Jingang Qu
email: jingang.qu@sorbonne-universite.fr

Thibault Faney

Jean-Charles De Hemptinne

Soleiman Yousef

Patrick Gallinari

PTFlash : A vectorized and parallel deep learning framework for two-phase flash calculation ⋆

Keywords: Flash calculation, Two-phase equilibrium, Vectorization, Deep learning

Phase equilibrium calculations are an essential part of numerical simulations of multi-component multi-phase flow in porous media, accounting for the largest share of the computational time. In this work, we introduce a fast and parallel framework, PTFlash, that vectorizes algorithms required for two-phase flash calculation using PyTorch, and can facilitate a wide range of downstream applications. Vectorization promotes parallelism and consequently leads to attractive hardware-agnostic acceleration. In addition, to further accelerate PTFlash, we design two task-specific neural networks, one for predicting the stability of given mixtures and the other for providing estimates of the distribution coefficients, which are trained offline and help shorten computation time by sidestepping stability analysis and reducing the number of iterations to reach convergence.

The evaluation of PTFlash was conducted on three case studies involving hydrocarbons, CO 2 and N 2 , for which the phase equilibrium was tested over a large range of temperature, pressure and composition conditions, using the Soave-Redlich-Kwong (SRK) equation of state. We compare PTFlash with

Introduction

Numerical simulation of multi-component multi-phase flow in porous media is an essential tool for many subsurface applications, from reservoir simulation to long term CO 2 storage. A core element of the simulator for such applications is to determine the phase distribution of a given fluid mixture at equilibrium, also known as flash calculation. Starting with the seminal work of Michelsen [START_REF] Michelsen | The isothermal flash problem. part II. phase-split calculation[END_REF][START_REF] Michelsen | The isothermal flash problem. part i. stability[END_REF], researchers have developed robust and efficient algorithms for isothermal two-phase flash calculation. These algorithms have been implemented in the IFPEN thermodynamic C++ library Carnot.

Nonetheless, flash calculations still account for the majority of simulation time in a large range of subsurface applications [START_REF] Wang | Non-iterative flash calculation algorithm in compositional reservoir simulation[END_REF][START_REF] Belkadi | Comparison of two methods for speeding up flash calculations in compositional simulations[END_REF]. In most simulators, flash calculations are performed for each grid cell at each time step. Moreover, since modern simulators tend to require higher and higher grid resolutions up to billions of grid cells [START_REF] Dogru | A next-generation parallel reservoir simulator for giant reservoirs[END_REF], the share of computing time due to flash calculations is expected to increase as well. In this context, speeding up flash calculations has drawn increasing research interest. Some efforts have been made to accelerate flash calculations. [START_REF] Michelsen | Simplified flash calculations for cubic equations of state[END_REF][START_REF] Hendriks | Reduction theorem for phase equilibrium problems[END_REF][START_REF] Hendriks | Application of a reduction method to phase equilibria calculations[END_REF] proposed a reduction method aiming to reduce the number of independent variables by leveraging the sparsity of the binary interaction parameter matrix,resulting in a limited speed-up [START_REF] Belkadi | Comparison of two methods for speeding up flash calculations in compositional simulations[END_REF]. [START_REF] Rasmussen | Increasing the computational speed of flash calculations with applications for compositional[END_REF] introduced the shadow region method using the results of previous time steps to initiate the current one, which assumes that the changes in pressure, temperature, and composition of a given block are small between two adjacent time steps in typical compositional reservoir simulation.

[10] presented tie-line based methods, which approximate the results of flash calculations through linear interpolation between existing tie-lines and can be seen as a kind of look-up table. In [START_REF] Gaganis | Machine learning methods to speed up compositional reservoir simulation[END_REF][START_REF] Gaganis | An integrated approach for rapid phase behavior calculations in compositional modeling[END_REF][START_REF] Gaganis | Rapid phase stability calculations in fluid flow simulation using simple discriminating functions[END_REF][START_REF] Kashinath | A fast algorithm for calculating isothermal phase behavior using machine[END_REF][START_REF] Wang | Accelerating and stabilizing the vapor-liquid equilibrium (VLE) calculation in compositional simulation of unconventional reservoirs using deep learning based flash cal[END_REF][START_REF] Zhang | A self-adaptive deep learning algorithm for accelerating multi-component flash calculation[END_REF], the authors focused on the use of machine learning, which provides a collection of techniques that can effectively discover patterns and regularities in data. They used support vector machine [17], relevance vector machine [START_REF] Tipping | Sparse bayesian learning and the relevance vector machine[END_REF] and neural networks [START_REF] Goodfellow | Deep learning[END_REF] to directly predict equilibrium phases and provide more accurate initial estimates for flash calculations. In [START_REF] Dogru | A next-generation parallel reservoir simulator for giant reservoirs[END_REF][START_REF] Chen | GPU-based parallel reservoir simulators[END_REF], researchers focused on developing faster parallel linear solvers, with [START_REF] Dogru | A next-generation parallel reservoir simulator for giant reservoirs[END_REF] mentioning specifically that the vectorization of partial equation of state (EOS) related operations would lead to faster execution.

In this work, we introduce PTFlash, a framework for two-phase flash calculation based on the SRK equation of state [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF]. PTFlash is built on the deep learning framework PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and consists in two main elements, namely the vectorization of algorithms and the use of neural networks. First, we perform a complete rewrite of two-phase flash calculation algorithms of Carnot using PyTorch. This enables the systematic vectorization of the complex iterative algorithms implemented in Carnot, allowing in turn to efficiently harness modern hardware with the help of, e.g., Advanced Vector Extensions AVX for Intel CPUs [START_REF] Lomont | Introduction to intel advanced vector extensions 23[END_REF] and CUDA for Nvidia GPUs [START_REF] Sanders | CUDA by example: an introduction to generalpurpose GPU programming[END_REF]. Note that vectorization of complex iterative algorithms with branching is not straightforward and needs specific care. Second, we replace repetitive and time consuming parts of the original algorithms with deep neural networks trained on the exact solution.

More specifically, one neural network is used to predict the stability of given mixtures, and the other is used to provide initial estimates for the iterative algorithms. Once well trained, neural networks are seamlessly incorporated into PTFlash. These two elements allow PTFlash to provide substantial speed-ups compared to Carnot, especially so in the context of flow simulations where parallel executions of flash calculations for up to a billion grid cells are needed.

The rest of this article is organized as follows. In Section 2, we introduce the fundamentals of isothermal two-phase flash calculation and present three case studies. In Section 3, we explain how to efficiently vectorize flash calcu-lation using PyTorch. In Section 4, we present two neural networks to speed up calculations. In Section 5, we demonstrate the attractive speed-up due to vectorization and the introduction of neural networks. Finally, we summarize our work and suggest future research in Section 6.

Isothermal two-phase flash calculation

In this section, we introduce the essential concepts of isothermal two-phase flash calculation. In the following, without loss of generality, we consider the equilibrium between the liquid and vapor phases.

Problem setting

We consider a mixture of N c components. Given pressure (P), temperature (T) and feed composition (z = (z 1 , . . . , z Nc)), the objective of flash calculation is to determine the system state at equilibrium: single phase or coexistence of two phases. In the latter case, we need to additionally compute the molar fraction of vapor phase θ V , the composition of the liquid phase x and that of the vapor phase y. These properties are constrained by the following mass balance equations:

x i (1 -θ V) + y i θ V = z i , for i = 1, . . . , N c (1a) Nc i=1 x i = Nc i=1 y i = 1 (1b)
In addition, the following equilibrium condition should be satisfied:

φ L i (P, T, x) φ V i (P, T, y) = y i x i (2)
where the superscripts L and V refer to the liquid and vapor phases, respectively, and φ i is the fugacity coefficient of component i, which is a known nonlinear function of P , T and the corresponding phase composition. This function depends on an equation of state that relates pressure, temperature and volume. In this work, we use the SRK equation of state [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF] and solve it using an iterative approach [START_REF] Deiters | Calculation of densities from cubic equations of state: revisited[END_REF] rather than the analytical solution of the cubic equation, e.g., the Cardano's formula, which may be subject to numerical errors in certain edge cases [START_REF] Zhi | Fallibility of analytic roots of cubic equations of state in low temperature region[END_REF]. For more details, see Appendix A.

Numerical solver

Equations 1 and 2 form a non-linear system, which is generally solved in a two-stage procedure. First, we establish the stability of a given mixture via stability analysis (Section 2.2.1). If the mixture is stable, only one phase exists at equilibrium. Otherwise, two phases coexist. Second, we determine θ V , x and y at equilibrium through phase split calculations (Section 2.2.2).

Stability analysis

A mixture of composition z is stable at specified P and T if and only if its total Gibbs energy is at the global minimum, which can be verified through the reduced tangent plane distance [START_REF] Michelsen | The isothermal flash problem. part II. phase-split calculation[END_REF]:

tpd(w) = Nc i=1 w i (ln w i + ln φ i (w) -ln z i -ln φ i (z)) (3
)
where w is a trial phase composition. If tpd(w) is non-negative for any w, the mixture is stable. This involves a constrained minimization problem, which is generally reframed as an unconstrained one:

tm(W) = Nc i=1 W i (ln W i + ln φ i (W) -ln z i -ln φ i (z) -1) (4)
where tm is the modified tangent plane distance and W is mole numbers. To locate the minima of tm, we first use the successive substitution method accelerated by the Dominant Eigenvalue Method (DEM) [START_REF] Orbach | Convergence promotion in the simulation of chemical processes with recycle-the dominant eigenvalue method[END_REF], which iterates:

ln W (k+1) i = ln z i + ln φ i (z) -ln φ i (W (k)) (5)
It is customary to initiate the minimization with two sets of estimates, that is, vapor-like estimate W i = K i z i and liquid-like estimate W i = z i /K i , where K i is the distribution coefficients, defined as y i /x i and initialized via the Wilson approximation [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF], as follows:

ln K i = ln P c,i P + 5.373(1 + ω i) 1 - T c,i T (6)
where T c,i and P c,i refer to the critical temperature and pressure of component i, respectively, and ω i is the acentric factor.

Once converging to a stationary point (i.e., max(|∂tm/∂W |) < 1.0e-6) or a negative tm is found, successive substitution stops. If this does not happen after a fixed number of iterations (9 in our work), especially in the vicinity of critical points, we resort to a second-order optimization technique, i.e., the trust-region method [START_REF] Hebden | An algorithm for minimization using exact second deriva-tivesPublisher[END_REF], to minimize tm(W), which we describe in Appendix B.1. In addition, based on the results of stability analysis, we can re-estimate

K i more accurately as z i /W L i if tm L < tm V or W V i /z i otherwise
, where the superscripts V and L denote the results obtained using the vapor-like and liquidlike estimates, respectively.

Phase split calculations

Substituting K i = y i /x i into Equation 1 yields the following Rachford-Rice equation [START_REF] Rachford | Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium[END_REF]:

f RR (θ V , K) = Nc i=1 (K i -1)z i 1 + (K i -1)θ V = 0 (7)
Given K = (K 1 , . . . , K Nc), we solve the above equation using the method proposed by [START_REF] Leibovici | A new look at the rachford-rice equation[END_REF] to get θ V , which is detailed in Appendix C.1.

To obtain θ V , x and y at equilibrium, phase split calculations start with the accelerated successive substitution method, as illustrated in Figure 1, and the corresponding convergence criterion is max(|K

(k+1) i /K (k) i -1|) <1.0e-8. If
successive substitution fails to converge after a few iterations (9 in our work), we use the trust-region method to minimize the reduced Gibbs energy:

G = Nc i=1 n L i (ln x i + ln φ L i) + Nc i=1 n V i (ln y i + ln φ V i) (8)
where

n L i = x i (1 -θ V) and n V i = y i θ V are

Strategy for two-phase flash calculation

We basically adopt the rules of thumb proposed by Michelsen in the book [START_REF] Michelsen | Thermodynamic modelling: fundamentals and computational aspects[END_REF] to implement two-phase flash calculation, as shown in Figure 2. In the flowchart, we first initialize the distribution coefficients K i using the Wilson approximation. Subsequently, in order to avoid computationally expensive stability analysis, we carry out the successive substitution of phase split calculations 3 times, which will end up with 3 possible cases: (1) θ V is out of bounds (0, 1) during iterations. (2) None of ∆G, tpd(x) and tpd(y) are negative, where tpd(x) and tpd(y) are reduced tangent plane distances using current vapor and liquid phases as trial phases, and ∆G = θ V × tpd(x) + (1 -θ V) × tpd(y). (3) Any of ∆G, tpd(x) and tpd(y) is negative.

For the first two cases, we cannot be sure of the stability of the given mixture, thus continuing with stability analysis. For the third case, we can conclude that the given mixture is unstable, thereby sidestepping stability analysis. Finally, if two phases coexist, we perform phase split calculations to get θ V , x and y at equilibrium.

Case studies

Here, we introduce three case studies involving hydrocarbons, CO 2 and N 2 , whose properties are shown in Table 1. In this work, we only consider the binary interaction parameter (BIP) between CH 4 and CO 2 , which is 0.0882. The BIPs between the others are 0. The first case study focuses on a system of two components (CH 4 and C 6 H 14), and the second one involves four components (CH 4 , C 2 H 6 , C 3 H 8 and C 4 H 10). For these two case studies, the ranges of pressure and temperature are 0.1MPa -10MPa and 200K -500K, respectively, and we consider the entire compositional space, i.e., 0

< z i < 1 for i = 1, . . . , N c .
The third case study includes all 9 components in Table 1. The bounds of pressure and temperature are 5MPa -25MPa and 200K -600K, respectively. In addition, from a practical perspective, given that some mixtures do not exist in nature, rather than considering the entire compositional space, we specify four different compositional ranges, as shown in Table 2, each of which represents one

CH4 80% -100% 60% -80% 50% -70% 20% -40% C2H6 2% -7% 5% -10 % 6% -10% 3% -6 % C3H8 ≤ 3% ≤ 4% ≤ 4.5% ≤ 1.5% n-C4H10 ≤ 2% ≤ 3% ≤ 3% ≤ 1.5% n-C5H12 ≤ 2% ≤ 2% ≤ 2% ≤ 1% C6H14 ≤ 2% ≤ 2% ≤ 2% ≤ 2% C7H + 16 ≤ 1% 5% -10 % 10% -30% 45% -65% CO2 ≤ 2% ≤ 3.5% ≤ 2% ≤ 0.1% N2 ≤ 0.5% ≤ 0.5% ≤ 0.5% ≤ 0.5% 200

Data generation

To efficiently sample input data including P , T and z, we first use Latin Hypercube Sampling (LHS) technique to take space-filling samples [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]. Subsequently, for P and T , we linearly transform the uniform distribution U(0, 1) to the expected ranges. For z subject to z i = 1, we transform a set of U(0, 1) into the Dirichlet distribution Dir(α) whose support is a simplex, as follows:

x i i.i.d.
∼ U(0, 1) using LHS (9a)

y i = Γ (α i , 1).ppf (x i) (9b)
z i = y i Nc i=1 y i (9c)
where α = (α 1 , . . . , α Nc) is the concentration parameters of the Dirichlet distribution and controls its mode, Γ (α i , 1) is the Gamma distribution, ppf represents the percent-point function, also known as the quantile function, and

z = (z 1 , . . . , z Nc) ∼ Dir(α).
For the first two case studies, the concentration parameters are α = 1, i.e., all-ones vector. For the third case study, we adjust α for different fluid types to make the probability of each compositional range as large as possible, as shown in Table 3. Figure 3(b) presents the marginal distribution of z i for black oil.

In summary, we sample z using Equation 9with different α specified in Table 3, and then we single out the acceptable samples located in the compositional ranges defined in Table 2. In the following, unless otherwise specified, four fluid types are always equally represented. Eventually, the samples of P , T and z are concatenated together to form the complete input data.

Vectorization of two-phase flash calculation

We vectorize the two-phase flash so that it takes as inputs P = (P 1 ,

• • • , P n), T = (T 1 , • • • , T n) and z = (z 1 , • • • , z n)
, where P and T are vectors, z is a matrix, and n denotes the number of samples processed concurrently and is often referred to as the batch dimension.

In recent years, Automatic Vectorization (AV) has emerged and developed1 , e.g., JAX [START_REF] Bradbury | JAX: composable transformations of python+NumPy programs[END_REF], which can automatically vectorize a function through the batching transformation that adds a batch dimension to its input. In this way, the vectorized function can process a batch of inputs simultaneously rather than processing them one by one in a loop. However, AV comes at the expense of performance to some extent and is slower than well-designed manual vectorization, which vectorizes a function by carefully revamping its internal operations to accommodate to a batch of inputs. For example, matrix-vector products for a batch of vectors can be directly replaced with a matrix-matrix product.

In addition, flash calculation has an iterative nature and complicated control flow, which is likely to result in the failure of AV. Consequently, for finer-grained control, more flexibility, and better performance, we manually vectorize all algorithms involved in flash calculation, including the solution of the SRK equation of state and the Rachford-Rice equation, stability analysis and phase split calculations.

To achieve efficient vectorization, one difficulty is asynchronous convergence, that is, for each algorithm, the number of iterations required to reach convergence generally varies for different samples, which hinders vectorization and parallelism. To alleviate this problem, we design a general-purpose paradigm, synchronizer, to save converged results in time at the end of each iteration and then remove the corresponding samples in order not to waste computational resources on them in the following iterations, which is achieved by leveraging a one-dimensional Boolean mask encapsulating convergence information to efficiently access data in vectors and matrices, as follows:

X (k+1) ← f (X (k)) (10a) Save X (k+1) [mask] to X (10b) X (k+1) ← X (k+1) [∼ mask] (10c) k ← k + 1 (10d)
where k is the number of iterations, f (X) is a vectorized iterated function taking as input X ∈ R n×m (n is the batch dimension, i.e., number of samples, and m is the dimension of X), X is a placeholder matrix used to save converged results, mask is a Boolean vector where True means convergence, and ∼ denotes the logical NOT operator. The number of unconverged samples gradually decreases as a result of incremental convergence. For the full version of synchronizer, refer to Appendix E.1. We can use synchronizer to wrap and vectorize any iterative algorithm. For instance, we illustrate how to perform vectorized stability analysis in Appendix E.2.

The efficiency of synchronizer may be questioned because previously converged samples are still waiting for unconverged ones before moving to the next step. This is true, but the situation is not as pessimistic since we try to shorten the waiting time as much as possible. For example, if successive substitution fails to converge quickly, we immediately use the trust-region method. In any case, the delay caused by waiting is insignificant compared to the acceleration due to vectorization. Furthermore, we leverage neural networks to provide more accurate initial estimate X (0) so that all samples converge as simultaneously as possible, thereby reducing asynchrony, which we will present in Section 4.

Once all algorithms are well vectorized, another problem is how to globally coordinate different subroutines. To this end, we add barrier synchronization to the entry points of stability analysis and phase split calculations in Figure 2, which can avoid any subroutine connected to it proceeding further until all others terminate and arrive at this barrier.

We also optimized the code using TorchScript [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF], allowing for more efficient execution through algebraic peephole optimizations and fusion of some operations, and more practical asynchronous parallelism without the Python global interpreter lock [START_REF] Van Rossum | The python language reference manual[END_REF], whereby vapor-like and liquid-like estimates are dealt with in parallel in stability analysis.

Acceleration of flash calculation using neural networks

To further accelerate flash calculation, we create and train two task-specific neural networks, classifier and initializer. The classifier is used to predict the probability p that a given mixture is stable, i.e., p = classifier(P, T, z), which

where y is either 0 for unstable mixtures or 1 for stable ones.

The architecture of the classifier is obtained by tuning hyper-parameters using Tree-Structured Parzen Estimator optimization algorithm [START_REF] Bergstra | Algorithms for hyperparameter optimization 24[END_REF] with Asynchronous Successive Halving algorithm [START_REF] Li | A system for massively parallel hyperparameter tuning[END_REF] as an auxiliary tool to early stop less promising trials. We create a dataset containing 100,000 samples (80%

for training and 20% for validation), and then tune the hyper-parameters of the classifier with 150 trials to minimize the loss on the validation set (we use Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] as optimizer and the batch size is 512), as shown in Figure 4(b). We can see that SiLU largely outperforms other activation functions.

Training

We first generate one million samples in the way described in Section 2.3, and then feed them to PTFlash to determine stability (no need for phase split calculations), which takes about 2 seconds. Subsequently, these samples are divided into the training (70%), validation (15%) and test (15%) sets. To train the classifier, we set the batch size to 512 and use Adam with Triangular Cyclic Learning Rate (CLR) [START_REF] Smith | No more pesky learning rate guessing games 5[END_REF][START_REF] Smith | Cyclical learning rates for training neural networks[END_REF], which periodically increases and decreases the learning rate during training, as shown in Figure 5(a). [START_REF] Smith | Super-convergence: Very fast training of neural networks using large learning rates[END_REF] claimed that CLR helps to escape local minima and has the opportunity to achieve superb performance using fewer epochs and less time. We found that Adam with and without CLR achieved similar performance, but the former converged five times faster than the latter. Early stopping is also used to avoid overfitting [START_REF] Prechelt | Early stopping-but when?[END_REF]. The total training time is about 5 minutes using Nvidia RTX 3080. The final performance of the classifier on the test set is bce = 0.002 and accuracy = 99.93%. For a more intuitive understanding of performance, Figure 5(b) shows the contours of probabilities predicted by the classifier, where the blue contour of p = 0.5 basically coincides with the phase envelope. In the zoomed inset, the additional green and yellow contours correspond to p=0.02 and 0.98, respectively.

Initializer

Architecture

The input of the initializer includes P , T and z, and its output is ln K i .

The initializer has 1 hidden layer and 3 residual blocks, as shown in Figure 6. Each residual block has 2 hidden layers and a shortcut connection adding the input of the first hidden layer to the output of the second [START_REF] He | Deep residual learning for image recognition[END_REF]. All hidden layers have 64 neurons and use the SiLU activation function. The output layer has N c neurons without activation function. The wide shortcut, proposed in [START_REF] Cheng | Wide & deep learning for recommender systems[END_REF], enables neural networks to directly learn simple rules via it besides deep patterns through hidden layers, which is motivated by the fact that the inputs, such as P and T , are directly involved in the calculation of K i . The concat layer concatenates the input layer and the outputs of the last residual block (the concatenation means putting two matrices A ∈ R d1×d2 and B ∈ R d1×d3 together to form a new one C ∈ R d1×(d2+d3)). In addition, the targets of the initializer are ln K i instead of K i , since K i varies in different orders of magnitude, which hampers the training of the initializer, whereas ln K i does not. We found that the convergence of phase split calculations is robuster if K i predicted by the initializer can lead to more accurate values of the vapor fraction θ V , especially around critical points where calculations are quite sensitive to initial K i and prone to degenerate into trivial solutions. As a consequence, the loss function used to train the initializer consists of two parts, one is the mean absolute error (mae) in terms of K i and the other is mae in terms of θ V , as follows:

mae(ln K, ln K) = Nc i=1 |ln K i -ln Ki | (12a) mae(θ V , θV) = |θ V -θV | (12b)
where ln K is the ground truth, ln K is the prediction of the initializer, θ V is the vapor fraction at equilibrium, and θV is obtained by solving the Rachford-Rice equation given z and the prediction K.

Training

We generate one million samples in the two-phase region (K i is not available at the monophasic region), which are divided into the training (70%), validation (15%) and test (15%) sets. The training of the initializer is carried out in two stages. First, we train it to minimize mae(ln K, ln K), using Adam with CLR and setting the batch size to 512. Second, after the above training, we further train it to minimize mae(ln K, ln K) + mae(θ V , θV), using Adam with a small learning rate 1.0e-5. Here, ∂ θV /∂ K is required during backpropagation and can be simply computed via PyTorch's automatic differentiation, which, however, differentiates through all the unrolled iterations, since we solve the Rachford-Rice equation in an iterative manner we described in Appendix C.1. Instead, we can make use of the implicit function theorem [START_REF] Krantz | The implicit function theorem: history, theory, and applications[END_REF] to directly obtain ∂ θV /∂ K by using the derivative information at the solution point of the Rachford-Rice equation, as follows:

∂ θV /∂ K = -[∂ θ V f RR (θV , K)] -1 ∂ K f RR (θV , K) (13)
This way is obviously more efficient and avoids differentiation through iterations.

We give more details about the derivation of Equation 13in Appendix C.2.

Eventually, the performance of the initializer on the test set is mae = 9.66e-4 in terms of ln K i and mae = 1.86e-3 in terms of K i .

Strategy for accelerating flash calculation using neural networks

As shown in Figure 7, given P , T and z, we first use the classifier to predict p. Next, based on two predefined thresholds, p l and p r , satisfying p l ≤ p r , the given mixture is thought of as unstable if p ≤ p l or stable if p ≥ p r . If p l < p < p r , we will use stability analysis to avoid unexpected errors. Here, we can adjust p l and p r to trade reliability for speed. In general, less errors occur with smaller p l and greater p r , but probably taking more time on stability analysis, and vice versa. A special case is p l = p r = p c , where p c could be a well-calibrated probability or simply set to 0.5, which means that we completely trust the classifier (i.e., stable if p ≥ p c or unstable otherwise), and no extra stability analysis is required. For the initializer, it serves both stability analysis when p l < p < p r and phase split calculations.

Neural networks can also be used individually. If only the classifier is available, one may initialize K i via the Wilson approximation rather than the initializer in Figure 7. If only the initializer is available, one may use it to initialize K i in Figure 2.

𝑃𝑃, 𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾 𝑖𝑖 via initializer Single phase?

Phase split calculations

Results

In this section, we will compare our proposed framework for vectorized flash calculation, PTFlash, with Carnot, an in-house thermodynamic library developed by IFP Energies Nouvelles and based on C++. Carnot performs two-phase flash calculation in the manner shown in Figure 2, but can only handle samples one at a time on CPU. Regarding the hardware, CPU is Intel 11700F and GPU is NVIDIA RTX 3080 featuring 8704 CUDA cores and 10G memory. Note that since using multiple cores renders the frequency quite unstable due to heat accumulation, we only use one core of CPU so that the frequency can be stabilized at 4.5GHz, which allows for a consistent criterion for measuring the execution time.

PTFlash and Carnot gave identical results (coincidence to 9 decimal places under double-precision floating-point format) because they use exactly the same convergence criteria for all iterative algorithms. In the following, we will focus on comparing their speeds.

Vectorized flash calculation

We compare the execution time of different methods for flash calculation with respect to the workload quantified by the number of samples n, as shown in Figures 8. Due to GPU memory limitations, the maximum number of samples allowed is 10, 5, and 1 million for the three case studies, respectively. We can see that all three figures exhibit the same behavior. When the workload is relatively low, e.g., n < 1000, Carnot wins by large margins, and CPU is also preferable based on the fact that PTFlash runs much faster on CPU than on GPU. On the one hand, PyTorch has some fixed overhead in the setup of the working environment, e.g., the creation of tensors. On the other hand, when GPU is used, there are some additional costs of CPU-GPU communication and synchronization. When n is small, these overheads dominate. As proof, we can see that the time of PTFlash on GPU hardly changes as n varies from 100 to 10 4 . In contrast, the time of Carnot is almost proportional to n.

As the workload increases, the strength of PTFlash on GPU emerges and becomes increasingly prominent. For the three case studies, PTFlash on GPU is 163.4 (2 components), 106.3 (4 components) and 50.5 (9 components) times faster than Carnot at the maximum number of samples. This suggests that PTFlash on GPU is more suitable for large scale computation. Interestingly, we can observe that PTFlash on CPU also outperforms Carnot when the workload is relatively heavy, e.g., n > 10 3 . In fact, thanks to Advanced Vector Extensions, vectorization enables fuller utilization of CPU's computational power.

We notice that there is a lack of a comprehensive and unified benchmark for the runtime of flash calculation in the literature. Here, we give an article with a case study similar to ours for readers' reference [START_REF] Michelsen | A comparative study of reducedvariables-based flash and conventional flash[END_REF], which claimed that the total computation time of flash calculations is 10 seconds for one million samples ss: successive substitution tr: trust-region method 1 37.44% is the percentage of samples for which any of ∆G, tpdx and tpdy is negative after 3 attempts of successive substitution, as described in Section 2.2.3.

2 The total time of stability analysis is less than the sum of the times of all subroutines because vapor-like and liquid-like estimates are handled concurrently.

The above analysis gives us a general understanding of PTFlash, but in fact it is not easy to analyze PTFlash comprehensively because each subroutine also contains iterative algorithms, such as solving the SRK equation of state and the Rachford-Rice equation. Nevertheless, given the information already obtained, we know that we need to shorten the time of stability analysis and reduce the number of iterations in order to accelerate PTFlash, which is exactly the role of the classifier and initializer.

Deep-learning-powered vectorized flash calculation

We trained neural networks following Section 4 for the mixture of 9 components. Here, we will explore the effect of neural networks. First of all, we set p l = 0.02 and p r = 0.98 as the thresholds of stability and instability, which are carefully chosen so that no misclassification occurs. In Figure 8(c), we can see that NN-PTFlash outpaces PTFlash on both CPU (2.7x speed-up) and GPU (2.2x speed-up). In addition, NN-PTFlash on GPU runs almost 110.7 times faster than Carnot at n = 10 6 . Table 5 is the performance profiler of NN-PTFlash on GPU. We can see that the classifier is able to precisely determine the stability of the vast majority of samples (99.42%), which significantly relieves the burden of stability analysis and saves time. In addition, compared to phase split calculations of PTFlash, the convergence percentage of successive substitution increases from 45.88% to 67.40%, and the overall time is also greatly reduced, which is attributed to better initial K i provided by the initializer.

Table 5: Performance profiler of NN-PTFlash on GPU (Figure 7) for the mixture of 9 components at n = 10 6 in Figure 8(c tializer alone fails because we found its outputs may reach unreasonably large values (e.g., 1.0e15) for stable mixtures far away from the boundary between the single-phase and two-phase regions, which leads to numerical overflow. From machine learning terminology, this is the out-of-distribution generalization problem, since the initializer is trained on the two-phase region and may suffer from large predictive errors when used within the single-phase region. Nonetheless, there is no problem when the initializer works in tandem with the classifier because remaining samples located in the single-phase region are fairly close to the boundary after filtering through the classifier, as shown in Figure 5(b). In any case, based on the fact that NN-PTFlash using only the classifier always lags behind that using both, we can conclude that both the classifier and initializer play an important role in speeding up flash calculations.

Discussion

The results show that the systematic and exhaustive vectorization of twophase flash calculation does result in attractive speed-ups when large scale computation is involved, e.g., the number of samples to process is on the order of millions. Importantly, this speed-up does not come at the cost of accuracy and stability like [START_REF] Gaganis | Machine learning methods to speed up compositional reservoir simulation[END_REF][START_REF] Gaganis | An integrated approach for rapid phase behavior calculations in compositional modeling[END_REF][START_REF] Kashinath | A fast algorithm for calculating isothermal phase behavior using machine[END_REF][START_REF] Wang | Accelerating and stabilizing the vapor-liquid equilibrium (VLE) calculation in compositional simulation of unconventional reservoirs using deep learning based flash cal[END_REF] which are subject to the unreliability of machine learning models. In addition, we can see that neural networks, such as the classifier and initializer, really make a big difference.

Due to GPU memory limitations, the number of samples n is limited in Figures 8. Nonetheless, we can see that the slopes of time with respect to n differ significantly between different methods. The time of Carnot is proportional to n, in contrast, the time of PTFlash on GPU is increasing slowly. Therefore, it is reasonable to believe that the speed advantage of PTFlash on GPU will become increasingly prominent if n continues to grow.

Using PyTorch has several benefits in addition to its simplicity and flexibility. First, we can seamlessly incorporate neural networks into PTFlash. Second, any subroutine of PTFlash is fully differentiable through automatic differentiation, and we can also leverage the implicit function theorem for efficient dif-ferentiation, as we did in Section 4.2.2. Third, PyTorch's highly optimized and ready-to-use multi-GPU parallelization largely circumvents the painstaking hand-crafted effort.

PTFlash also has several limitations. First, PTFlash is based on the SRK equation of state, which is relatively simple and sufficient for mixtures containing hydrocarbons and non-polar components, but does not take into account the effect of hydrogen bonding and falls short of adequacy for cross-associating mixtures having polar components, such as water and alcohol [START_REF] Kontogeorgis | Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories[END_REF]. In this case, more advanced but also more complicated equations of state should be employed, such as the SAFT equation of state [START_REF] Wertheim | Fluids with highly directional attractive forces. II. thermodynamic perturbation theory and integral equations[END_REF][START_REF] Wertheim | Fluids with highly directional attractive forces. i. statistical thermodynamics[END_REF][START_REF] Wertheim | Fluids with highly directional attractive forces[END_REF][START_REF] Wertheim | Fluids with highly directional attractive forces[END_REF][START_REF] Chapman | New reference equation of state for associating liquids[END_REF][START_REF] Huang | Equation of state for small, large, polydisperse, and associating molecules[END_REF] or the CPA equation of state [START_REF] Kontogeorgis | An equation of state for associating fluids[END_REF][START_REF] Kontogeorgis | Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures[END_REF]. However, vectorization of these complicated equations of state is far more difficult than that of cubic equations of state. To alleviate this problem, we plan to use neural networks to directly predict the fugacity coefficients.

In this way, we can calculate the fugacity coefficients in a vectorized fashion, regardless of the equation of state used. Second, PTFlash consumes a large amount of GPU memory, badly limiting its use on much larger batches of data.

We need to optimize PTFlash to reduce the consumption of GPU memory, e.g., by leveraging the sparsity and symmetry of matrices. Third, PTFlash does not support multi-phase equilibrium. Last but not least, neural networks are subject to the out-of-distribution generalization problem. If pressure and temperature are out of predefined ranges used to train neural networks, predictive performance will deteriorate dramatically. Furthermore, once the components of the mixture change, we need to create new neural networks and train them from scratch.

Conclusion

In this work, we presented a fast and parallel framework, PTFlash, for twophase flash calculation based on PyTorch, which efficiently vectorizes algorithms and gains attractive speed-ups at large scale calculations. Two neural networks were used to predict the stability of given mixtures and to initialize the distribu-tion coefficients more accurately than the Wilson approximation, which greatly accelerate PTFlash. In addition, PTFlash has much broader utility compared to the aforementioned methods which are mainly tailored to compositional reservoir simulation.

We compared PTFlash with Carnot, an in-house thermodynamic library, and we investigated three case studies containing 2, 4 and 9 components with maximum number of samples of 10, 5 and 1 million, respectively. The results showed that PTFlash on GPU is 163.4, 106.3 and 50.5 times faster than Carnot at the maximum number of samples for these three cases, respectively.

In the future, we will optimize PTFlash to reduce the consumption of GPU memory and extend our work to vectorize more advanced equations of state and support multi-phase equilibrium. We will also explore the feasibility of using neural networks to directly predict the fugacity coefficients, which can serve as an alternative to numerically solving equations of state. In addition, we will validate PTFlash on more hardware suitable for parallel computing, e.g., TPU.

Last but not least, we will apply our work to downstream applications, e.g., compositional reservoir simulation.

Acknowledgements

We acknowledge the financial support from French National Research Agency (ANR) through the projects DL4CLIM ANR-19-CHIA-0018-01 and DEEP-NUM ANR-21-CE23-0017-02.

Figure 3 (

 3 a) shows phase diagrams of four typical reservoir fluids at fixed compositions, as defined in Appendix D, and we can see that the more heavy hydrocarbons there are, the lower the pressure range of the phase envelope and the less volatile the fluid is.

Figure 3 :

 3 Figure 3: In Figure (a), the squares on the phase envelopes represent critical points. In Figure (b), z 1 , z 2 and z 7 are the molar fractions of CH 4 , C 2 H 6 and C 7 H + 16 , respectively.

 involves a binary classification problem. It can predict the stability of most samples, thereby bypassing stability analysis and saving time. The initializer is able to initialize K i more accurately than the Wilson approximation, i.e., ln K i = initializer(P, T, z), which relates to a regression problem. It can reduce the number of iterations required to reach convergence and alleviate the asynchronous convergence we introduced before. Note that the hyper-parameters of neural networks presented below, e.g., the number of units and layers, are dedicated to the case study containing 9 components. Nonetheless, the basic architecture of neural networks and the training methods can be generalized to any case.4.1. Classifier4.1.1. ArchitectureAs shown in Figure4(a), the classifier has 3 hidden layers with 32 neurons and using the SiLU activation function[START_REF] Hendrycks | Gaussian error linear units[END_REF][START_REF] Elfwing | Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[END_REF][START_REF] Ramachandran | Swish: a self-gated activation function 7 1[END_REF]. The output layer has only one neuron and uses the sigmoid activation function compressing a real number to the range (0, 1). The input x consists of P , T and z, and the output is the probability p that a given mixture is stable. The scaling layer standardizes the inputs as (x -u)/s, where u and s are the mean and standard deviation of x over the training set. To train the classifier, we use the binary cross-entropy (bce), which is the de-facto loss function for binary classification problems and defined as: bce(y, p) = y ln p + (1 -y) ln(1 -p)

 l a y e r s # o f u n i t s (b) Tuning hyper-parameters of classifier

Figure 4 :

 4 Figure 4: Figure (a) shows the architecture of the classifier. Figure (b) is a parallel coordinates plot used to visualize the results of tuning hyper-parameters of the classifier, where lr stands for learning rate. The colors of lines are mapped to the value of the loss.

 Prediction of the classifier for volatile oil

Figure 5 :

 5 Figure 5: Figure (a) shows how the learning rate varies cyclically. Figure (b) illustrates the contours of probabilities predicted by the classifier for volatile oil at fixed composition. The red and gray correspond to the two-phase and monophasic regions, respectively.

Figure 6 :

 6 Figure 6: The architecture of initializer for the 9-component mixture

Figure 7 :

 7 Figure 7: Acceleration of flash calculation using neural networks

20

 20

Figure 8 :

 8 Figure 8: Comparison between PTFlash and Carnot in terms of speed. NN-PTFlash is PTFlash accelerated by neural networks, as presented in Section 4.

 n o f c r i t i c a l d i s t a n c e s # o f i t e r a t i o n s (c) Closeness to critical points

Figure 9 :

 9 Figure 9: Figures (a) and (b) show the convergence percentage and the elapsed time up to each iteration of phase split calculations of PTFlash on GPU. In Figure (c), on the x-axis, ss corresponds to the end of successive substitution and other integers are the number of iterations of the trust-region method.

Table 1 :

 1 Component properties

		Pc (MPa) Tc (K) omega
	CH4	4.6	190.55 0.0111
	C2H6	4.875	305.43	0.097
	C3H8	4.268	369.82 0.1536
	n-C4H10	3.796	425.16 0.2008
	n-C5H12	3.3332	467.15 0.2635
	C6H14	2.9688	507.4	0.296
	C7H + 16	2.622	604.5	0.3565
	CO2	7.382	304.19	0.225
	N2	3.3944	126.25	0.039

of the common reservoir fluid types, namely wet gas, gas condensate, volatile oil, and black oil.

Table 2 :

 2 Four fluid types characterized by different compositional ranges

	Wet gas	Gas condensate Volatile oil	Black oil

Table 3 :

 3 Concentration parameters α for different fluid types in Table2

		α1 for CH4 α2 for C2H6 α7 for C7H + 16	αi for others
	Wet gas	100	5	1	1
	Gas condensate	40	5	5	1
	Volatile oil	55	8	20	1
	Black oil	25	4	40	1

Table 4 :

 4 Performance profiler of PTFlash on GPU (Figure2) for the mixture of 9 components at n = 10 6 in Figure8(c)

		ss of		Stability analysis		Phase split
		phase split	vapor-like estimate	liquid-like estimate	calculations
		calculations	ss	tr	ss	tr	ss	tr
	# of samples	10 6	625645	130715	625645	90179	413442	223741
	Convergence	37.44% 1	79.11%	100%	85.59%	100%	45.88%	100%
	Max number							
		3	9	18	9	16	9	13
	of iterations							
			0.4136s	0.3417s	0.4044s	0.2706s	0.7412s 0.5132s
	Total time	0.4565s		1.3237s 2		1.2544s

At the time of writing, PyTorch team released a fledgling library, functorch, which takes inspiration from JAX and supports Automatic Vectorization.

99.42% includes 58.38% predicted as stable (i.e., p > pr) and 41.04% predicted as unstable (i.e., p < p l).We also performed ablation studies to compare the contributions of the classifier and initializer by using them individually. For instance, when handling 1 million samples for the case study containing 9 components, NN-PTFlash with only the classifier on GPU takes 1.88s. However, the attempt to use the ini-

Appendix A. SRK equation of state and its solution

The SRK equation of state describes the relationship between pressure (P), temperature (T) and volume (V) in the following mathematical form [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF]:

where R is the gas constant, aα refers to the temperature-dependent energy parameter, and b denotes the co-volume parameter. We employ the van der Waals mixing rules and the classical combining rules to calculate aα and b, as follows:

)

where the subscripts i and j refer to the components i and j, respectively, c i denotes the mole fraction of the component i in the phase considered, k ij is the binary interaction parameter between the components i and j, a i and b i are two substance-specific constants related to the critical temperature T c,i and critical pressure P c,i , and ω i is the acentric factor. We reformulate Equation A.1 as a cubic equation in terms of the compressibility factor Z:

where ρ 0 = AB and ρ 1 = A -B(1 + B), in which A = aαP /(R 2 T 2) and B = bP /(RT). To find the roots of f srk (Z), we utilize an iterative approach based on Halley's method [START_REF] Deiters | Calculation of densities from cubic equations of state: revisited[END_REF], as follows:

The above iteration starts with a liquid-like guess and converges to a real root Z 0 (The convergence criterion is |Z (k+1) /Z (k) -1| <1.0e-8), and then we deflate the cubic equation as:

where p = Z 0 -1 and q = pZ 0 + ρ 1 . If p 2 < 4q, only one real root Z 0 exists, otherwise, there are three real roots and the other two are -p/2± p 2 -4q/2. In the latter case, we assign the smallest root to the liquid phase and the biggest one to the vapor phase. Subsequently, the root corresponding to the lowest Gibbs energy will be chosen. When Z is known, the fugacity coefficients φ i are calculated as follows:

where c is the composition of the phase considered. In addition, the derivatives of the fugacity coefficients with respect to mole numbers, which are necessary for the trust-region methods of stability analysis and phase split calculations, are calculated explicitly rather than through PyTorch's automatic differentiation, which requires retaining intermediate results and consumes prohibitive memory at large scale computation.

Appendix B. Trust-region method

When the successive substitution fails to converge quickly, particularly around critical points for which liquid and vapor phases are almost indistinguishable, we will switch to the trust-region method with restricted steps, which is a secondorder optimization technique, to achieve faster convergence.

In the following, the problem formulations are taken from Michelsen and Mollerup's book [START_REF] Michelsen | Thermodynamic modelling: fundamentals and computational aspects[END_REF], but the concrete implementation of the trust-region method, such as how to adjust the trust-region size and calculate the step size, is adapted from [START_REF] Hebden | An algorithm for minimization using exact second deriva-tivesPublisher[END_REF].

Appendix B.1. Trust-region method for stability analysis

The objective function to be minimized is the modified tangent plane distance [START_REF] Michelsen | The isothermal flash problem. part II. phase-split calculation[END_REF]:

The minimization is accomplished by iterating the following equations:

where I is the identity matrix, g and H are the gradient and Hessian matrix of tm with respect to β, respectively, and are calculated as follows:

In addition, η is the trust-region size used to guarantee the positive definiteness of H + ηI and to tailor the step size to meet ∥∆β∥ ≤ ∆ max , where ∆ max is adjusted during iterations depending on the match between the actual reduction δ tm = tm (k+1) -tm (k) and the predicted reduction based on the quadratic approximation δtm = ∆β T g + 1 2 ∆β T H∆β, using the following heuristic rules:

The convergence criterion of Equation B.1 is max(|g|) <1.0e-6.

Appendix B.2. Trust-region method for phase split calculations

The objective function to be minimized is the reduced Gibbs energy:

where n L i = x i (1 -θ V) and n V i = y i θ V are the mole numbers of liquid and vapor phases, respectively. We choose n V i as the independent variable and perform the following iteration:

where H(k) and g(k) are the gradient and hessian matrix of G with respect to n V i , respectively, and are calculated as follows:

In addition, D(•) is a diagonal matrix with diagonal entries in parentheses.

The above iteration stops if max(|g|) <1.0e-8. Here, the trust-region method is implemented in the same way as in stability analysis.

Appendix C.1. Solution of the Rachford-Rice equation

The Rachford-Rice equation is as follows:

Given K, the solution of the above equation amounts to finding an appropriate zero yielding all non-negative phase compositions. Concretely, we adopt the method proposed by [START_REF] Leibovici | A new look at the rachford-rice equation[END_REF], which transforms f RR into a helper function h RR which is more linear in the vicinity of the zero:

where

. The above equation is solved by alternating between the Newton method and the bisection method used when the Newton step renders θ V out of the bounds which contain the zero and become narrower during iterations. When the Newton step size is smaller than 1.0e-8, the iteration stops.

Appendix C.2. Calculation of ∂θ V /∂K using the implicit function theorem

Based on the implicit function theorem [START_REF] Krantz | The implicit function theorem: history, theory, and applications[END_REF], we can calculate ∂θ V /∂K in an efficient way. We first differentiate the Rachford-Rice equation with respect to K (note that θ V is an implicit function of K) and get:

We rearrange the above equation and get Equation 13, as follows:

) is a scalar, we can further reduce the above equation to:

For the sake of brevity, we have simplified some details. For more details and a defense of the above derivation, refer to [START_REF] Krantz | The implicit function theorem: history, theory, and applications[END_REF].

Appendix D. Some typical reservoir fluid compositions 599 Create a placeholder matrix X of the same shape as