and Section 5, results con-

cerning the validation of the SAM/X-FEM strategy are shown.

Finally, Section 6 highlights the great potential of these devel-

opments on a practical example.

2. The SAM/X-FEM method

In this section, the novel global-local SAM/X-FEM cou-

pling strategy dedicated to the resolution of 3D crack problem

under contact loading is introduced. A particular attention is

paid to the procedure for the transfer of the mechanical quanti-

ties between the models.

2.1. Coupling procedure

First of all, the reference problem of 3D crack under con-

tact loading is recalled. Consider an elastic contact problem

between two bodies Ω1 and Ω2. The half-space assumption is

made here, which means that the contact area must be small

compared to the characteristic dimensions of the bodies and

to their radii of curvature. The materials under consideration

are homogeneous and isotropic. A linear elastic behavior is

assumed as well as the small strain and displacement assump-

tions. A crack, denoted by Γc, is located within the body Ω1.

For practical purposes, a restriction of Ω1, denoted by ΩL, is

introduced. It defines a local area surrounding the crack, called

zone of interest. Γ represents the surface boundary of ΩL. nΓ
is the outward unit normal to Γ. Due to the compressive multi-

axial stresses induced by the contact, complex states of opening

and contact may arise together along the crack faces. This ref-

erence problem is illustrated in Fig. 2.

As previously mentioned, the resolution of this problem is

performed by a global-local approach [65, 66] that can be seen

as a submodeling technique. This multi-model method allows

to efficiently examine the behavior of large structures that re-

quire accurate stress analysis in a critical localized area which

exhibits a local feature such as geometric detail (crack, hole,

etc.) or localized complex non-linear phenomenon (plasticity,

etc.). First, it consists in carrying out a coarse time-saving anal-

ysis disregarding the local feature to access the global response

of the entire structure. Then, the results of the global model

are used to conduct a more refined independent analysis only in

3

Accepted Manuscript



Ω1
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Γc

Γ
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nΓ

Fig. 2

Reference problem of 3D crack under contact loading.

the critical sub-domain. It gives accurate informations related

to the presence of the local detail while saving computational

time and resources compared to a fully refined analysis over

the whole structure.

Based on this concept, a global-local SAM/X-FEM cou-

pling procedure is proposed to solve the problem under con-

sideration. In details, the developed solving scheme is decom-

posed into three main steps (see Fig. 3):

➀ Global Analysis. The resolution of the 3D contact prob-

lem between the semi-infinite bodies Ω1 and Ω2 is per-

formed by means of the in-house SAM solver without

considering the crack (see Appendix A). The solution of

the global analysis is denoted by:

sG =
(

uG,σG, p, q
)

(1)

where uG and σG correspond to the displacement and

stress fields in Ω1 and Ω2, p and q are the pressure and

shear distributions acting on the contact surface. Note

that an initial residual stress field can be taken into ac-

count by means of Eq. (A.12).

➁ Data transfer. After defining the position of the bound-

aries of ΩL, the solution of the global analysis sG is used

to define boundary conditions for the subsequent local

analysis. More details about this step are exposed in Sec-

tion 2.2.

➂ Local Analysis. The boundary value problem of crack is

solved by using the implementation in the Cast3M soft-

ware [67] of the quasi-static X-FEM method accounting

for contact and friction along the crack faces (see Ap-

pendix B). This analysis is performed only in the restric-

tion ΩL of Ω1 where the crack is located. The solution of

the local analysis is denoted by:

sL =
(

uL,σL,w, t
)

(2)

where uL and σL correspond to the displacement and

stress fields in ΩL, w and t are the interface displacement

and traction fields on the crack faces Γc.

Hence, the solution provided by the SAM/X-FEM proce-

dure can be summarized as the substitution of the solution of

the global analysis by the solution of the local analysis in the

zone of interest ΩL:

s =















sG in (Ω1 ∪Ω2) \ΩL

sL in ΩL

(3)

This coupling approach is non-intrusive because the SAM

and X-FEM codes do not require any modification. Thus, the

in-house SAM solver can be easily coupled to other industrial

computational softwares by means of this procedure.

Moreover, it should be emphasized that the proposed cou-

pling relies on a unidirectional data transfer from the global

SAM model to the local X-FEM model since there is no itera-

tive procedure between the 2 models. Therefore, the influence

of the local X-FEM model on the global SAM model is ne-

glected here which means that the presence of crack does not

disturb the contact pressure and shear distribution. This as-

sumption is discussed by Giner et al. [68] for crack propagation

under fretting contact conditions.

As the crack is disregarded in the global analysis, the one-

way SAM/X-FEM coupling procedure implies that the mechan-

ical field disturbance caused by the crack must vanish on the

coupling interface Γ. Consequently, the size of the local model

should be carefully chosen to ensure that the location of Γ does

not affect the solution of the local analysis. For cracking issues,

the local sub-domain must enclose at least the region affected

by the presence of the crack, which is linked to the crack ge-

ometry and loading conditions. Due to the difficulties in quan-

tifying this area in such a 3D complex problem, the user has to

investigate the sensitivity of the local solution with respect to

the location of the coupling interface Γ in order to extract the

appropriate minimum size of the sub-model. In practice, the

size of the local model in each direction (see Fig. 4) is defined

with the ratios αi given by:

α1 =
a

a + d1

(4)

α2 =
b

b + d2

(5)

αi represents the proportion of cracked surface within the local

model. Therefore, the smaller αi is, the larger the size of the

local model is. In the first instance, for a crack size approaching

the contact dimensions, it is recommended to take αi equal to

0.5. Note that these ratios can be increased when the crack

becomes significantly larger than the contact area. A sensitivity

analysis about the position of the coupling interface Γ is carried

out in this work (see Section 6).

Besides the position of the coupling interface, the efficiency

of the proposed numerical scheme also depends on the accuracy

of the boundary conditions prescribed on the local model. This

point is discussed hereafter.
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Ω1sG = (uG,σG,p,q)

1   Global Contact Problem 3   Local Crack Problem2   Data Transfer

Ω2

sG
 Γ

ΓΓ sL = (uL,σL,w,t)

ΩLΓc

Fig. 3

Global-local strategy for the resolution of the 3D crack problem under contact loading.
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Parametrization of the local model dimensions.

2.2. Global-local data transfer

The data transfer step is a crucial issue of the proposed

SAM/X-FEM coupling. As previously explained, this step pro-

vides boundary conditions for the local X-FEM analysis using

the results of the global SAM analysis. The mechanical quan-

tities usually transferred across the coupling interface Γ may

be the displacement field and/or the stress field. However, as

already stated, applying displacements as boundary conditions

can induce inaccuracies in the solution when the stiffness of the

sub-domain changes between the global and local analyses. For

this reason, only the stresses are transferred here because crack

causes a stiffness change in the local model. More precisely,

the equilibrium condition must be satisfied along the coupling

interface Γ:

σL · nΓ + σG · (−nΓ) = 0

⇔ tL + tG = 0
on Γ (6)

In a discrete point of view, the enforcement of this condition

is straightforward if the global model and the local model share

the same stress calculation points along the interface Γ. How-

ever, in the SAM/X-FEM framework, such a situation cannot be

fulfilled since the methods are founded on completely different

formalisms. Moreover, in order to accurately capture the local

behavior in the zone of interest, the discretization of the local

model needs to be freely refined, regardless of the discretization

of the global model.

Therefore, to deal with non-conforming and independent

discretization scheme for the global and local models, a robust

interpolation procedure (see Fig. 5) is developed to access tL

(defined on the local model) from tG (defined on the global

model). In what follows, EΓ are the 2D elements of the sur-

face mesh MΓ of the local model boundary Γ. Moreover, PΓ
i

defines the i-th integration point of EΓ and xΓ
i

is its location.

1. First, a virtual 3D hexahedral P1 finite element is built

using the 8 SAM calculation points surrounding PΓ
i
.

2. By using the values of global SAM stresses at the nodes

of the virtual element, a linear interpolation is performed

to evaluate the stress tensor at PΓ
i
:

σL(xΓi ) =

8
∑

j=1

Nh, j(x
Γ
i )σG

j (7)

where Nh, j are the 3D linear interpolation functions of a

standard hexahedral P1 finite element.

3. Then, the surface traction vector tL is evaluated at PΓ
i

as

follows :

tL(xΓi ) = σL(xΓi ) · nΓ(xΓi ) (8)

As it permits the use of completely different discretization

for the two models, this interpolation procedure makes the pre-

processing easier and avoids complex meshing operations at the

coupling interface.

To enforce the equilibrium (6) on Γ within a X-FEM frame-

work, the traction vector tL must be converted into nodal forces.

So the elementary nodal force vectors are computed by integrat-

ing tL over each surface element EΓ:

Fe =

∫

EΓ
NT

e tLdS (9)
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Fig. 5

Schematic overview of the stress interpolation process between the

global SAM model and the local X-FEM model.

where Ne is the matrix of 2D linear shape functions of the ele-

ment EΓ. This integration is numerically realized with a Gaus-

sian quadrature rule. As a last step, the contributions of each

elementary nodal force vector are summed to access the nodal

force vector F that satisfies (6) over the entire surface boundary

Γ of the local X-FEM model:

F =
∑

Fe (10)

It may be added that, in a classical global-local approach, a

particular attention is paid to the convergence of the local prob-

lem solution in relation to the quality of the imposed bound-

ary conditions. Indeed, a too coarse discretization of the global

model can induce inaccuracies that affect the local model through

the boundary conditions [69]. However, in the SAM/X-FEM

context, the results of the global SAM model are derived from

known analytical solutions. As a consequence, the response of

the local model is not noticeably sensitive to the discretization

of the global model.

2.3. Nodal force vector balancing

In the proposed approach, only the force boundary condi-

tion F is used as input for the local analysis. It is therefore a

pure force boundary value problem. The local model can be

seen as a floating sub-structure as there are no Dirichlet bound-

ary conditions to constrain its movements. From a mathemati-

cal point of view, the resolution of such a problem is possible

only if the prescribed nodal force vector is orthogonal to the

kernel of the stiffness matrix K of the local model:

F ∈ Im(K) = Ker(K)⊥ (11)

This condition can also be expressed as follows:

RT F = 0 (12)

where R = Ker(K) is the null space of K and represents the

rigid-body modes of the local model.

As indicated by Eq. (12), solving a pure force boundary

value problem requires that the projection of the nodal force

vector F onto the rigid body mode space RT is zero. Physi-

cally, it means that the applied nodal forces must ensure the

self-equilibrium of the floating local model and so prevent rigid

body displacements. In other words, the sum of forces and mo-

ments applied over Γ must be zero.

However, the interpolation and integration steps depicted

in Section 2.2 can induce a residual unbalanced of the nodal

force vector, which raises difficulties to reach convergence of

the local X-FEM analysis. To tackle this difficulty, a projector

denoted P is introduced. The multiplication of this projector P

by the nodal force vector F yields a self-balanced nodal force

vector Fp satisfying the orthogonality condition (12):

Fp = PF =⇒ RT Fp = 0 (13)

with:

P = I − R(RT R)−1RT (14)

This projection eliminates from the initial nodal forces F the

components causing the residual unbalance, namely the part of

F that is not orthogonal to the rigid body mode space. It is

worth to point out that similar projection steps are generally

implemented within dual Domain Decomposition solvers such

as FETI algorithm [70, 71], which also handles floating sub-

structures. Fp is then used as input for the local X-FEM analy-

sis.

3. 3D crack propagation under RCF

This section deals with the computation of the SIFs as well

as the implementation of the SAM/X-FEM coupling within an

automatic algorithm for RCF crack growth simulation.
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Construction with ND = 1 of the integration domain D for the compu-

tation of the SIFs at P j.

3.1. Stress intensity factor calculation

After solving the mechanical problem with the SAM/X-

FEM approach, the SIFs along the crack front are extracted

separately by means of the interaction integral concept. Firstly

introduced in Refs. [72, 73], this method is an extension of the

so-called J-integral. It relies on a superimposition of two dis-

tinct equilibrium states of an elastic cracked body: the actual

state related to the solution of the local X-FEM analysis and the

auxiliary state associated to the solution of an arbitrary crack

problem. The interaction integral is generally expressed in a

domain form [74–76], which is more appropriate for 3D finite

element computation. In the present work, the domain interac-

tion integral is evaluated at each discrete point P j of the crack

front as follows [38]:

I(L,aux) =

∫

D

(

σL
k ju

aux
k,i + σ

aux
k j uL

k,i − σL
klε

aux
kl δi j

)

qi, j dV

−
∫

Γ+c ∪Γ−c
tL
k uaux

k,i qi dS

(15)

Note that the second integral over Γ+c ∪ Γ−c in Eq. (15) accounts

for the frictional contact arising along the crack faces [32, 34].

Here, the integration domain D is supported by the X-FEM

mesh. More precisely, it is built by adding a user-defined num-

ber of element layers ND around the element containing the

point P j [77] (see Fig. 6). The vector field q represents the

virtual crack extension and is tangent to the crack plane and

normal to the crack front. The magnitude of q is defined by a

sufficiently smooth scalar function, denoted by α(x), which is

equal to 1 at P j and vanishes on the boundaries of D. The imple-

mentation of the domain interaction integral within the X-FEM

framework is described in Ref. [30].

By choosing the auxiliary fields wisely, the SIFs in the ac-

tual state can be expressed as a function of the domain inter-

action integral. For instance, by introducing the pure mode I

Westergaards asymptotic fields into Eq. (15), the mode I SIF KI

at P j can be evaluated with the following equation:

K
j

I
=

E

2(1 − ν2)

I(L,mode I)

∫

C
α(s)ds

(16)

where C corresponds to the crack front segment included in D.

The plane strain assumption is assumed here. In a similar way,

KII and KIII at P j can be calculated as:

K
j

II
=

E

2(1 − ν2)

I(L,mode II)

∫

C
α(s)ds

(17)

K
j

III
=

E

2(1 + ν)

I(L,mode III)

∫

C
α(s)ds

(18)

3.2. Crack growth algorithm

To automatically handle the numerical propagation of RCF

crack, the SAM/X-FEM coupling is integrated into an algo-

rithm discussed here (see Fig. 7).

First of all, the problem is initialized by setting the contact

and loading conditions, the materials, the residual stresses, the

initial crack geometry, the number of element layers ND for the

calculation of the SIFs, and also αi for the definition of the ad-

equate size of the local model. Furthermore, as the position of

the global model boundaries does not affect the results (see Ap-

pendix A), the size of this model is set to fit closely with the

local model dimensions and the loading range.

Generally, for RCF issues, crack propagation is studied in-

crementally at the cycle scale because this is a relatively slow

temporal phenomenon. In that respect, the current loading cycle

Ni is discretized into several time steps describing the passage

of the rolling elements over the crack (see Fig. 8). The resolu-

tion of the mechanical problem is performed for each loading

position by means of the quasi-static SAM/X-FEM coupling

approach (see Section 2). From the results of this computa-

tion, the domain interaction integral is employed to evaluate

the SIFs (K
j

I
,K

j

II
,K

j

III
) at each point P j of the crack front (see

Section 3.1).

At the end of the simulated cycle, the SIF history is used

together with criteria to predict the crack growth direction θ j

along the crack front. More precisely, the Maximum Shear

Stress Range (MSSR) criterion is adopted here. It assumes that

crack propagates in shear mode along the direction which max-

imizes the range of the equivalent shear SIF:

max
θ
∆Kτ(θ) = max

θ

(

max
t

Kτ(θ, t) −min
t

Kτ(θ, t)

)

(19)

with:

Kτ(θ, t) =
1

2
cos

(

θ

2

)

[KI(t) sin(θ) + KII(t)(3 cos(θ) − 1)] (20)

Alternative criteria can be found in the literature, such as the

Houlier and Pineau’s criteria [7, 78] for instance. However, the

analysis of these criteria is out of the scope of this paper. It

is important to emphasize that the contribution of mode III is
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Algorithm for the modeling of 3D crack propagation under RCF.
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Temporal discretization for fatigue crack growth simulation.

not included in most of these criteria. Indeed, the impact of

this mode on the crack growth direction is poorly studied in the

literature, especially for RCF issues.

The crack growth rate (da/dN) j is also estimated along the

crack front with the help of a Paris-type law:

(

da

dN

)

j

= C
(

∆K
j
eq

)m
(21)

where C and m are material constants and ∆Keq is a combina-

tion of the SIF ranges based on the energy release rate:

∆Keq =

√

∆K2
I
+ ∆K2

II
+

1

1 − ν∆K2
III

(22)

Due to the lack of data for multi-axial and non-proportional

loading, the Paris law coefficients C and m determined for mode

I are used. This is questionable because mode I kinetics and

mixed mode kinetics (I+II+III in sense of G) are probably dif-

ferent.

By assuming that the crack growth rate is constant over a

block of cycles ∆Ni, the crack front can be updated by fix-

ing the maximum crack advance ∆amax at the node where the

crack growth rate is maximum [79, 80]. The corresponding cy-

cle jump ∆Ni is estimated from the Paris-type law:

∆Ni =
∆amax

C(∆Kmax
eq )m

(23)

The crack advances ∆a j at the other nodes are determined by

keeping constant the calculated cycle jump ∆Ni along the crack

front:

∆a j =















∆K
j
eq

∆Kmax
eq















m

∆amax (24)

Note that the user-defined parameter ∆amax must be carefully

chosen in order to accurately simulate propagation while limit-

ing computational time and power (see Section 6).

Finally, as explained above, the crack geometry and the

level-sets are updated by adding triangular elements between

the former and the updated crack front (see Fig. 9). The size

of the local model is also updated to ensure that the boundaries

have no influence on the solution of the local analysis when

the crack propagates, and then the global model dimensions are

adapted to fit with the updated local model.

This procedure is then repeated for the next loading cycle at

Ni + ∆Ni (see Fig. 8) with the updated meshes and so on. The

algorithm is stopped when the crack propagation is no longer

influenced by the contact loading.

4. Validation

In this section, the validation of the proposed SAM/X-FEM

coupling strategy is reported through comparison with results

extracted from the literature. The variations of the SIFs pub-

lished by Kaneta et al. in Ref. [14] are taken as references.

8
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Fig. 9

Update of the crack geometry by adding triangular elements between

the front at Ni and the front at Ni + ∆Ni

4.1. Description of the numerical model

The configuration studied here consists in a semi-circular

crack located at the surface of a semi-infinite body. This crack

is loaded by a moving compressive loading arising from the

passage of a rolling ball on the half-space (see Fig. 10). The ma-

terial properties are chosen as : Young’s Modulus E = 210 GPa

and Poisson’s ratio ν = 0.3. In what follows, p0 and c are

the maximum contact pressure and the radius of the contact

area respectively. The friction coefficient between the contact-

ing bodies is denoted µcontact. As full sliding conditions are

assumed in this work, the shear distribution q is simply given

by q = µcontact · p. Friction occurs when a power is transmit-

ted through the contact interface. The shear distribution acts

to decelerate the faster surface (driver surface) and accelerate

the slower surface (follower surface). When the crack is lo-

cated on the driver surface, the direction of the shear distribu-

tion is opposite to the rolling direction. Thus, the direction of

the shear distribution and the direction of the contact motion are

the same. As the contact moves from the negative x (x < 0) to

positive x (x > 0), the shear distribution is therefore positive,

i.e. µcontact > 0. Conversely, when the crack is located on the

follower surface, the direction of the shear distribution and the

rolling direction are the same. Thus, the direction of the shear

distribution is opposite to the direction of the contact motion

and µcontact < 0.

a corresponds to the crack radius and β represents its incli-

nation with respect to the half-space surface. In this section,

the latter is equal to 45◦. γ indicates the position along the

semi-circular crack front (0◦ ≤ γ ≤ 180◦). As a consequence,

γ = 90◦ coincides with the deepest point of the crack front. The

parameter xc is used to define the distance between the crack

mouth and the contact center.

Five different cases are investigated here. They are summa-

rized in Tab. 1.

For all cases, the local model is a cuboid domain whose

dimensions are defined using α1 = α2 = 0.25. The dimen-

sions are chosen to be relatively large here to avoid inaccuracy

related to the position of the coupling interface. The discretiza-

tion of the local model is realized by using eight-nodes X-FEM

2c

xc

β

a

p0

Movement

(a)

(b)

x

y

z

x

z

γ

Fig. 10

Semi-circular crack under a rolling spherical contact. (a) 3D view and

(b) 2D view in the xz plane.

elements with 64 integration points. In the more refined zone

where the crack is located, the characteristic element size is

equal to ∆xL = ∆yL = ∆zL = a/10, which is fine enough to

accurately capture the solution of the local problem. This leads

to a X-FEM mesh of 59489 nodes. The triangular elements of

the crack mesh have the same size as the bulk discretization,

namely ∆xcrack = a/10 (210 nodes). ND = 2 is considered for

the calculation of the SIFs.

Ranging from xc/c = −3 to xc/c = +3, the rolling contact

cycle is decomposed into 61 time steps. Therefore, the imposed

displacement increment along the x-direction at each time step

is a/10. Furthermore, the global SAM model is discretized in

139 × 85 × 40 computation points spaced by ∆xG = ∆yG =

∆zG = c/10, which is sufficient to cover the local model and the

loading range (see Fig. 11).

It is important to emphasize that the contact and friction be-

tween the crack faces are not considered here in order to comply

with the results provided by Kaneta et al. for these cases. Note

that the reference SIFs have been obtained with the body force

method. Details about the method can be found in the paper of

Murakami et al. [12].

In the following section, the dimensionless SIFs are used

for the comparison. They are given as a function of the nominal

9
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Tab. 1

Parameters of each validation case.

Case Friction coefficient µcontact Crack radius a

#1 -0.1 c

#2 0.1 c

#3 -0.3 c/2

#4 0 c/2

#5 0.3 c/2

Local X-FEM Model

Global SAM Model

Fig. 11

SAM/X-FEM model used for the validation (a = c).

SIFs:

Ki = Fi p0

√
πa (25)

with i = [I, II].

4.2. Results and Discussion

Fig. 12(a) and (b) exhibit the variations of FI and FII at

γ = 90◦ during the passage of the contact over the crack for

cases #1 and #2 (crack radius a = c). At first sight, correct

agreement can be observed between the models in terms of FI

and FII variations, regardless of the contact friction coefficient.

In order to quantify more precisely the differences between the

two models, the relative errors based on the dimensionless SIF

range are computed as follows:

εi =
∆F

i
− ∆F

re f

i

∆F
re f

i

(26)

with i = [I, II].

As can be seen in Tab. 2, the errors for cases #1 and #2

are small ranging from −5.79% to 4.21%. Note that the differ-

ences are slightly more important for FI than for FII . The dis-

crepancies can be attributed to the formalism of the body force

method used by Kaneta that is extremely different from that of

the domain integral method employed in the present work (see

Section 3). Despite this, the comparison is well acceptable, es-

pecially for this kind of simulation.

It is also interesting to point out that negative FI are ob-

served in Fig. 12(a) because the contact and friction along the

crack faces are not considered in this study.

(a)

(b)

Fig. 12

Variation of the dimensionless SIFs at γ = 90◦ during the loading cycle

for cases #1 and #2 (crack radius a = c). The dashed curves refer to the

results extracted from the Kaneta’s reference work [14] while the solid

curves represent the results obtained with the SAM/X-FEM strategy.

The black and blue curves correspond to µcontact = −0.1 (case #1) and

µcontact = 0.1 (case #2) respectively. (a) mode I dimensionless SIF and

(b) mode II dimensionless SIF.

As above, Fig. 13(a) and (b) show the variations of FI and

FII at γ = 90◦ during the passage of the contact over the crack

for cases #3, #4 and #5 (crack radius a = c/2). Similar evolu-

tions of FI and FII during the passage of the rolling contact

are observed between the reference and the proposed model

for all the tested friction coefficients. The relative errors for

these three last cases range from −7.32% to 1.63% (see Tab. 2),

which demonstrates again the excellent agreement between the

two models.

All these observations allow to state that the SAM/X-FEM

coupling is successfully validated. Furthermore, the present

SAM/X-FEM calculations take only about 32 minutes on a lap-

top with the following characteristics: 8 × Intel CoreTM i7-

10
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Tab. 2

Differences in terms of dimensionless SIF range between the reference

[14] and the SAM/X-FEM model.

Case εI (%) εII (%)

#1 -4.33 4.21

#2 -5.79 0.64

#3 -2.78 0.07

#4 -5.09 1.63

#5 -7.32 -4.46

(a)

(b)

Fig. 13

Variation of the dimensionless SIFs at γ = 90◦ during the loading cycle

for cases #3, #4 and #5 (crack radius a = c/2). The dashed curves

refer to the results extracted from Kaneta’s reference work [14] while

the solid curves represent the results obtained with the SAM/X-FEM

strategy. The black, blue and red curves correspond to µcontact = −0.3

(case #3), µcontact = 0 (case #4) and µcontact = 0.3 (case #5) respectively.

(a) mode I dimensionless SIF and (b) mode II dimensionless SIF.

7820HQ CPU @ 2.90GHz - 31Go RAM. Although the resolu-

tion of the contact between the crack faces is not performed, the

numerical cost remains relatively low, which proves the great

potential of the proposed strategy to simulate in a fast and ro-

bust way the problem of crack under moving contact.

5. Comparison with FEM

To demonstrate the efficiency of these developments, the

SAM/X-FEM coupling is now compared with the standard fi-

nite element method (FEM). Contrary to the previous section,

the interfacial contact between the crack faces is considered

here.

5.1. Case under consideration

As in Section 4, a rolling contact between a ball and a half

space is considered here (see Fig. 10). The ball, which has a ra-

dius r = 10 mm, is submitted to a load W = 123 N. Under these

loading conditions, the maximum pressure is p0 = 1468.5 MPa

and the contact radius c is equal to 0.2 mm. The two contacting

bodies are made of a 16NCD13 bearing steel whose Young’s

Modulus and Poisson’s ratio are E = 210 GPa and ν = 0.3

respectively.

The initial surface breaking crack has a semi-circular shape

of radius a = 0.2 mm. Its inclination with respect to the contact

surface β is chosen to be equal to 15◦ in order to comply with

classical experimental observations. γ designates the position

along the initial semi-circular crack front (0◦ ≤ γ ≤ 180◦).
The distance between the crack mouth and the contact center is

denoted by the parameter xc (see Fig. 10).

A rigid-body displacement along the x direction is applied

to the ball to represent the rolling cycle. 61 displacement incre-

ments of a/10 in the range xc/c = [−3; 3] are used to describe

this moving loading. Frictional effects related to this tangential

displacement are not regarded here, thus µcontact = 0.

It is important to emphasize that, in contrast to Section 4,

the interfacial contact between the crack faces is taken into ac-

count. It allows to faithfully represent the complex states aris-

ing along the crack interfaces due to the passage of the compres-

sive contact loading. The interfacial friction coefficient µcrack is

equal to zero for this comparison (µcrack = 0).

5.2. SAM/X-FEM model

The SAM/X-FEM model used for this comparison is now

described. As suggested in Section 2, the local model dimen-

sions are defined using αi = 0.5. To evaluate the relevance of

this choice, a convergence study is performed at the deepest

point of the crack front (γ = 90◦). More precisely, the evolu-

tion of the relative error based on ∆KII is plotted against αi for

several µcrack (see Fig. 14). This error is given by:

εII =
∆K

II
− ∆K

re f

II

∆K
re f

II

(27)

where ∆K
re f

II
is the reference value obtained with the parameter

αi = 0.25 applied in the validation part.

As expected, it can be observed that the decrease of αi, i.e.

the enlargement of the local model, leads to the convergence of
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Fig. 14

Evolution of the relative error εII against the dimensioning parameter

αi for different µcrack.

∆KII towards the reference value. Furthermore, for a given αi,

the relative error εII decreases when µcrack increases. Indeed,

the augmentation of µcrack significantly reduces the sliding be-

tween the crack faces and the stress disturbance generated by

the crack within the local model. Here, αi = 0.5 allows to

benefit from a good compromise between accuracy and compu-

tation efforts with less than 5% of error on the ∆KII value for

µcrack = 0. Note that similar results can be observed along the

crack front for mode I and III SIFs.

The local model is discretized through the use of eight-node

hexahedral X-FEM elements with 64 integration points. To en-

sure the convergence of the local analysis, the prescribed size

of the X-FEM elements is in the same proportions as the one

employed in Section 4, namely ∆xL = ∆yL = ∆zL = a/10 =

0.02 mm. This results in a X-FEM mesh of 16233 nodes. The

crack interface is discretized with flat triangular elements of

size ∆xcrack = 0.02 mm (210 nodes). The computation of the

SIFs is performed with ND = 2.

Finally, the global SAM model is decomposed into 103 ×
43 × 15 computation points spaced by ∆xG = ∆yG = ∆zG =

c/10 = 0.02 mm (see Fig. 15).

Local X-FEM Model

Global SAM Model

Fig. 15

SAM/X-FEM model used for the comparison with FEM.

5.3. FEM model

The finite element model used as reference for this com-

parison is presented. As shown in Fig. 16, only the body con-

taining the crack is modelled. Indeed, contrary to the SAM/X-

FEM analysis, the contact problem between the two bodies is

not solved in this FE calculation. Thus, a pressure field is

applied on the free surface of the body to represent the con-

tact. More precisely, a pressure distribution which represents

the sphere/plane contact is prescribed as stress boundary condi-

tions:

p(x, y) = p0

√

1 − (x2 + y2)

c2
(28)

The rolling cycle is represented by a displacement of this pres-

sure distribution along the x direction. In terms of displacement

boundary conditions, the bottom face of the body is fully con-

strained.

Crack

Fig. 16

FEM model used for the comparison with the SAM/X-FEM method.

As the body is considered as a half-space, the edges of the

finite element domain must be placed far enough away from the

contact zone to avoid the introduction of errors in the solution.

In practice, the dimensions of the domain should be at least

20 times larger than the characteristic dimension of the contact

zone. Thus, Lx = Ly = Lz are equal to 20 × 2c.

Then, remeshing techniques implemented in Z-cracks [81–
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83] are used to explicitly introduce the crack geometry into the

mesh of the body. A structured mesh around the crack front is

constructed to avoid oscillations in the spatial evolution of the

SIFs. The size of the elements in this area is equal to 0.002 mm

(10 times smaller than the size of the X-FEM elements in the

SAM/X-FEM model) in order to capture the crack tip singular-

ity with standard finite elements. To minimize the number of

dof, the mesh of the structure is coarser away from the zone

of interest containing the crack. This FE mesh is composed of

108250 nodes.

The SIFs are extracted using a domain energy integral tech-

nique similar to the one employed in this work. Finally, the me-

chanical problem is solved by means of the SAMCEF industrial

finite element solver.

5.4. Results and Discussion

In order to compare the two models, the variations of SIFs

in relation with the position of the contact center are plotted at

γ = 90◦ (see Fig. 17). The results obtained with the SAM/X-

FEM model are similar to those obtained with the FEM model.

For exemple, the maximum value of ∆KII is 5.671 MPa.m0.5

for the FEM model and 5.722 MPa.m0.5 for the SAM/X-FEM

model, i.e. a difference of 0.90%. The minimal value of ∆KII is

2.574 MPa.m0.5 for the FEM model and 2.558 MPa.m0.5 for the

SAM/X-FEM model, i.e. a difference of 0.62%. Moreover, the

KIII do not exhibit oscillations and are equal to zero because

γ = 90◦ is the symmetry point of the case under consideration.

Then, the comparison is extended to the entire crack front.

As the crack is subjected to the three cracking modes simulta-

neously, the combination of the SIF ranges based on the energy

release rate ∆Keq (22) is computed for each point of the crack

front. As shown Fig. 18, the ∆Keq obtained with the two mod-

els are comparable, although notable differences are observed

at the two vertices of the crack front.

Tab. 3 gives the relative errors in terms of ∆Keq between the

FEM model and the SAM/X-FEM model at γ = 45◦, 90◦ and

90◦. These errors range from 0.14% at γ = 90◦ to 5.03% at

γ = 135◦.

Tab. 3

Differences in terms of ∆Keq between the FEM model and the SAM/X-

FEM model.

εγ=45◦ (%) εγ=90◦ (%) εγ=135◦ (%)

4.90 0.14 5.03

Thus, these results demonstrate the validity of the develop-

ments when the contact between the crack faces is considered.

In addition, the advantages in terms of calcultation time can be

highlighted (see Tab. 4). It is important to recall that the con-

tact between the sphere and the half-space is not resolved within

the FEM analysis, whereas it is tackled with the SAM/X-FEM

approach. Despite this, the use of the SAM/X-FEM coupling

leads to a reduction of 86% in computation time. The calcula-

tions have been carried out with a laptop having the same char-

acteristics as the one used in Section 4.

(b)

(c)

(a)

Fig. 17

Variation of the SIFs at γ90◦ during the loading cycle. The black and

blue curves correspond to the SAM/X-FEM model and the FEM model

respectively. (a) mode I SIF, (b) mode II SIF and (c) mode III SIF.
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Fig. 18

Variation of ∆Keq along the crack front. The solid curve refers to the

results extracted from the SAM/X-FEM model while the dashed curve

represents the results obtained with the FEM model.

Tab. 4

Comparison of the calculation times of the SAM/X-FEM model and

the FEM model.

Model Calculation Time

SAM/X-FEM 2170 s (∼ 36 min)

FEM 15120 s (∼ 4 h 12 min)

6. A practical example

A numerical example demonstrating the efficiency of the

development to simulate long crack growth under rolling con-

tact condition is presented in this section. After describing the

SAM/X-FEM model, results concerning the first loading cycle

are exposed as well as results about the propagation of the crack

over several cycles. The influence of residual stresses on crack

behavior is investigated.

6.1. Description of the numerical model

For this practical example, the case studied is strictly iden-

tical to the one investigated in Section 5, i.e. a semi-circular

crack inclined at β = 15◦ under a rolling contact between a

ball and a half space. The parameters of this case are detailed

in Section 5.1. The only difference is that the friction between

the crack faces is now taken into account. Indeed, a moderate

interfacial friction coefficient µcrack = 0.1 is assumed here to

simulate the oil lubrication of the crack faces.

As the case under consideration is the same, the parame-

ters of the SAM/X-FEM model are identical to those given in

Section 5.2.

Concerning propagation aspects, the crack growth direction

and rate are predicted with both the MSSR criterion (19) and

the Paris-type law (21). Due to the lack of data for multi-axial

and non-proportional loading, the Paris law coefficients of the

16NCD13 steel established by Oni et al. [84] with mode I fa-

tigue tests are used: C = 1 · 10−11 and m = 2.97.

In this analysis, a non-constant maximum crack advance is

adopted. More precisely, it increases linearly with the maxi-

mum crack front depth: ∆amax is equal to ∆xL = 0.02 mm at

the beginning of the simulation, and takes the value of 3 ·∆xL =

0.06 mm when the crack front reaches a sufficient depth corre-

sponding to three times the depth of the maximum contact shear

stress 3·z∗ (with z∗ ≈ 0.49c for ball/plane contact). As the stress

gradient generated by the contact becomes small at this depth,

this choice achieves an acceptable compromise between accu-

racy and computational efforts.

As described in Section 3, the local and global models di-

mensions are automatically updated to comply with the crack

extension.

Finally, two cases are investigated: #1 corresponds to the

case without residual stress, whereas the case #2 corresponds

to the case with residual compressive stresses. For the latter

case, only the components σi
xx and σi

yy are non-zero values. It

is assumed that they decrease linearly with the depth and vanish

at z = 1 mm (see Fig. 19).

Fig. 19

In-depth profile of the residual stresses σi
xx and σi

yy.

6.2. Analysis of the first loading cycle

Fig. 20 depicts the SIF evolutions along the crack front dur-

ing the first loading cycle for case #1.

First, by looking at Fig. 20(a), it can be seen that KI does

not exhibit negative value since the contact between the crack

faces is considered here. Furthermore, due to high compressive

stresses arising from the contact loading, the value of KI re-

mains relatively low and does not exceed Kmax
I
= 0.70 MPa.m0.5.

When the contact loading approaches the crack (x/c = [−3;−1]),

a stable phase of slight increase is observed. It is followed by

a sudden variation of KI in the interval x/c = [−1;−0.2]. As

already stated by Ribeaucourt in Ref. [34], this phenomenon

is attributed to the spread of a ”bubble” zone towards the crack

front, which enhances the opening of the crack. This partial

opening zone appears at x/c = −1 when the leading edge of

the contact reaches the crack mouth. For clarity, this particular

opening mechanism is schematically represented in Fig. 21. To
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(a)

(b)

(c)

Fig. 20

Variation of the SIFs along the crack front during the loading cycle for

case#1. (a) mode I SIF, (b) mode II SIF and (c) mode III SIF.

support this illustration, the crack opening displacement [wN]

is plotted in Fig. 22 for different positions of the contact cen-

ter. Afterward, when the contact center passes over the crack

(x/c >= 0), the bubble zone disappears and the crack remains

closed (KI = 0 MPa.m0.5) on a wide portion of the crack front.

However, an increase of KI that initiates at x/c = 0.7 is captured

around the two vertices of the crack. It progressively decreases

and spreads to the bottom of the crack when the contact moves

away. This change is induced by a traction zone produced by

the axial contact stress σxx which takes positive values around

the contact area (see Fig. 23).

Fig. 21

Schematic representation of the formation and the spread of the ”bub-

ble” opening zone during the rolling cycle.

s

s=0

s=0.2mm
(γ=90°)

Fig. 22

Crack opening displacement [wN] for different positions of the contact

center.

Concerning mode II (see Fig. 20(b)), it can be noticed that

KII is almost zero when the contact approaches the crack mouth

(x/c = [−3;−1]). Then, KII exhibits a reversal behavior for

x/c >= −1 with a sign change at x/c = 1.8. So the direc-

tion of the relative sliding displacement along the crack faces

is reversed when the contact area moves over the crack. This

behavior is caused by a combination of the sub-surface shear

stresses generated by the contact loading, even though the or-

thogonal shear stress σxz is the major contributor. It is worth

noting that σxz follows a reverse trend similar to the KII varia-

tion (see Fig. 23). The extreme values Kmin
II
= −2.28 MPa.m0.5

and Kmax
II
= 3.85 MPa.m0.5 are obtained at γ = 90◦ for x/c = 0

and x/c = 1.8 respectively.

Contrary to KI and KII which are symmetrical around the

crack front center (γ = 90◦), mode III SIF gets an antisymmet-

ric behavior (see Fig. 20(c)). In the same manner as mode II,
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Fig. 23

Evolution of normalized stresses generated by the contact along the x-

direction. The solid curve refers to σxx at y = z = 0 while the dashed

curve corresponds to σxz at y = 0, z = z∗.

KIII is activated only when the contact area goes over the crack.

It is characterized by a more complex behavior, also driven by

a combination of the contact shear stresses. The extreme values

Kmin
III
= −1.65 MPa.m0.5 and Kmax

III
= 1.65 MPa.m0.5 are reached

for x/c = 1.4 at γ = 130◦ and γ = 50◦ respectively.

Comparing the three modes in terms of magnitude, it can

be inferred that mode II dominates the other modes. Moreover,

mode I is clearly lower than mode II and mode III. These obser-

vations support the choice here to assume a shear crack growth

mechanism for RCF crack.

The analyzed results indicate that the crack experiences a

highly complex multi-axial and non-proportional behavior, typ-

ically encountered during a rolling contact cycle.

To highlight the influence of residual stresses, the variations

of SIFs in relation with the position of the contact center are

plotted at γ = 45◦ for case #1 and case #2 (see Fig. 24). As

shown in Fig. 24(a), the introduction of compressive stresses

promotes crack closure and consequently reduces the KI values.

Furthermore, although the trends remain the same, the residual

state causes a shift in the mean value of the KII and KIII vari-

ations (see Fig. 24(b) and (c)). In other words, it induces an

initial relative displacement between the crack faces that does

not have a noticeable impact on the subsequent behavior of the

crack.

Fig. 25 illustrates the variation of the SIF ranges along the

crack front for cases #1 and #2. As previously stated, mode

II prevails over the other modes. The maximum value of ∆KII

is 6.13 MPa.m0.5 for case #1 and 6.32 MPa.m0.5 for case #2.

These values, as well as the minimum of ∆KIII , are achieved

at γ = 90◦. The maximum of ∆KIII , that is located at oppo-

sition positions γ = 50; 130◦, is equal to 1.91 MPa.m0.5 for

case #1 and 1.95 MPa.m0.5 for case #2. ∆Kmax
I

is obtained

around the crack vertices, and is 0.73 MPa.m0.5 for case #1 and

(b)

(c)

(a)

Fig. 24

Variation of the SIFs at γ = 45◦ during the loading cycle. The black

and blue curves correspond to case #1 (without residual stress) and

case #2 (with residual compressive stresses) respectively. (a) mode I

SIF, (b) mode II SIF and (c) mode III SIF.
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0.62 MPa.m0.5 for case #2. The residual compressive stresses

tend to significantly reduce ∆KI over the whole crack front. For

example, ∆KI is reduced by 62% at γ = 90◦. By contrast, ∆KII

and ∆KIII are not significantly modified by the introduction of

residual stresses. A slight increase of ∆KII can be seen, which

is attributed to the use of a non-zero value for µcrack. The maxi-

mum augmentation is about 3% at γ = 90◦.

Fig. 25

Variation of the SIF ranges along the crack front. The solid curves refer

to case #1 (without residual stress) while the dashed curves represent

case #2 (with residual compressive stresses). The black, blue and red

curves correspond to ∆KI , ∆KII and ∆KIII respectively.

The consistency and the quality of the results exposed above

demonstrate the efficiency of the SAM/X-FEM coupling ap-

proach to tackle such complex problems. Indeed, the developed

method provides smooth informations along the crack front that

depicts accurately the particular behavior of crack subjected to

rolling contact conditions. Moreover, the numerical stability

of this tool shows the robustness of the development. Besides

this, the benefits in terms of CPU times can also be highlighted.

The calculation of the first loading cycle of case #1 requires

34 minutes with a laptop having the same characteristics as the

one used in Section 4. This is quite acceptable for such simula-

tions which include the resolution of frictional contact between

the contacting bodies and the crack faces. Note that the intro-

duction of residual stresses has a minor impact on calculation

efforts (38 minutes for case #2).

6.3. Analysis of the crack propagation over several cycles

Results about crack growth are given in this section. Note

that simulations have been carried out until the maximum depth

of crack reaches 3 · z∗. This corresponds to 26 cycle jumps.

Fig. 26 shows the progression of the cracks during the prop-

agation. As expected, the cracks grow in the most stressed zone,

mainly along the travel direction (x-direction). Furthermore, it

can be observed that the MSSR criterion predicts a nearly co-

planar propagation for case #1 (see Fig. 26(a)) and case #2 (see

Fig. 26(b)). Indeed, crack branching is prevented here as mode

II and III SIFs dominate over mode I SIF throughout the analy-

sis.

(a)

(b)

xy

z

Fig. 26

3D view of the crack progression. (a) case #1 (without residual stress)

and (b) case #2 (with residual compressive stresses).

In order to compare the cases studied, the simulated final

crack shapes are superimposed in Fig. 27. It can be seen that

these shapes are almost the same. This is not surprising given

that the MSSR criterion uses only the SIF ranges to determine

the crack direction.

As a guide, a − N curves are plotted in Fig. 28. It is found

that the cracks speed gradually decreases as they extend in the

depth. At the end of the simulation, the maximum number of

cycles is 6.15 ·105 for case #1 and 5.42 ·105 for case #2. There-

fore, the presence of residual stresses accelerates the propaga-

tion. This is due to the discrepancies in terms of ∆KII (see

Fig. 25) that become more pronounced when the crack propa-

gates.

Note that the SIF range threshold value ∆Kth has not been

taken into account in this analysis. The consideration of this

parameter could arrest the crack and reduce the crack front ex-

tension in the zones where the SIFs are small.

Case #1 and case #2 require approximately 4 days by using
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Fig. 27

Comparison of the simulated final crack shapes. The black and blue

shapes correspond to case #1 (without residual stress) and case #2

(with residual compressive stresses) respectively.

Fig. 28

Crack length a evaluated in the xz plane (symmetrical plane of the

crack) against the number of cycles N. The black and blue curves cor-

respond to case #1 (without residual stress) and case #2 (with residual

compressive stresses) respectively.

resources of a more powerful computing center. Despite this,

the numerical costs remain relatively low for such simulations.

Furthermore, no intervention of the user has been performed

during the propagation, which underlines the robustness of the

crack growth algorithm.

7. Conclusion

The present work proposes a novel numerical method to

simulate in a fast, robust and accurate way the complex be-

havior of 3D non-planar crack under rolling contact conditions.

To this end, a non-intrusive SAM/X-FEM coupling based on a

global-local strategy has been developed together with a pow-

erful data transfer procedure that allows the use of independent

discretization for the global and local models. Besides signifi-

cantly shortening computational time and resources, the devel-

opments allow to reduce the pre-processing efforts, which is

well suitable in an industrial context. It offers a serious alter-

native that overcomes the current numerical limitations of other

methods.

A validation based on a comparison with results from the

literature and from a FEM model has been successfully per-

formed. Then, the SAM/X-FEM approach has been applied to

a practical example that focuses on the propagation of a semi-

circular crack under a spherical contact. It demonstrates the

great potential of this strategy to handle in a fully automatic

manner the 3D RCF crack growth. The influence of residual

stresses on crack propagation has also been highlighted.

Concerning the potential improvements of the SAM/X-FEM

method, the next step consists in extending the proposed one

way coupling to an iterative one in order to consider the influ-

ence of the local detail at the global scale. In a future work,

the proposed model will be used within an extensive paramet-

ric study that aims to understand the behavior of cracks under

various rolling contact conditions.
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Appendix A. Semi-Analytical Method

The basics of SAM are recalled in this appendix. Since

linear elasticity is assumed in the present work, the in-house

SAM solver discussed here is only addressed to the resolution

of 3D elastic contact problems.

Appendix A.1. Contact problem formulation

Let’s consider two non-conforming contacting bodies de-

noted by Ω1 and Ω2 (see Fig. A.29). Small strain and small dis-

placement assumptions are assumed. The materials are isotropic

and homogeneous with linear elastic behavior in bulk. The size

of the contact area Ac is relatively small with regard to the char-

acteristic dimensions of the bodies. Thus, Ω1 and Ω2 can be

regarded as half-spaces. Generally, the formulation of the nor-

mal contact consists in a system of equations and inequalities

which describe the physics of the problem at the interface. This

formulation is recalled bellow:

• The load balance. The applied load W is equal to the

integration of the contact pressure p(x) over the contact

area Ac:

W =

∫

Ac

p(x)dx (A.1)

• The surface separation. The distance between the con-

tacting bodies h(x) is given by the summation of the ini-

tial separation hi(x), the rigid body displacement δz and
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the normal elastic surface displacement of both bodies

u
Ω1+Ω2
z (x) (see Fig. A.29):

h(x) = hi(x) − δz + uΩ1+Ω2
z (x) (A.2)

• The contact condition. The distance h(x) is always posi-

tive due to the non-interpenetration of contacting bodies:

h(x) > 0 (A.3)

when h(x) = 0 then p(x) > 0⇔ contact (A.4)

when h(x) > 0 then p(x) = 0⇔ separation (A.5)

h

δz Ω1

Ω2
p

uz
Ω1

uz
Ω2

W

Fig. A.29

Parameters of the elastic contact problem.

For elastic half-spaces, the displacement uz can be expressed

as a function of the contact pressure distribution p using the

Boussinesq solution [85]:

uz(x) =

∫∫

G
p
z (x − ξ)p(ξ)dξ (A.6)

The elementary solutions G
p
z , usually called Green’s functions

or influence coefficients, correspond to the displacement of the

contact surface at the point x due to an unit load at the point

ξ. It should be noted that Eq. (A.6) satisfies the equilibrium

in bulk, the linear elastic behavior and the half-space boundary

conditions.

Appendix A.2. Numerical resolution

To numerically solve the contact problem, the potential con-

tact surface is discretized into a 2D regular grid of N = Nx ×Ny

points which are spaced by ∆x along the x-direction and ∆y

along the y-direction. Each point n is associated to a centered

elementary rectangular zone of size dS = ∆x × ∆y where the

pressure is assumed to be constant. In this manner, the pressure

distribution p(x) is discretized into several patches of uniform

pressure p(n) (see Fig. A.30).

By using the linear elasticity theory, the effect of each patch

of pressure can be superimposed in order to determine the elas-

tic response of the contact interface. In that respect, Eq. (A.6)

p(n)

Fig. A.30

Discretization of the pressure distribution: example of an elliptical

contact.

can be rewritten in the following discretized form:

uz(n) =

N
∑

m=1

K
p
z (m, n)p(m) (A.7)

The influence coefficients K
p
z represent the effect of a rectan-

gular patch of uniform pressure at the point m on the normal

elastic displacement at the point n. Love [86] gave closed-form

solution of K
p
z by integrating the Boussinesq concentrated load

solution over a rectangular area. Detailed expressions can be

found in the well-known book of Johnson [87].

Then, Eqs. (A.1-A.5) are discretized and the contact prob-

lem is expressed by the following system:

p(n) > 0 n = 1,Nc (A.8a)

hi(n) + δz + uΩ1+Ω2
z (n) = 0 n = 1,Nc (A.8b)

p(n) = 0 n = 1,Ne (A.8c)

hi(n) + δz + uΩ1+Ω2
z (n) > 0 n = 1,Ne (A.8d)

W = ∆x∆y

Nc
∑

n=1

p(n) (A.8e)

where Nc and Ne define respectively the points inside and out-

side the contact area Ac (N = Nc + Ne).

The system of equations and inequalities (A.8) is solved si-

multaneously by the means of an iterative solver based on the

Conjugate Gradient Method (CGM) [88]. This numerical reso-

lution is generally coupled with Fast Fourier Transform (FFT)

techniques [89] to transform the time-consuming convolution

product (A.7) into a simple term by term product in the fre-

quency domain:

ûz = K̂
p
z p̂ (A.9)

In practice, the Discrete Convolution and Fast Fourier Trans-

form (DC-FFT) technique, as proposed by Liu et al. [90], is

used to significantly reduce the computational time while keep-

ing a good accuracy of the solution.

Concerning the tangential contact problem, full sliding con-

tact conditions are assumed in this work. As a consequence, the

shear distribution q is simply calculated as follows:

q(n) = µcontact · p(n) (A.10)
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where µcontact is the friction coefficient between the contacting

bodies. Note that the in-house SAM code is also able to deal

with partial sliding conditions [91, 92].

After solving the contact problem, the stresses in bulk can

be calculated by discretizing the volume into a 3D regular grid

of Nx × Ny × Nz points spaced by ∆x along the x-direction,

∆y along the y-direction and ∆z along the z-direction. Follow-

ing the same approach as above, the elastic stresses σe are ob-

tained by superimposing the contribution of each surface patch

of pressure:

σe
IJ(n) =

N
∑

m=1

(

C
p

IJ
(m, n) + µcontactC

q

IJ
(m, n)

)

p(m) (A.11)

where the coefficients of influence C
p

IJ
and C

q

IJ
correspond to

the elastic stresses at the point n due to a rectangular patch of

uniform pressure and shear at the point m. The expressions of

C
p

IJ
and C

q

IJ
are given for example in Ref. [93]. As these an-

alytical solutions implicitly consider the geometry of the half-

spaces, the calculation zone may be restricted only to the region

of interest where the stresses are needed. This contributes to a

significant reduction in computational time.

Moreover, an initial residual stress field, denoted by σi, can

be considered by adding it to the stresses σe generated by the

elastic contact (A.11). Thus the total stress tensor σ is ex-

pressed as follows:

σIJ(n) = σe
IJ(n) + σi

IJ(n) (A.12)

Appendix B. X-FEM for 3D non-planar frictional contact-

ing crack

In this appendix, the 3D quasi-static X-FEM model pro-

posed by Pierres [37, 38] for frictional contacting crack is re-

called. Only the basics of the method are presented here. Partial

details about its implementation in the industrial finite element

software Cast3M [67] are also provided.

Appendix B.1. Two-scale strategy and three-field weak formu-

lation for 3D quasi-static frictional crack prob-

lem

Let’s consider a linear elastic body Ω containing a crack

Γc. The crack body is submitted to surface forces F̄ on ∂σΩ

and displacements ū on ∂uΩ. Moreover, volume forces f are

applied in Ω. n is the outward unit normal to Ω while nc is the

outward unit normal to Γc. Contact and friction can occur along

the crack faces Γ+c and Γ−c (Γc = Γ
+
c ∪ Γ−c ).

The cracked body problem (Ω∪Γc) is divided into two sub-

problems: a problem related to the structure scaleΩ and a prob-

lem related to the crack scale Γc (see Fig. B.31). Each problem

has its own primal and dual variables: the displacement field

u and the stress tensor σ for the problem of structure, and the

interface displacement field w and the interface traction field t

for the problem of crack.

At a given time t ∈ [0; T ], the solution (u,σ) of the problem

of structure must satisfy the static equilibrium (B.1), and the

Dirichlet and Neumann boundary conditions (B.2,B.3):

divσ + f = 0 in Ω (B.1)

σ · n = F̄ on ∂σΩ (B.2)

u = ū on ∂uΩ (B.3)

Eqs. (B.4,B.5) ensure the coupling between the subprob-

lems. These equations enforce the continuity conditions on Γc

of the primal (u,w) and dual (σ, t) variables:

u = w on Γc (B.4)

σ · nc = t on Γc (B.5)

Eqs. (B.1-B.5) consist in the strong formulation of the frac-

ture problem with contact and friction along the crack faces.

An equivalent three-field (u,w, λ) weak formulation can be ob-

tained by applying the principle of the virtual works:

0 = −
∫

Ω

σ : ε(u∗)dΩ +

∫

Ω

f · u∗dΩ +
∫

Ω

F̄ · u∗dΩ

+

∫

Γc

λ · u∗dS +

∫

Γc

(t − λ) · w∗ +
∫

Γc

(u − w) · λ∗dS

∀u∗ ∈ U0,∀w∗ ∈ W,∀λ∗ ∈ Λ,∀t ∈ [0; T ]

(B.6)

with:

u ∈ U,U = {u + regularity/u = ū on ∂uΩ} (B.7)

u∗ ∈ U0,U0 = {u∗ + regularity/u = 0 on ∂uΩ} (B.8)

w ∈ W,w∗ ∈ W,W = {w + regularity} (B.9)

λ ∈ Λ, λ∗ ∈ Λ,Λ = {λ + regularity} (B.10)

The main specificity of this mixed formulation is the weak cou-

pling between the variables of the two problems by means of

the Lagrange multiplier field λ. It allows the use of independent

discretization scheme for the structure and the interface. Thus,

the crack mesh can be freely adjusted to accurately capture the

complex local contact non-linearities on the interface.

Moreover, the subproblems have their own constitutive law.

At the structure scale, the variables (u,σ) follow the stress-

strain law for homogeneous isotropic material having a linear

elastic behavior:

σ = K : ε(u) in Ω (B.11)

with K the Hooke tensor.

At the crack scale, the variables (w, t) obey to the contact

unilateral law and the Coulomb’s friction law:

Open Zone: [wN] > 0→ t+ = t− = 0

Contact Zone: [wN] = 0→ t+ = −t−

Stick Zone: ‖tT ‖ < µcrack · ‖tN‖ → ∆[wT ] = 0

Slip Zone: ‖tT ‖ = µcrack · ‖tN‖ → ∃γ > 0/∆[wT ] = −γt+T
(B.12)

where the interface quantities are defined in the local basis (nc, tc)

attached to the crack:

w = wN · nc + wT · tc and t = tN · nc + tT · tc (B.13)
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Fig. B.31

Strategy for the cracked body problem.

and the relative displacements (opening and sliding) between

the crack faces are given by the following relations:

[wN] = w+N − w−N and [wT ] = w+T − w−T (B.14)

It is worthwhile to note that ∆[wT ] corresponds to the increment

of sliding displacement between two time steps and µcrack is the

interfacial friction coefficient.

Appendix B.2. X-FEM discretization and numerical resolution

In order to take into account the crack influence at the struc-

ture scale, the displacement u are discretized by the means of

X-FEM [94]. The method uses the partition of unity concept

[29] to add enrichment functions into the classical FEM ap-

proximation. The generalized Heaviside function H and the

singular functions F
j

i
are introduced to capture respectively the

discontinuity generated along the crack and the asymptotic be-

havior close to the crack front. The X-FEM approximation of

the displacement u at a given time t ∈ [0; T ] is:

u(x, t) ⋍
∑

i∈Nnodes

Ni(x)ui(t) +
∑

i∈Ncrack

H(x)Ni(x)aui
(t)

+
∑

i∈N f ront

Ni(x)

4
∑

j=1

F jb
j

i
(t)

(B.15)

where ui, aui
and b

j

i
define the standard, discontinuous and sin-

gular degrees of freedom, Ni correspond to the 3D linear fi-

nite element shape functions, Nnodes are the nodes of the mesh

defining the whole structure Ω, Ncrack are the nodes of the ele-

ments completely cut by the crack and N f ront are the nodes of

the elements where the crack front is located (see Fig. B.32).

Thanks to this enrichment technique, the mesh of the structure

can be defined independently of the crack shape. Therefore, re-

meshing and field interpolation are not needed during the crack

propagation.

An explicit/implicit approach [77, 95] is employed to de-

scribe the geometry of 3D non-planar crack. First, the crack

surface is discretized with flat triangular elements separately

from the structure mesh (see Fig. B.33). This explicit descrip-

tion facilitates the update of the crack during propagation. In-

deed, the crack extension is achieved by simply adding new

triangular elements along the crack front. Then, a set of two

Crack

Ncrack , Discontinuous Enrichment 

Nfront   

, Singular Enrichment 

Ninterface 
, Interface Discontinuous Enrichment

Fig. B.32

X-FEM nodal enrichments for the bulk and the crack interface.

level-sets [30, 31] is computed analytically with the help of the

crack mesh. This implicit description is useful to define the X-

FEM enrichment, the polar coordinates (r, θ) and the local axes

close to the crack front.

The consideration of the frictional contact between the crack

faces requires the discretization of the displacement field w, the

traction field t and the Lagrange multiplier field λ. The nodes

of the triangular crack mesh are used as geometric support. In

the same spirit as X-FEM, a discontinuous enrichment is used

to distinguish the interface quantities on Γ+c and Γ−c :

w(x, t) ⋍
∑

m∈Ninter f ace

Ψm(x)wm(t) + H(x)Ψm(x)awm
(t) (B.16)

t(x, t) ⋍
∑

m∈Ninter f ace

Ψ′m(x)tm(t) + H(x)Ψ′m(x)atm (t) (B.17)

λ(x, t) ⋍
∑

m∈Ninter f ace

Ψ′m(x)λm(t) + H(x)Ψ′m(x)aλm
(t) (B.18)
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Triangular Crack MeshX-FEM Mesh

Fig. B.33

Explicit description of the 3D non-planar crack geometry.

with H(x) = +1 when x ∈ Γ+ and H(x) = −1 when x ∈ Γ−. wm,

tm and λm define the standard degrees of freedom, awm
, atm and

aλm
define the discontinuous degrees of freedom, Ψm and Ψ′m

correspond to the primal and dual linear shape functions respec-

tively, Ninter f ace are the nodes of the crack mesh (see Fig. B.32).

After introducing the discretized unknowns (B.15-B.18) into

the three-field weak formulation (B.6), the quasi-static problem

of 3D non-planar frictional crack is solved by using a stabilized

non-linear LArge Time INcrement (LATIN) solver [96]. This

iterative scheme prevents numerical oscillations classically ob-

served on the dual variables in mixed formulations. An opti-

mization of the solver parameters is proposed by Trollé et al.

[97] to ensure convergence quality and numerical efficiency.
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