
HAL Id: hal-03659647
https://hal.science/hal-03659647v3

Submitted on 10 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

PTFlash : A vectorized and parallel deep learning
framework for two-phase flash calculation

Jingang Qu, Thibault Faney, Jean-Charles de Hemptinne, Soleiman Yousef,
Patrick Gallinari

To cite this version:
Jingang Qu, Thibault Faney, Jean-Charles de Hemptinne, Soleiman Yousef, Patrick Gallinari. PT-
Flash : A vectorized and parallel deep learning framework for two-phase flash calculation. Fuel, 2023,
331, Part 1, pp.125603. �10.1016/j.fuel.2022.125603�. �hal-03659647v3�

https://hal.science/hal-03659647v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

PTFlash : A vectorized and parallel deep learning
framework for two-phase flash calculation⋆

Jingang Qua,b,∗, Thibault Faneyb, Jean-Charles de Hemptinneb, Soleiman
Yousefb, Patrick Gallinaria,c

aSorbonne Université, CNRS, ISIR, F-75005 Paris, France
bIFPEN, France

cCriteo AI Lab, Paris, France

Abstract

Phase equilibrium calculations are an essential part of numerical simulations of

multi-component multi-phase flow in porous media, accounting for the largest

share of the computational time. In this work, we introduce a fast and paral-

lel framework, PTFlash, that vectorizes algorithms required for two-phase flash

calculation using PyTorch, and can facilitate a wide range of downstream appli-

cations. Vectorization promotes parallelism and consequently leads to attractive

hardware-agnostic acceleration. In addition, to further accelerate PTFlash, we

design two task-specific neural networks, one for predicting the stability of given

mixtures and the other for providing estimates of the distribution coefficients,

which are trained offline and help shorten computation time by sidestepping

stability analysis and reducing the number of iterations to reach convergence.

The evaluation of PTFlash was conducted on three case studies involving

hydrocarbons, CO2 and N2, for which the phase equilibrium was tested over

a large range of temperature, pressure and composition conditions, using the

Soave-Redlich-Kwong (SRK) equation of state. We compare PTFlash with an

⋆This is the manuscript accepted by Fuel journal. For the formal publication, please refer
to https://doi.org/10.1016/j.fuel.2022.125603.

⋆⋆The share link https://authors.elsevier.com/a/1fj0m3iH4IIcE allows free access to the
article for 50 days from 7 Sep 2022.

∗Corresponding author
Email address: jingang.qu@sorbonne-universite.fr (Jingang Qu)

1

https://doi.org/10.1016/j.fuel.2022.125603
https://authors.elsevier.com/a/1fj0m3iH4IIcE

in-house thermodynamic library, Carnot, written in C++ and performing flash

calculations one by one on CPU. Results show speed-ups of up to two order of

magnitude on large scale calculations, while maintaining perfect precision with

the reference solution provided by Carnot.

Keywords: Flash calculation, Two-phase equilibrium, Vectorization, Deep

learning

1. Introduction1

Numerical simulation of multi-component multi-phase flow in porous media2

is an essential tool for many subsurface applications, from reservoir simulation3

to long term CO2 storage. A core element of the simulator for such applications4

is to determine the phase distribution of a given fluid mixture at equilibrium,5

also known as flash calculation. Starting with the seminal work of Michelsen6

[1, 2], researchers have developed robust and efficient algorithms for isothermal7

two-phase flash calculation. These algorithms have been implemented in the8

IFPEN thermodynamic C++ library Carnot.9

Nonetheless, flash calculations still account for the majority of simulation10

time in a large range of subsurface applications [3, 4]. In most simulators,11

flash calculations are performed for each grid cell at each time step. Moreover,12

since modern simulators tend to require higher and higher grid resolutions up13

to billions of grid cells [5], the share of computing time due to flash calculations14

is expected to increase as well. In this context, speeding up flash calculations15

has drawn increasing research interest.16

Some efforts have been made to accelerate flash calculations. [6–8] proposed17

a reduction method aiming to reduce the number of independent variables by18

leveraging the sparsity of the binary interaction parameter matrix,resulting in19

a limited speed-up [4]. [9] introduced the shadow region method using the re-20

sults of previous time steps to initiate the current one, which assumes that the21

changes in pressure, temperature, and composition of a given block are small22

between two adjacent time steps in typical compositional reservoir simulation.23

2

[10] presented tie-line based methods, which approximate the results of flash24

calculations through linear interpolation between existing tie-lines and can be25

seen as a kind of look-up table. In [11–16], the authors focused on the use of26

machine learning, which provides a collection of techniques that can effectively27

discover patterns and regularities in data. They used support vector machine28

[17], relevance vector machine [18] and neural networks [19] to directly predict29

equilibrium phases and provide more accurate initial estimates for flash calcula-30

tions. In [5, 20], researchers focused on developing faster parallel linear solvers,31

with [5] mentioning specifically that the vectorization of partial equation of state32

(EOS) related operations would lead to faster execution.33

In this work, we introduce PTFlash, a framework for two-phase flash calcu-34

lation based on the SRK equation of state [21]. PTFlash is built on the deep35

learning framework PyTorch [22] and consists in two main elements, namely36

the vectorization of algorithms and the use of neural networks. First, we per-37

form a complete rewrite of two-phase flash calculation algorithms of Carnot38

using PyTorch. This enables the systematic vectorization of the complex iter-39

ative algorithms implemented in Carnot, allowing in turn to efficiently harness40

modern hardware with the help of, e.g., Advanced Vector Extensions AVX for41

Intel CPUs [23] and CUDA for Nvidia GPUs [24]. Note that vectorization of42

complex iterative algorithms with branching is not straightforward and needs43

specific care. Second, we replace repetitive and time consuming parts of the44

original algorithms with deep neural networks trained on the exact solution.45

More specifically, one neural network is used to predict the stability of given46

mixtures, and the other is used to provide initial estimates for the iterative al-47

gorithms. Once well trained, neural networks are seamlessly incorporated into48

PTFlash. These two elements allow PTFlash to provide substantial speed-ups49

compared to Carnot, especially so in the context of flow simulations where par-50

allel executions of flash calculations for up to a billion grid cells are needed.51

The rest of this article is organized as follows. In Section 2, we introduce52

the fundamentals of isothermal two-phase flash calculation and present three53

case studies. In Section 3, we explain how to efficiently vectorize flash calcu-54

3

lation using PyTorch. In Section 4, we present two neural networks to speed55

up calculations. In Section 5, we demonstrate the attractive speed-up due to56

vectorization and the introduction of neural networks. Finally, we summarize57

our work and suggest future research in Section 6.58

2. Isothermal two-phase flash calculation59

In this section, we introduce the essential concepts of isothermal two-phase60

flash calculation. In the following, without loss of generality, we consider the61

equilibrium between the liquid and vapor phases.62

2.1. Problem setting63

We consider a mixture of Nc components. Given pressure (P), temperature64

(T) and feed composition (z = (z1, . . . , zNc
)), the objective of flash calculation65

is to determine the system state at equilibrium: single phase or coexistence66

of two phases. In the latter case, we need to additionally compute the molar67

fraction of vapor phase θV , the composition of the liquid phase x and that of the68

vapor phase y. These properties are constrained by the following mass balance69

equations:70

xi(1− θV) + yiθV = zi, for i = 1, . . . , Nc (1a)

Nc∑
i=1

xi =

Nc∑
i=1

yi = 1 (1b)

In addition, the following equilibrium condition should be satisfied:71

φL
i (P, T,x)

φV
i (P, T,y)

=
yi
xi

(2)

where the superscripts L and V refer to the liquid and vapor phases, respectively,72

and φi is the fugacity coefficient of component i, which is a known nonlinear73

function of P , T and the corresponding phase composition. This function de-74

pends on an equation of state that relates pressure, temperature and volume. In75

this work, we use the SRK equation of state [21] and solve it using an iterative76

4

approach [25] rather than the analytical solution of the cubic equation, e.g., the77

Cardano’s formula, which may be subject to numerical errors in certain edge78

cases [26]. For more details, see Appendix A.79

2.2. Numerical solver80

Equations 1 and 2 form a non-linear system, which is generally solved in81

a two-stage procedure. First, we establish the stability of a given mixture via82

stability analysis (Section 2.2.1). If the mixture is stable, only one phase exists83

at equilibrium. Otherwise, two phases coexist. Second, we determine θV , x and84

y at equilibrium through phase split calculations (Section 2.2.2).85

2.2.1. Stability analysis86

A mixture of composition z is stable at specified P and T if and only if its87

total Gibbs energy is at the global minimum, which can be verified through the88

reduced tangent plane distance [1]:89

tpd(w) =

Nc∑
i=1

wi(lnwi + lnφi(w)− ln zi − lnφi(z)) (3)

where w is a trial phase composition. If tpd(w) is non-negative for any w, the90

mixture is stable. This involves a constrained minimization problem, which is91

generally reframed as an unconstrained one:92

tm(W) =

Nc∑
i=1

Wi(lnWi + lnφi(W)− ln zi − lnφi(z)− 1) (4)

where tm is the modified tangent plane distance and W is mole numbers. To93

locate the minima of tm, we first use the successive substitution method accel-94

erated by the Dominant Eigenvalue Method (DEM) [27], which iterates:95

lnW
(k+1)
i = ln zi + lnφi(z)− lnφi(W

(k)) (5)

It is customary to initiate the minimization with two sets of estimates, that is,96

vapor-like estimate Wi = Kizi and liquid-like estimate Wi = zi/Ki, where Ki97

5

is the distribution coefficients, defined as yi/xi and initialized via the Wilson98

approximation [21], as follows:99

lnKi = ln

(
Pc,i

P

)
+ 5.373(1 + ωi)

(
1− Tc,i

T

)
(6)

where Tc,i and Pc,i refer to the critical temperature and pressure of component100

i, respectively, and ωi is the acentric factor.101

Once converging to a stationary point (i.e., max(|∂tm/∂W |) < 1.0e-6) or102

a negative tm is found, successive substitution stops. If this does not happen103

after a fixed number of iterations (9 in our work), especially in the vicinity104

of critical points, we resort to a second-order optimization technique, i.e., the105

trust-region method [28], to minimize tm(W), which we describe in Appendix106

B.1. In addition, based on the results of stability analysis, we can re-estimate107

Ki more accurately as zi/W
L
i if tmL < tmV or WV

i /zi otherwise, where the108

superscripts V and L denote the results obtained using the vapor-like and liquid-109

like estimates, respectively.110

2.2.2. Phase split calculations111

Substituting Ki = yi/xi into Equation 1 yields the following Rachford-Rice112

equation [29]:113

fRR(θV ,K) =

Nc∑
i=1

(Ki − 1)zi
1 + (Ki − 1)θV

= 0 (7)

Given K = (K1, . . . ,KNc), we solve the above equation using the method pro-114

posed by [30] to get θV , which is detailed in Appendix C.1.115

To obtain θV , x and y at equilibrium, phase split calculations start with116

the accelerated successive substitution method, as illustrated in Figure 1, and117

the corresponding convergence criterion is max(|K(k+1)
i /K

(k)
i − 1|) <1.0e-8. If118

successive substitution fails to converge after a few iterations (9 in our work),119

we use the trust-region method to minimize the reduced Gibbs energy:120

G =

Nc∑
i=1

nL
i (lnxi + lnφL

i) +

Nc∑
i=1

nV
i (ln yi + lnφV

i) (8)

6

where nL
i = xi(1−θV) and nV

i = yiθV are the mole numbers of liquid and vapor121

phases, respectively. The convergence criterion is max(|∂G/∂nV
i |) < 1.0e-8. For122

more details, see Appendix B.2.

𝐾𝐾𝑖𝑖
𝑘𝑘+1𝜃𝜃𝑉𝑉

𝒙𝒙

𝒚𝒚

𝑘𝑘 = 𝑘𝑘 + 1

Yes

𝐾𝐾𝑖𝑖
𝑘𝑘 𝒙𝒙(𝑘𝑘)

𝒚𝒚(𝑘𝑘)
Initial 𝐾𝐾𝑖𝑖

0 Solve the Rachford-
Rice equation

𝐾𝐾𝑖𝑖 =
𝜑𝜑𝑖𝑖
𝐿𝐿(𝑃𝑃, 𝑇𝑇, 𝒙𝒙)

𝜑𝜑𝑖𝑖
𝑉𝑉(𝑃𝑃, 𝑇𝑇, 𝒚𝒚)

𝜃𝜃𝑉𝑉
𝑘𝑘

Solve the mass
balance equations

𝐾𝐾𝑖𝑖 converge ?

No

Figure 1: Successive substitution of phase split calculations

123

2.2.3. Strategy for two-phase flash calculation124

We basically adopt the rules of thumb proposed by Michelsen in the book125

[31] to implement two-phase flash calculation, as shown in Figure 2. In the126

flowchart, we first initialize the distribution coefficients Ki using the Wilson127

approximation. Subsequently, in order to avoid computationally expensive sta-128

bility analysis, we carry out the successive substitution of phase split calculations129

3 times, which will end up with 3 possible cases: (1) θV is out of bounds (0,130

1) during iterations. (2) None of ∆G, tpd(x) and tpd(y) are negative, where131

tpd(x) and tpd(y) are reduced tangent plane distances using current vapor and132

liquid phases as trial phases, and ∆G = θV × tpd(x) + (1 − θV) × tpd(y). (3)133

Any of ∆G, tpd(x) and tpd(y) is negative.134

For the first two cases, we cannot be sure of the stability of the given mixture,135

thus continuing with stability analysis. For the third case, we can conclude that136

the given mixture is unstable, thereby sidestepping stability analysis. Finally,137

if two phases coexist, we perform phase split calculations to get θV , x and y at138

equilibrium.139

7

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
the Wilson

approximation

Successive substitution
of phase split
calculations

0 < 𝜃𝜃𝑉𝑉 < 1?

∆𝐺𝐺 < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒙𝒙) < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒚𝒚) <0?

3 timesNo

Yes

Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Stability analysis
Yes

No

Yes

No

Figure 2: Flowchart of two-phase flash calculation

2.3. Case studies140

Here, we introduce three case studies involving hydrocarbons, CO2 and N2,141

whose properties are shown in Table 1. In this work, we only consider the binary142

interaction parameter (BIP) between CH4 and CO2, which is 0.0882. The BIPs143

between the others are 0. The first case study focuses on a system of two144

components (CH4 and C6H14), and the second one involves four components145

(CH4, C2H6, C3H8 and C4H10). For these two case studies, the ranges of146

pressure and temperature are 0.1MPa - 10MPa and 200K - 500K, respectively,147

and we consider the entire compositional space, i.e., 0 < zi < 1 for i = 1, . . . , Nc.148

The third case study includes all 9 components in Table 1. The bounds of149

pressure and temperature are 5MPa - 25MPa and 200K - 600K, respectively. In150

addition, from a practical perspective, given that some mixtures do not exist in151

nature, rather than considering the entire compositional space, we specify four152

different compositional ranges, as shown in Table 2, each of which represents one153

8

Table 1: Component properties

Pc (MPa) Tc (K) omega

CH4 4.6 190.55 0.0111

C2H6 4.875 305.43 0.097

C3H8 4.268 369.82 0.1536

n-C4H10 3.796 425.16 0.2008

n-C5H12 3.3332 467.15 0.2635

C6H14 2.9688 507.4 0.296

C7H
+
16 2.622 604.5 0.3565

CO2 7.382 304.19 0.225

N2 3.3944 126.25 0.039

of the common reservoir fluid types, namely wet gas, gas condensate, volatile154

oil, and black oil. Figure 3(a) shows phase diagrams of four typical reservoir155

fluids at fixed compositions, as defined in Appendix D, and we can see that the156

more heavy hydrocarbons there are, the lower the pressure range of the phase157

envelope and the less volatile the fluid is.

Table 2: Four fluid types characterized by different compositional ranges

Wet gas Gas condensate Volatile oil Black oil

CH4 80% - 100% 60% - 80% 50% - 70% 20% - 40%

C2H6 2% - 7% 5% - 10 % 6% - 10% 3% - 6 %

C3H8 ≤ 3% ≤ 4% ≤ 4.5% ≤ 1.5%

n-C4H10 ≤ 2% ≤ 3% ≤ 3% ≤ 1.5%

n-C5H12 ≤ 2% ≤ 2% ≤ 2% ≤ 1%

C6H14 ≤ 2% ≤ 2% ≤ 2% ≤ 2%

C7H
+
16 ≤ 1% 5% - 10 % 10% - 30% 45% - 65%

CO2 ≤ 2% ≤ 3.5% ≤ 2% ≤ 0.1%

N2 ≤ 0.5% ≤ 0.5% ≤ 0.5% ≤ 0.5%

158

9

200 300 400 500 600
T (K)

5

10

15

20

25
P

(M
P

a)

wet gas
gas condensate

volatile oil
black oil

(a) Phase diagrams

0.00 0.25 0.50 0.75 1.00
zi

0

5

10

15

20

de
ns

ity

z1

z2

z7

others

(b) Marginal distribution of zi for black oil

Figure 3: In Figure (a), the squares on the phase envelopes represent critical points. In Figure

(b), z1, z2 and z7 are the molar fractions of CH4, C2H6 and C7H
+
16, respectively.

2.4. Data generation159

To efficiently sample input data including P , T and z, we first use Latin160

Hypercube Sampling (LHS) technique to take space-filling samples [32]. Subse-161

quently, for P and T , we linearly transform the uniform distribution U(0, 1) to162

the expected ranges. For z subject to
∑

zi = 1, we transform a set of U(0, 1)163

into the Dirichlet distribution Dir(α) whose support is a simplex, as follows:164

xi
i.i.d.∼ U(0, 1) using LHS (9a)

yi = Γ (αi, 1).ppf(xi) (9b)

zi =
yi∑Nc

i=1 yi
(9c)

where α = (α1, . . . , αNc
) is the concentration parameters of the Dirichlet dis-165

tribution and controls its mode, Γ (αi, 1) is the Gamma distribution, ppf rep-166

resents the percent-point function, also known as the quantile function, and167

z = (z1, . . . , zNc
) ∼ Dir(α).168

For the first two case studies, the concentration parameters are α = 1, i.e.,169

all-ones vector. For the third case study, we adjust α for different fluid types to170

make the probability of each compositional range as large as possible, as shown171

10

in Table 3. Figure 3(b) presents the marginal distribution of zi for black oil.172

In summary, we sample z using Equation 9 with different α specified in Table173

3, and then we single out the acceptable samples located in the compositional174

ranges defined in Table 2. In the following, unless otherwise specified, four fluid175

types are always equally represented.

Table 3: Concentration parameters α for different fluid types in Table 2

α1 for CH4 α2 for C2H6 α7 for C7H
+
16 αi for others

Wet gas 100 5 1 1

Gas condensate 40 5 5 1

Volatile oil 55 8 20 1

Black oil 25 4 40 1

176

Eventually, the samples of P , T and z are concatenated together to form177

the complete input data.178

3. Vectorization of two-phase flash calculation179

We vectorize the two-phase flash so that it takes as inputs P = (P1, · · · , Pn),180

T = (T1, · · · , Tn) and z = (z1, · · · , zn), where P and T are vectors, z is a181

matrix, and n denotes the number of samples processed concurrently and is182

often referred to as the batch dimension.183

In recent years, Automatic Vectorization (AV) has emerged and developed 1,184

e.g., JAX [33], which can automatically vectorize a function through the batch-185

ing transformation that adds a batch dimension to its input. In this way, the186

vectorized function can process a batch of inputs simultaneously rather than187

processing them one by one in a loop. However, AV comes at the expense of188

performance to some extent and is slower than well-designed manual vectoriza-189

tion, which vectorizes a function by carefully revamping its internal operations190

1At the time of writing, PyTorch team released a fledgling library, functorch, which takes

inspiration from JAX and supports Automatic Vectorization.

11

to accommodate to a batch of inputs. For example, matrix-vector products191

for a batch of vectors can be directly replaced with a matrix-matrix product.192

In addition, flash calculation has an iterative nature and complicated control193

flow, which is likely to result in the failure of AV. Consequently, for finer-grained194

control, more flexibility, and better performance, we manually vectorize all algo-195

rithms involved in flash calculation, including the solution of the SRK equation196

of state and the Rachford-Rice equation, stability analysis and phase split cal-197

culations.198

To achieve efficient vectorization, one difficulty is asynchronous convergence,199

that is, for each algorithm, the number of iterations required to reach conver-200

gence generally varies for different samples, which hinders vectorization and201

parallelism. To alleviate this problem, we design a general-purpose paradigm,202

synchronizer, to save converged results in time at the end of each iteration and203

then remove the corresponding samples in order not to waste computational204

resources on them in the following iterations, which is achieved by leveraging205

a one-dimensional Boolean mask encapsulating convergence information to effi-206

ciently access data in vectors and matrices, as follows:207

X(k+1) ← f(X(k)) (10a)

Save X(k+1)[mask] to X̃ (10b)

X(k+1) ←X(k+1)[∼ mask] (10c)

k ← k + 1 (10d)

where k is the number of iterations, f(X) is a vectorized iterated function tak-208

ing as input X ∈ Rn×m (n is the batch dimension, i.e., number of samples, and209

m is the dimension of X), X̃ is a placeholder matrix used to save converged210

results, mask is a Boolean vector where True means convergence, and ∼ de-211

notes the logical NOT operator. The number of unconverged samples gradually212

decreases as a result of incremental convergence. For the full version of synchro-213

nizer, refer to Appendix E.1. We can use synchronizer to wrap and vectorize214

12

any iterative algorithm. For instance, we illustrate how to perform vectorized215

stability analysis in Appendix E.2.216

The efficiency of synchronizer may be questioned because previously con-217

verged samples are still waiting for unconverged ones before moving to the next218

step. This is true, but the situation is not as pessimistic since we try to shorten219

the waiting time as much as possible. For example, if successive substitution220

fails to converge quickly, we immediately use the trust-region method. In any221

case, the delay caused by waiting is insignificant compared to the acceleration222

due to vectorization. Furthermore, we leverage neural networks to provide more223

accurate initial estimate X(0) so that all samples converge as simultaneously as224

possible, thereby reducing asynchrony, which we will present in Section 4.225

Once all algorithms are well vectorized, another problem is how to globally226

coordinate different subroutines. To this end, we add barrier synchronization227

to the entry points of stability analysis and phase split calculations in Figure228

2, which can avoid any subroutine connected to it proceeding further until all229

others terminate and arrive at this barrier.230

We also optimized the code using TorchScript [22], allowing for more efficient231

execution through algebraic peephole optimizations and fusion of some opera-232

tions, and more practical asynchronous parallelism without the Python global233

interpreter lock [34], whereby vapor-like and liquid-like estimates are dealt with234

in parallel in stability analysis.235

4. Acceleration of flash calculation using neural networks236

To further accelerate flash calculation, we create and train two task-specific237

neural networks, classifier and initializer. The classifier is used to predict the238

probability p that a given mixture is stable, i.e., p = classifier(P, T,z), which239

involves a binary classification problem. It can predict the stability of most240

samples, thereby bypassing stability analysis and saving time. The initializer241

is able to initialize Ki more accurately than the Wilson approximation, i.e.,242

lnKi = initializer(P, T,z), which relates to a regression problem. It can reduce243

13

the number of iterations required to reach convergence and alleviate the asyn-244

chronous convergence we introduced before. Note that the hyper-parameters245

of neural networks presented below, e.g., the number of units and layers, are246

dedicated to the case study containing 9 components. Nonetheless, the basic247

architecture of neural networks and the training methods can be generalized to248

any case.249

4.1. Classifier250

4.1.1. Architecture251

As shown in Figure 4(a), the classifier has 3 hidden layers with 32 neurons252

and using the SiLU activation function [35–37]. The output layer has only one253

neuron and uses the sigmoid activation function compressing a real number to254

the range (0, 1). The input x consists of P , T and z, and the output is the255

probability p that a given mixture is stable. The scaling layer standardizes the256

inputs as (x− u)/s, where u and s are the mean and standard deviation of x257

over the training set. To train the classifier, we use the binary cross-entropy258

(bce), which is the de-facto loss function for binary classification problems and259

defined as:260

bce(y, p) = y ln p+ (1− y) ln(1− p) (11)

where y is either 0 for unstable mixtures or 1 for stable ones.261

The architecture of the classifier is obtained by tuning hyper-parameters us-262

ing Tree-Structured Parzen Estimator optimization algorithm [38] with Asyn-263

chronous Successive Halving algorithm [39] as an auxiliary tool to early stop264

less promising trials. We create a dataset containing 100,000 samples (80%265

for training and 20% for validation), and then tune the hyper-parameters of the266

classifier with 150 trials to minimize the loss on the validation set (we use Adam267

[40] as optimizer and the batch size is 512), as shown in Figure 4(b). We can268

see that SiLU largely outperforms other activation functions.269

14

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Hidden layer 1

Output layer with sigmoid

SiLU activation

Scaling layer

𝑝𝑝

Hidden layer 2

SiLU activation

Hidden layer 3

SiLU activation

All hidden
layers have
32 neurons.

(a) The architecture of classifier for the 9-

component mixture

1 6
2 4
3 2
4 0
4 8
5 6

8

6 4

0 . 0 0 6

0 . 1

S i L U

R e L U

T a n h

S i g m o i d

1 E - 4

0 . 0 0 1

1 E - 5

0 . 0 1

3

4

5

2

6
a c t i v a t i o nl o s s l r # o f l a y e r s# o f u n i t s

(b) Tuning hyper-parameters of classifier

Figure 4: Figure (a) shows the architecture of the classifier. Figure (b) is a parallel coordinates

plot used to visualize the results of tuning hyper-parameters of the classifier, where lr stands

for learning rate. The colors of lines are mapped to the value of the loss.

4.1.2. Training270

We first generate one million samples in the way described in Section 2.3,271

and then feed them to PTFlash to determine stability (no need for phase split272

calculations), which takes about 2 seconds. Subsequently, these samples are273

divided into the training (70%), validation (15%) and test (15%) sets. To train274

the classifier, we set the batch size to 512 and use Adam with Triangular Cyclic275

Learning Rate (CLR) [41, 42], which periodically increases and decreases the276

learning rate during training, as shown in Figure 5(a). [43] claimed that CLR277

helps to escape local minima and has the opportunity to achieve superb perfor-278

mance using fewer epochs and less time. We found that Adam with and without279

CLR achieved similar performance, but the former converged five times faster280

than the latter. Early stopping is also used to avoid overfitting [44]. The total281

training time is about 5 minutes using Nvidia RTX 3080. The final performance282

of the classifier on the test set is bce = 0.002 and accuracy = 99.93%. For a283

more intuitive understanding of performance, Figure 5(b) shows the contours284

of probabilities predicted by the classifier, where the blue contour of p = 0.5285

15

basically coincides with the phase envelope. In the zoomed inset, the additional286

green and yellow contours correspond to p=0.02 and 0.98, respectively.287

1 5 9 13 17 21 25

0.002

0.004

0.006

0.008

0.010

0.012

Le
ar

ni
ng

 ra
te

of epochs

(a) Cyclic learning rate of the classifier

200 300 400 500 600
T (K)

5

10

15

20

25

P
(M

P
a)

0.5

(b) Prediction of the classifier for volatile oil

Figure 5: Figure (a) shows how the learning rate varies cyclically. Figure (b) illustrates the

contours of probabilities predicted by the classifier for volatile oil at fixed composition. The

red and gray correspond to the two-phase and monophasic regions, respectively.

4.2. Initializer288

4.2.1. Architecture289

The input of the initializer includes P , T and z, and its output is lnKi.290

The initializer has 1 hidden layer and 3 residual blocks, as shown in Figure291

6. Each residual block has 2 hidden layers and a shortcut connection adding292

the input of the first hidden layer to the output of the second [45]. All hidden293

layers have 64 neurons and use the SiLU activation function. The output layer294

has Nc neurons without activation function. The wide shortcut, proposed in295

[46], enables neural networks to directly learn simple rules via it besides deep296

patterns through hidden layers, which is motivated by the fact that the inputs,297

such as P and T , are directly involved in the calculation of Ki. The concat298

layer concatenates the input layer and the outputs of the last residual block (the299

concatenation means putting two matrices A ∈ Rd1×d2 and B ∈ Rd1×d3 together300

to form a new one C ∈ Rd1×(d2+d3)). In addition, the targets of the initializer301

are lnKi instead of Ki, since Ki varies in different orders of magnitude, which302

16

hampers the training of the initializer, whereas lnKi does not.303

Wide
shortcut

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Residual block

Hidden layer

Hidden layer

SiLU activation

SiLU activation
Element-wise addition

Sh
or

tc
ut

 c
on

ne
ct

io
n

Hidden layer 1

Concat layer

Output layer

Residual block 2

Residual block 1

SiLU activation

Scaling layer

All hidden layers have 64 neurons.

Residual block 3

ln𝑲𝑲

Figure 6: The architecture of initializer for the 9-component mixture

We found that the convergence of phase split calculations is robuster if Ki304

predicted by the initializer can lead to more accurate values of the vapor fraction305

θV , especially around critical points where calculations are quite sensitive to306

initial Ki and prone to degenerate into trivial solutions. As a consequence, the307

loss function used to train the initializer consists of two parts, one is the mean308

absolute error (mae) in terms of Ki and the other is mae in terms of θV , as309

follows:310

mae(lnK, ln K̂) =

Nc∑
i=1

|lnKi − ln K̂i| (12a)

mae(θV , θ̂V) = |θV − θ̂V | (12b)

where lnK is the ground truth, ln K̂ is the prediction of the initializer, θV is the311

vapor fraction at equilibrium, and θ̂V is obtained by solving the Rachford-Rice312

equation given z and the prediction K̂.313

4.2.2. Training314

We generate one million samples in the two-phase region (Ki is not available315

at the monophasic region), which are divided into the training (70%), validation316

17

(15%) and test (15%) sets. The training of the initializer is carried out in two317

stages. First, we train it to minimize mae(lnK, ln K̂), using Adam with CLR318

and setting the batch size to 512. Second, after the above training, we further319

train it to minimize mae(lnK, ln K̂) + mae(θV , θ̂V), using Adam with a small320

learning rate 1.0e-5. Here, ∂θ̂V /∂K̂ is required during backpropagation and can321

be simply computed via PyTorch’s automatic differentiation, which, however,322

differentiates through all the unrolled iterations, since we solve the Rachford-323

Rice equation in an iterative manner we described in Appendix C.1. Instead, we324

can make use of the implicit function theorem [47] to directly obtain ∂θ̂V /∂K̂325

by using the derivative information at the solution point of the Rachford-Rice326

equation, as follows:327

∂θ̂V /∂K̂ = −[∂θV fRR(θ̂V , K̂)]−1∂KfRR(θ̂V , K̂) (13)

This way is obviously more efficient and avoids differentiation through iterations.328

We give more details about the derivation of Equation 13 in Appendix C.2.329

Eventually, the performance of the initializer on the test set is mae = 9.66e-4330

in terms of lnKi and mae = 1.86e-3 in terms of Ki.331

4.3. Strategy for accelerating flash calculation using neural networks332

As shown in Figure 7, given P , T and z, we first use the classifier to predict333

p. Next, based on two predefined thresholds, pl and pr, satisfying pl ≤ pr,334

the given mixture is thought of as unstable if p ≤ pl or stable if p ≥ pr. If335

pl < p < pr, we will use stability analysis to avoid unexpected errors. Here, we336

can adjust pl and pr to trade reliability for speed. In general, less errors occur337

with smaller pl and greater pr, but probably taking more time on stability338

analysis, and vice versa. A special case is pl = pr = pc, where pc could be a339

well-calibrated probability or simply set to 0.5, which means that we completely340

trust the classifier (i.e., stable if p ≥ pc or unstable otherwise), and no extra341

stability analysis is required. For the initializer, it serves both stability analysis342

when pl < p < pr and phase split calculations.343

18

Neural networks can also be used individually. If only the classifier is avail-344

able, one may initialize Ki via the Wilson approximation rather than the ini-345

tializer in Figure 7. If only the initializer is available, one may use it to initialize346

Ki in Figure 2.347

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
initializer Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Yes

No

Yes

No

classifier

𝑝𝑝 ≥ 𝒑𝒑𝒓𝒓 ?

𝑝𝑝 ≤ 𝒑𝒑𝒍𝒍 ?

No

Yes

Stability analysis

Figure 7: Acceleration of flash calculation using neural networks

5. Results348

In this section, we will compare our proposed framework for vectorized flash349

calculation, PTFlash, with Carnot, an in-house thermodynamic library devel-350

oped by IFP Energies Nouvelles and based on C++. Carnot performs two-phase351

flash calculation in the manner shown in Figure 2, but can only handle samples352

one at a time on CPU. Regarding the hardware, CPU is Intel 11700F and GPU353

is NVIDIA RTX 3080 featuring 8704 CUDA cores and 10G memory. Note that354

since using multiple cores renders the frequency quite unstable due to heat ac-355

cumulation, we only use one core of CPU so that the frequency can be stabilized356

at 4.5GHz, which allows for a consistent criterion for measuring the execution357

time.358

19

PTFlash and Carnot gave identical results (coincidence to 9 decimal places359

under double-precision floating-point format) because they use exactly the same360

convergence criteria for all iterative algorithms. In the following, we will focus361

on comparing their speeds.362

5.1. Vectorized flash calculation363

We compare the execution time of different methods for flash calculation364

with respect to the workload quantified by the number of samples n, as shown365

in Figures 8. Due to GPU memory limitations, the maximum number of samples366

allowed is 10, 5, and 1 million for the three case studies, respectively. We can367

see that all three figures exhibit the same behavior. When the workload is368

relatively low, e.g., n < 1000, Carnot wins by large margins, and CPU is also369

preferable based on the fact that PTFlash runs much faster on CPU than on370

GPU. On the one hand, PyTorch has some fixed overhead in the setup of the371

working environment, e.g., the creation of tensors. On the other hand, when372

GPU is used, there are some additional costs of CPU-GPU communication and373

synchronization. When n is small, these overheads dominate. As proof, we can374

see that the time of PTFlash on GPU hardly changes as n varies from 100 to375

104. In contrast, the time of Carnot is almost proportional to n.376

As the workload increases, the strength of PTFlash on GPU emerges and377

becomes increasingly prominent. For the three case studies, PTFlash on GPU378

is 163.4 (2 components), 106.3 (4 components) and 50.5 (9 components) times379

faster than Carnot at the maximum number of samples. This suggests that380

PTFlash on GPU is more suitable for large scale computation. Interestingly, we381

can observe that PTFlash on CPU also outperforms Carnot when the workload382

is relatively heavy, e.g., n > 103. In fact, thanks to Advanced Vector Extensions,383

vectorization enables fuller utilization of CPU’s computational power.384

We notice that there is a lack of a comprehensive and unified benchmark for385

the runtime of flash calculation in the literature. Here, we give an article with386

a case study similar to ours for readers’ reference [48], which claimed that the387

total computation time of flash calculations is 10 seconds for one million samples388

20

9 4 6 . 2 9

1 9 3

5 . 7 9

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3
Tim

e (
s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(a) Mixture of CH4 and C6H14

4 3 9

1 1 2

4 . 1 3

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 5 × 1 0 6

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(b) Mixture of 4 components

1 5 5

7 5

3 . 0 7
2 7 . 2

1 . 4

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6
1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U
 N N - P T F l a s h o n C P U
 N N - P T F l a s h o n G P U

(c) Mixture of 9 components

Figure 8: Comparison between PTFlash and Carnot in terms of speed. NN-PTFlash is

PTFlash accelerated by neural networks, as presented in Section 4.

of a 9-component mixture. However, it is worth pointing out that the sampling389

method, convergence criteria and algorithm implementation in this reference390

article are different from ours. In our work, these aspects are consistent for391

both Carnot and PTFlash to ensure a fair comparison.392

Next, we focus on the mixture of 9 components and analyze the performance393

of PTFlash for this case study. Table 4 is a performance profiler of PTFlash394

on GPU at n = 106, which records the running time of each subroutine of395

flash calculations. As a complement, Figures 9 dissect phase split calculations396

by tracking the total elapsed time and the convergence percentage up to each397

iteration, as well as the mean of critical distances dc of converged samples at398

21

each iteration, where dc is defined as:399

dc =

√√√√ Nc∑
i=1

lnK2
i (14)

The closer to critical points, the smaller dc. In other words, dc indicates the400

closeness to critical points.401

The observations of Figures 9 are summarized as follows: (1) In Figure 9(a),402

the slope of time with respect to the number of iterations is decreasing because403

the workload is reduced due to incremental convergence. (2) In Figure 9(b), for404

the samples that do not converge after successive substitution, the majority of405

them (92.67%) converge after 3 iterations of the trust-region method. (3) In406

Figure 9(c), dc decreases during iterations, which means that samples close to407

critical points converge last and also confirms that convergence is slow around408

critical points.409

Table 4: Performance profiler of PTFlash on GPU (Figure 2) for the mixture of 9 components

at n = 106 in Figure 8(c)

ss of Stability analysis Phase split

phase split vapor-like estimate liquid-like estimate calculations

calculations ss tr ss tr ss tr

of samples 106 625645 130715 625645 90179 413442 223741

Convergence 37.44% 1 79.11% 100% 85.59% 100% 45.88% 100%

Max number
3 9 18 9 16 9 13

of iterations

Total time 0.4565s
0.4136s 0.3417s 0.4044s 0.2706s 0.7412s 0.5132s

1.3237s 2 1.2544s

ss: successive substitution tr: trust-region method

1 37.44% is the percentage of samples for which any of ∆G, tpdx and tpdy is negative after

3 attempts of successive substitution, as described in Section 2.2.3.

2 The total time of stability analysis is less than the sum of the times of all subroutines

because vapor-like and liquid-like estimates are handled concurrently.

The above analysis gives us a general understanding of PTFlash, but in fact410

22

1 2 3 4 5 6 7 8 9
0

1 0

2 0

3 0

4 0

5 0
 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

)
4 5 . 8 8 %

7 4 2

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
1 0 0 0

 Ti
me

 (m
s)

(a) Successive substitution

1 3 5 7 9 1 1 1 33 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

) 9 2 . 6 7 % 9 9 . 9 7 % 5 1 3

2 0 0

3 0 0

4 0 0

5 0 0

 Ti
me

 (m
s)

(b) Trust-region method

1 3 5 7 9 1 1 1 3s s
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Me
an

 of
 cr

itic
al

dis
tan

ce
s

o f i t e r a t i o n s

(c) Closeness to critical points

Figure 9: Figures (a) and (b) show the convergence percentage and the elapsed time up to

each iteration of phase split calculations of PTFlash on GPU. In Figure (c), on the x-axis,

ss corresponds to the end of successive substitution and other integers are the number of

iterations of the trust-region method.

it is not easy to analyze PTFlash comprehensively because each subroutine also411

contains iterative algorithms, such as solving the SRK equation of state and the412

Rachford-Rice equation. Nevertheless, given the information already obtained,413

we know that we need to shorten the time of stability analysis and reduce the414

number of iterations in order to accelerate PTFlash, which is exactly the role415

of the classifier and initializer.416

5.2. Deep-learning-powered vectorized flash calculation417

We trained neural networks following Section 4 for the mixture of 9 compo-418

nents. Here, we will explore the effect of neural networks. First of all, we set419

23

pl = 0.02 and pr = 0.98 as the thresholds of stability and instability, which are420

carefully chosen so that no misclassification occurs. In Figure 8(c), we can see421

that NN-PTFlash outpaces PTFlash on both CPU (2.7x speed-up) and GPU422

(2.2x speed-up). In addition, NN-PTFlash on GPU runs almost 110.7 times423

faster than Carnot at n = 106.424

Table 5 is the performance profiler of NN-PTFlash on GPU. We can see that425

the classifier is able to precisely determine the stability of the vast majority of426

samples (99.42%), which significantly relieves the burden of stability analysis427

and saves time. In addition, compared to phase split calculations of PTFlash,428

the convergence percentage of successive substitution increases from 45.88% to429

67.40%, and the overall time is also greatly reduced, which is attributed to430

better initial Ki provided by the initializer.431

Table 5: Performance profiler of NN-PTFlash on GPU (Figure 7) for the mixture of 9

components at n = 106 in Figure 8(c)

classifier

Stability analysis Phase split

vapor-like estimate liquid-like estimate calculations

ss tr ss tr ss tr

of samples 106 5818 1073 5818 1704 413442 134786

Convergence 99.42% 1 81.56% 100% 70.71% 100% 67.40% 100%

Max number
9 13 9 12 9 13

of iterations

Total time 0.0005s
0.1365s 0.128s 0.0514s 0.12s 0.7043s 0.3388s

0.34s 1.0431s

ss: successive substitution tr: trust-region method

1 99.42% includes 58.38% predicted as stable (i.e., p > pr) and 41.04% predicted as

unstable (i.e., p < pl).

We also performed ablation studies to compare the contributions of the clas-432

sifier and initializer by using them individually. For instance, when handling 1433

million samples for the case study containing 9 components, NN-PTFlash with434

only the classifier on GPU takes 1.88s. However, the attempt to use the ini-435

24

tializer alone fails because we found its outputs may reach unreasonably large436

values (e.g., 1.0e15) for stable mixtures far away from the boundary between the437

single-phase and two-phase regions, which leads to numerical overflow. From438

machine learning terminology, this is the out-of-distribution generalization prob-439

lem, since the initializer is trained on the two-phase region and may suffer from440

large predictive errors when used within the single-phase region. Nonetheless,441

there is no problem when the initializer works in tandem with the classifier be-442

cause remaining samples located in the single-phase region are fairly close to the443

boundary after filtering through the classifier, as shown in Figure 5(b). In any444

case, based on the fact that NN-PTFlash using only the classifier always lags445

behind that using both, we can conclude that both the classifier and initializer446

play an important role in speeding up flash calculations.447

5.3. Discussion448

The results show that the systematic and exhaustive vectorization of two-449

phase flash calculation does result in attractive speed-ups when large scale com-450

putation is involved, e.g., the number of samples to process is on the order of451

millions. Importantly, this speed-up does not come at the cost of accuracy and452

stability like [11, 12, 14, 15] which are subject to the unreliability of machine453

learning models. In addition, we can see that neural networks, such as the454

classifier and initializer, really make a big difference.455

Due to GPU memory limitations, the number of samples n is limited in456

Figures 8. Nonetheless, we can see that the slopes of time with respect to n differ457

significantly between different methods. The time of Carnot is proportional to458

n, in contrast, the time of PTFlash on GPU is increasing slowly. Therefore,459

it is reasonable to believe that the speed advantage of PTFlash on GPU will460

become increasingly prominent if n continues to grow.461

Using PyTorch has several benefits in addition to its simplicity and flexibil-462

ity. First, we can seamlessly incorporate neural networks into PTFlash. Second,463

any subroutine of PTFlash is fully differentiable through automatic differenti-464

ation, and we can also leverage the implicit function theorem for efficient dif-465

25

ferentiation, as we did in Section 4.2.2. Third, PyTorch’s highly optimized466

and ready-to-use multi-GPU parallelization largely circumvents the painstaking467

hand-crafted effort.468

PTFlash also has several limitations. First, PTFlash is based on the SRK469

equation of state, which is relatively simple and sufficient for mixtures contain-470

ing hydrocarbons and non-polar components, but does not take into account471

the effect of hydrogen bonding and falls short of adequacy for cross-associating472

mixtures having polar components, such as water and alcohol [49]. In this473

case, more advanced but also more complicated equations of state should be474

employed, such as the SAFT equation of state [50–55] or the CPA equation of475

state [56, 57]. However, vectorization of these complicated equations of state is476

far more difficult than that of cubic equations of state. To alleviate this prob-477

lem, we plan to use neural networks to directly predict the fugacity coefficients.478

In this way, we can calculate the fugacity coefficients in a vectorized fashion,479

regardless of the equation of state used. Second, PTFlash consumes a large480

amount of GPU memory, badly limiting its use on much larger batches of data.481

We need to optimize PTFlash to reduce the consumption of GPU memory, e.g.,482

by leveraging the sparsity and symmetry of matrices. Third, PTFlash does483

not support multi-phase equilibrium. Last but not least, neural networks are484

subject to the out-of-distribution generalization problem. If pressure and tem-485

perature are out of predefined ranges used to train neural networks, predictive486

performance will deteriorate dramatically. Furthermore, once the components487

of the mixture change, we need to create new neural networks and train them488

from scratch.489

6. Conclusion490

In this work, we presented a fast and parallel framework, PTFlash, for two-491

phase flash calculation based on PyTorch, which efficiently vectorizes algorithms492

and gains attractive speed-ups at large scale calculations. Two neural networks493

were used to predict the stability of given mixtures and to initialize the distribu-494

26

tion coefficients more accurately than the Wilson approximation, which greatly495

accelerate PTFlash. In addition, PTFlash has much broader utility compared to496

the aforementioned methods which are mainly tailored to compositional reser-497

voir simulation.498

We compared PTFlash with Carnot, an in-house thermodynamic library,499

and we investigated three case studies containing 2, 4 and 9 components with500

maximum number of samples of 10, 5 and 1 million, respectively. The results501

showed that PTFlash on GPU is 163.4, 106.3 and 50.5 times faster than Carnot502

at the maximum number of samples for these three cases, respectively.503

In the future, we will optimize PTFlash to reduce the consumption of GPU504

memory and extend our work to vectorize more advanced equations of state and505

support multi-phase equilibrium. We will also explore the feasibility of using506

neural networks to directly predict the fugacity coefficients, which can serve as507

an alternative to numerically solving equations of state. In addition, we will508

validate PTFlash on more hardware suitable for parallel computing, e.g., TPU.509

Last but not least, we will apply our work to downstream applications, e.g.,510

compositional reservoir simulation.511

7. Acknowledgements512

We acknowledge the financial support from French National Research Agency513

(ANR) through the projects DL4CLIM ANR-19-CHIA-0018-01 and DEEP-514

NUM ANR-21-CE23-0017-02.515

27

Appendix A. SRK equation of state and its solution516

The SRK equation of state describes the relationship between pressure (P),517

temperature (T) and volume (V) in the following mathematical form [21]:518

P =
RT

V − b
− aα

V (V + b)
(A.1)

where R is the gas constant, aα refers to the temperature-dependent energy519

parameter, and b denotes the co-volume parameter. We employ the van der520

Waals mixing rules and the classical combining rules to calculate aα and b, as521

follows:522

aα =

Nc∑
i=1

Nc∑
j=1

cicj(aα)ij (A.2a)

(aα)ij = (1− kij)
√
(aα)i(aα)j (A.2b)

b =

Nc∑
i=1

cibi (A.2c)

ai =
0.42748 ·R2 (Tc,i)

2

Pc,i
(A.2d)

bi =
0.08664 ·R Tc,i

Pc,i
(A.2e)

αi =

[
1 +mi

(
1−

√
T

Tc,i

)]2
(A.2f)

mi = 0.480 + 1.574 ωi − 0.176 ω2
i (A.2g)

where the subscripts i and j refer to the components i and j, respectively, ci523

denotes the mole fraction of the component i in the phase considered, kij is the524

binary interaction parameter between the components i and j, ai and bi are two525

substance-specific constants related to the critical temperature Tc,i and critical526

pressure Pc,i, and ωi is the acentric factor. We reformulate Equation A.1 as a527

cubic equation in terms of the compressibility factor Z:528

fsrk(Z) = Z3 − Z2 + ρ1Z − ρ0 = 0 (A.3)

28

where ρ0 = AB and ρ1 = A − B(1 + B), in which A = aαP/(R2T 2) and529

B = bP/(RT). To find the roots of fsrk(Z), we utilize an iterative approach530

based on Halley’s method [25], as follows:531

Z(k+1) = Z(k) − fsrk(Z
(k))

f ′
srk(Z

(k))

[
1− fsrk(Z

(k))

f ′
srk(Z

(k))
· f

′′
srk(Z

(k))

2f ′
srk(Z

(k))

]−1

(A.4)

The above iteration starts with a liquid-like guess and converges to a real532

root Z0 (The convergence criterion is |Z(k+1)/Z(k) − 1| <1.0e-8), and then we533

deflate the cubic equation as:534

fsrk(Z) = (Z − Z0)(Z
2 + pZ + q) = 0 (A.5)

where p = Z0 − 1 and q = pZ0 + ρ1. If p2 < 4q, only one real root Z0 exists,535

otherwise, there are three real roots and the other two are−p/2±
√

p2 − 4q/2. In536

the latter case, we assign the smallest root to the liquid phase and the biggest537

one to the vapor phase. Subsequently, the root corresponding to the lowest538

Gibbs energy will be chosen. When Z is known, the fugacity coefficients φi are539

calculated as follows:540

lnφi(P, T, c) =
bi
b
(Z − 1)− ln(Z −B)

+
A

B

bi
b
− 2

aα

Nc∑
j=1

(aα)ijcj

 ln(1 +
B

Z
) (A.6)

where c is the composition of the phase considered. In addition, the derivatives541

of the fugacity coefficients with respect to mole numbers, which are necessary for542

the trust-region methods of stability analysis and phase split calculations, are543

calculated explicitly rather than through PyTorch’s automatic differentiation,544

which requires retaining intermediate results and consumes prohibitive memory545

at large scale computation.546

29

Appendix B. Trust-region method547

When the successive substitution fails to converge quickly, particularly around548

critical points for which liquid and vapor phases are almost indistinguishable, we549

will switch to the trust-region method with restricted steps, which is a second-550

order optimization technique, to achieve faster convergence.551

In the following, the problem formulations are taken from Michelsen and552

Mollerup’s book [31], but the concrete implementation of the trust-region method,553

such as how to adjust the trust-region size and calculate the step size, is adapted554

from [28].555

Appendix B.1. Trust-region method for stability analysis556

The objective function to be minimized is the modified tangent plane dis-557

tance [1]:558

tm(W) =

Nc∑
i=1

Wi(lnWi + lnφi(W)− ln zi − lnφi(z)− 1)

The minimization is accomplished by iterating the following equations:559

β(k) = 2
√

W (k) (B.1a)

(H(k) + η(k)I) ·∆β + g(k) = 0 s.t. ∥∆β∥ ≤ ∆(k)
max (B.1b)

β(k+1) = β(k) +∆β (B.1c)

W (k+1) =

(
β(k+1)

2

)2

(B.1d)

where I is the identity matrix, g and H are the gradient and Hessian matrix560

of tm with respect to β, respectively, and are calculated as follows:561

gi =
√
Wi(lnWi + lnφi(W)− ln zi − lnφi(z)) (B.2a)

Hij =
√
WiWj

∂ lnφi

∂Wi
+ σij

(
1 +

gi
βi

)
where σij = 1 ⇔ i = j (B.2b)

30

In addition, η is the trust-region size used to guarantee the positive definite-562

ness of H + ηI and to tailor the step size to meet ∥∆β∥ ≤ ∆max, where ∆max563

is adjusted during iterations depending on the match between the actual reduc-564

tion δtm = tm(k+1) − tm(k) and the predicted reduction based on the quadratic565

approximation δ̂tm = ∆βTg + 1
2∆βTH∆β, using the following heuristic rules:566

∆(k+1)
max =



∆
(k)
max

2
, if

∣∣∣δtm/δ̂tm

∣∣∣ ≤ 0.25

2∆
(k)
max, if

∣∣∣δtm/δ̂tm

∣∣∣ ≥ 0.75

∆
(k)
max, otherwise

(B.3)

The convergence criterion of Equation B.1 is max(|g|) <1.0e-6.567

Appendix B.2. Trust-region method for phase split calculations568

The objective function to be minimized is the reduced Gibbs energy:569

G =

Nc∑
i=1

nL
i (lnxi + lnφL

i) +

Nc∑
i=1

nV
i (ln yi + lnφV

i)

where nL
i = xi(1−θV) and nV

i = yiθV are the mole numbers of liquid and vapor570

phases, respectively. We choose nV
i as the independent variable and perform571

the following iteration:572

(
H̃(k) + η̃(k) ·D

(
z

xy

))
·∆nV + g̃(k) = 0 s.t. ∥∆nV ∥ ≤ ∆̃(k)

max (B.4a)

nV,k+1 = nV,k +∆nV (B.4b)

where H̃(k) and g̃(k) are the gradient and hessian matrix of G with respect to573

nV
i , respectively, and are calculated as follows:574

g̃i = ln yi + lnφV
i − lnxi − lnφL

i (B.5a)

H̃ij =
1

θV (1− θV)

(
zi
xiyi

σij − 1 + θV
∂ lnφL

i

∂nL
j

+ (1− θV)
∂ lnφV

i

∂nV
j

)
(B.5b)

In addition, D(·) is a diagonal matrix with diagonal entries in parentheses.575

The above iteration stops if max(|g̃|) <1.0e-8. Here, the trust-region method is576

implemented in the same way as in stability analysis.577

31

Appendix C. The Rachford-Rice equation578

Appendix C.1. Solution of the Rachford-Rice equation579

The Rachford-Rice equation is as follows:580

fRR(θV ,K) =

Nc∑
i=1

(Ki − 1)zi
1 + (Ki − 1)θV

= 0

Given K, the solution of the above equation amounts to finding an appropriate581

zero yielding all non-negative phase compositions. Concretely, we adopt the582

method proposed by [30], which transforms fRR into a helper function hRR583

which is more linear in the vicinity of the zero:584

hRR(θV ,K) = (θV − αl) · (αr − θV) · fRR(θV) = 0 (C.1)

where αl = 1/(1 − max(Ki)) and αr = 1/(1 − min(Ki)). The above equation585

is solved by alternating between the Newton method and the bisection method586

used when the Newton step renders θV out of the bounds which contain the zero587

and become narrower during iterations. When the Newton step size is smaller588

than 1.0e-8, the iteration stops.589

Appendix C.2. Calculation of ∂θV /∂K using the implicit function theorem590

Based on the implicit function theorem [47], we can calculate ∂θV /∂K in591

an efficient way. We first differentiate the Rachford-Rice equation with respect592

to K (note that θV is an implicit function of K) and get:593

∂θV fRR(θV ,K)× ∂θV /∂K + ∂KfRR(θV ,K) = 0 (C.2)

We rearrange the above equation and get Equation 13, as follows:594

∂θV /∂K = −[∂θV fRR(θV ,K)]−1∂KfRR(θV ,K)

Moreover, since ∂θV fRR(θV ,K) is a scalar, we can further reduce the above595

equation to:596

∂θV /∂K = − ∂KfRR(θV ,K)

∂θV fRR(θV ,K)
(C.3)

For the sake of brevity, we have simplified some details. For more details and a597

defense of the above derivation, refer to [47].598

32

Appendix D. Some typical reservoir fluid compositions599

Table D.6: Some typical reservoir fluid compositions

Wet gas Gas condensate Volatile oil Black oil

CH4 92.46% 73.19% 57.6% 33.6%

C2H6 3.18% 7.8% 7.35% 4.01%

C3H8 1.01% 3.55% 4.21% 1.01%

n-C4H10 0.52% 2.16% 2.81% 1.15%

n-C5H12 0.21% 1.32% 1.48% 0.65%

C6H14 0.14% 1.09% 1.92% 1.8%

C7H
+
16 0.82% 8.21% 22.57% 57.4%

CO2 1.41% 2.37% 1.82% 0.07%

N2 0.25% 0.31% 0.24% 0.31%

33

Appendix E. Vectorized algorithms600

Appendix E.1. Synchronizer601

34

Algorithm 1: PyTorch pseudo-code of synchronizer to save converged

results after iteration and remove the corresponding samples

Input: Vectorized iterated function f(X,O), initial estimate X(0),

other f -related inputs O, convergence criterion C, maximum

number of iterations K

1 Initialization

2 Set the number of iterations k ← 1

3 Generate a vector i containing indices from 0 to n− 1

/* n is the number of samples and indexing starts from 0. */

4 Create a placeholder matrix X̃ of the same shape as X(0)

5 while k ≤ K do

6 X(k+1) ← f(X(k), O)

7 mask ← C(· · ·)

/* C returns a Boolean vector and True means convergence. */

8 Saving

9 indices ← i[mask]

10 X̃[indices]←X(k+1)[mask]

11 Removing

12 i← i[∼ mask]

13 O← O[∼ mask]

/* Apply this operation to every element in O */

14 X(k+1) ←X(k+1)[∼ mask]

15 k ← k + 1

16 if len(i) ̸= 0 then

17 X̃[i]←X

/* Also save unconverged results for further utilization. */

Output: Converged results X̃ and unconverged indices i

35

Appendix E.2. Vectorized stability analysis602

Algorithm 2: PyTorch pseudo-code of vectorized stability analysis

Input: Pressure P , temperature T , feed composition z, component

properties (Pc, Tc, ω, BIPs), initial estimate W (0), convergence

criteria Css and Ctr, maximum numbers of iterations Kss = 9

and Ktr = 20

1 Initialization

2 Instantiate pteos = PTEOS (Pc, Tc, ω, BIPs)

/* PTEOS is a PyTorch-based class to efficiently calculate the

fugacity coefficients and their partial derivatives. */

3 Successive substitution

4 Iterated function fss specified by Equation 5

5 Other inputs Oss ← {P , T , z}

6 W , iss ← synchronizer(fss,W
(0),Oss,Css,Kss)

7 Trust-region method

8 Iterated function ftr specified by Equation B.1

9 W
(0)
tr ←W [iss]

10 Other inputs Otr ← {P [iss], T [iss], z[iss]}

11 Wtr, itr ← synchronizer(ftr,W
(0)
tr ,Otr,Ctr,Ktr)

12 W [iss]←Wtr and i← iss[itr]

Output: Converged results W and unconverged indices i

36

References603

[1] M. L. Michelsen, The isothermal flash problem. part II. phase-split calcu-604

lation 9 (1) 21–40, publisher: Elsevier.605

[2] M. L. Michelsen, The isothermal flash problem. part i. stability 9 (1) 1–19,606

publisher: Elsevier.607

[3] P. Wang, E. H. Stenby, Non-iterative flash calculation algorithm in com-608

positional reservoir simulation 95 93–108, publisher: Elsevier.609

[4] A. Belkadi, W. Yan, M. L. Michelsen, E. H. Stenby, Comparison of two610

methods for speeding up flash calculations in compositional simulations,611

in: SPE Reservoir Simulation Symposium, OnePetro.612

[5] A. H. Dogru, L. S. K. Fung, U. Middya, T. Al-Shaalan, J. A. Pita, A613

next-generation parallel reservoir simulator for giant reservoirs, in: SPE614

Reservoir Simulation Symposium, OnePetro.615

[6] M. L. Michelsen, Simplified flash calculations for cubic equations of state616

25 (1) 184–188, publisher: ACS Publications.617

[7] E. M. Hendriks, Reduction theorem for phase equilibrium problems 27 (9)618

1728–1732, publisher: ACS Publications.619

[8] E. M. Hendriks, A. Van Bergen, Application of a reduction method to phase620

equilibria calculations 74 17–34, publisher: Elsevier.621

[9] C. P. Rasmussen, K. Krejbjerg, M. L. Michelsen, K. E. Bjurstrøm, In-622

creasing the computational speed of flash calculations with applications for623

compositional, transient simulations 9 (1) 32–38, publisher: OnePetro.624

[10] D. Voskov, H. A. Tchelepi, Compositional space parameterization for flow625

simulation, in: SPE Reservoir Simulation Symposium, OnePetro.626

[11] V. Gaganis, N. Varotsis, Machine learning methods to speed up compo-627

sitional reservoir simulation, in: SPE Europec/EAGE annual conference,628

OnePetro.629

37

[12] V. Gaganis, N. Varotsis, An integrated approach for rapid phase behavior630

calculations in compositional modeling 118 74–87, publisher: Elsevier.631

[13] V. Gaganis, Rapid phase stability calculations in fluid flow simulation using632

simple discriminating functions, Computers & Chemical Engineering 108633

(2018) 112–127.634

[14] A. Kashinath, M. Szulczewski, A. Dogru, A fast algorithm for calculating635

isothermal phase behavior using machine learning 465 73–82. doi:10.636

1016/j.fluid.2018.02.004.637

[15] S. Wang, N. Sobecki, D. Ding, L. Zhu, Y.-S. Wu, Accelerating and sta-638

bilizing the vapor-liquid equilibrium (VLE) calculation in compositional639

simulation of unconventional reservoirs using deep learning based flash cal-640

culation 253 209–219. doi:10.1016/j.fuel.2019.05.023.641

[16] T. Zhang, Y. Li, Y. Li, S. Sun, X. Gao, A self-adaptive deep learning642

algorithm for accelerating multi-component flash calculation, Computer643

Methods in Applied Mechanics and Engineering 369 (2020) 113207.644

[17] C. Cortes, V. Vapnik, Support-vector networks 20 (3) 273–297, publisher:645

Springer.646

[18] M. E. Tipping, Sparse bayesian learning and the relevance vector machine647

1 211–244.648

[19] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press.649

[20] Z. Chen, H. Liu, S. Yu, B. Hsieh, L. Shao, GPU-based parallel reservoir650

simulators, in: Domain Decomposition Methods in Science and Engineering651

XXI, Springer, pp. 199–206.652

[21] G. Soave, Equilibrium constants from a modified redlich-kwong equation653

of state 27 (6) 1197–1203, publisher: Elsevier.654

38

https://doi.org/10.1016/j.fluid.2018.02.004
https://doi.org/10.1016/j.fluid.2018.02.004
https://doi.org/10.1016/j.fluid.2018.02.004
https://doi.org/10.1016/j.fuel.2019.05.023

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,655

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, others, Pytorch: An im-656

perative style, high-performance deep learning library 32 8026–8037.657

[23] C. Lomont, Introduction to intel advanced vector extensions 23.658

[24] J. Sanders, E. Kandrot, CUDA by example: an introduction to general-659

purpose GPU programming, Addison-Wesley Professional.660

[25] U. K. Deiters, R. Maćıas-Salinas, Calculation of densities from cubic equa-661

tions of state: revisited, Industrial & Engineering Chemistry Research662

53 (6) (2014) 2529–2536.663

[26] Y. Zhi, H. Lee, Fallibility of analytic roots of cubic equations of state in664

low temperature region 201 (2) 287–294, publisher: Elsevier.665

[27] O. Orbach, C. Crowe, Convergence promotion in the simulation of chemical666

processes with recycle-the dominant eigenvalue method 49 (4) 509–513,667

publisher: Wiley Online Library.668

[28] M. Hebden, An algorithm for minimization using exact second deriva-669

tivesPublisher: Citeseer.670

[29] H. H. Rachford, J. Rice, Procedure for use of electronic digital comput-671

ers in calculating flash vaporization hydrocarbon equilibrium, Journal of672

Petroleum Technology 4 (10) (1952) 19–3.673

[30] C. Leibovici, J. Neoschil, A new look at the rachford-rice equation 74 303–674

308. doi:10.1016/0378-3812(92)85069-K.675

[31] M. L. Michelsen, J. Mollerup, Thermodynamic modelling: fundamentals676

and computational aspects, Tie-Line Publications.677

[32] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three678

methods for selecting values of input variables in the analysis of output679

from a computer code 42 (1) 55–61, publisher: Taylor & Francis.680

39

https://doi.org/10.1016/0378-3812(92)85069-K

[33] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,681

G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang,682

JAX: composable transformations of python+NumPy programs.683

URL http://github.com/google/jax684

[34] G. Van Rossum, F. L. Drake, The python language reference manual, Net-685

work Theory Ltd.686

[35] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus).687

[36] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural688

network function approximation in reinforcement learning 107 3–11, pub-689

lisher: Elsevier.690

[37] P. Ramachandran, B. Zoph, Q. V. Le, Swish: a self-gated activation func-691

tion 7 1, publisher: Technical report.692

[38] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-693

parameter optimization 24.694

[39] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt,695

B. Recht, A. Talwalkar, A system for massively parallel hyperparameter696

tuning 2 230–246.697

[40] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization.698

[41] L. N. Smith, No more pesky learning rate guessing games 5.699

[42] L. N. Smith, Cyclical learning rates for training neural networks, in: 2017700

IEEE winter conference on applications of computer vision (WACV), IEEE,701

pp. 464–472.702

[43] L. N. Smith, N. Topin, Super-convergence: Very fast training of neural703

networks using large learning rates, in: Artificial Intelligence and Machine704

Learning for Multi-Domain Operations Applications, Vol. 11006, Interna-705

tional Society for Optics and Photonics, p. 1100612.706

40

http://github.com/google/jax
http://github.com/google/jax

[44] L. Prechelt, Early stopping-but when?, in: Neural Networks: Tricks of the707

trade, Springer, pp. 55–69.708

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-709

nition, in: Proceedings of the IEEE conference on computer vision and710

pattern recognition, pp. 770–778.711

[46] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,712

G. Anderson, G. Corrado, W. Chai, M. Ispir, others, Wide & deep learning713

for recommender systems, in: Proceedings of the 1st workshop on deep714

learning for recommender systems, pp. 7–10.715

[47] S. G. Krantz, H. R. Parks, The implicit function theorem: history, theory,716

and applications, Springer Science & Business Media.717

[48] M. L. Michelsen, W. Yan, E. H. Stenby, A comparative study of reduced-718

variables-based flash and conventional flash, SPE Journal 18 (05) (2013)719

952–959.720

[49] G. M. Kontogeorgis, G. K. Folas, Thermodynamic models for industrial ap-721

plications: from classical and advanced mixing rules to association theories,722

John Wiley & Sons.723

[50] M. S. Wertheim, Fluids with highly directional attractive forces. II. ther-724

modynamic perturbation theory and integral equations 35 (1) 35–47, pub-725

lisher: Springer.726

[51] M. Wertheim, Fluids with highly directional attractive forces. i. statistical727

thermodynamics 35 (1) 19–34, publisher: Springer.728

[52] M. Wertheim, Fluids with highly directional attractive forces. IV. equilib-729

rium polymerization 42 (3) 477–492, publisher: Springer.730

[53] M. Wertheim, Fluids with highly directional attractive forces. III. multiple731

attraction sites 42 (3) 459–476, publisher: Springer.732

41

[54] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, New reference733

equation of state for associating liquids 29 (8) 1709–1721, publisher: ACS734

Publications.735

[55] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse,736

and associating molecules 29 (11) 2284–2294, publisher: ACS Publications.737

[56] G. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, An738

equation of state for associating fluids 35 (11) 4310–4318, publisher: ACS739

Publications.740

[57] G. M. Kontogeorgis, I. V. Yakoumis, H. Meijer, E. Hendriks, T. Moorwood,741

Multicomponent phase equilibrium calculations for water–methanol–alkane742

mixtures 158 201–209, publisher: Elsevier.743

42

	Introduction
	Isothermal two-phase flash calculation
	Problem setting
	Numerical solver
	Stability analysis
	Phase split calculations
	Strategy for two-phase flash calculation

	Case studies
	Data generation

	Vectorization of two-phase flash calculation
	Acceleration of flash calculation using neural networks
	Classifier
	Architecture
	Training

	Initializer
	Architecture
	Training

	Strategy for accelerating flash calculation using neural networks

	Results
	Vectorized flash calculation
	Deep-learning-powered vectorized flash calculation
	Discussion

	Conclusion
	Acknowledgements
	SRK equation of state and its solution
	Trust-region method
	Trust-region method for stability analysis
	Trust-region method for phase split calculations

	The Rachford-Rice equation
	Solution of the Rachford-Rice equation
	Calculation of V / K using the implicit function theorem

	Some typical reservoir fluid compositions
	Vectorized algorithms
	Synchronizer
	Vectorized stability analysis

