
HAL Id: hal-03659647
https://hal.science/hal-03659647v2

Preprint submitted on 16 May 2022 (v2), last revised 10 Sep 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PTFlash : A deep learning framework for isothermal
two-phase equilibrium calculations

Jingang Qu, Thibault Faney, Jean-Charles de Hemptinne, Soleiman Yousef,
Patrick Gallinari

To cite this version:
Jingang Qu, Thibault Faney, Jean-Charles de Hemptinne, Soleiman Yousef, Patrick Gallinari. PT-
Flash : A deep learning framework for isothermal two-phase equilibrium calculations. 2022. �hal-
03659647v2�

https://hal.science/hal-03659647v2
https://hal.archives-ouvertes.fr

PTFlash : A deep learning framework for isothermal

two-phase equilibrium calculations

Jingang Qua,b, Thibault Faneyb, Jean-Charles de Hemptinneb, Soleiman
Yousefb, Patrick Gallinaria,c

aSorbonne Université, CNRS, ISIR, F-75005 Paris, France
bIFPEN, France

cCriteo AI Lab, Paris, France

Abstract

Phase equilibrium calculations are an essential part of numerical simulations
of multi-component multi-phase flow in porous media, accounting for the
largest share of the computational time. In this work, we introduce a GPU-
enabled, fast, and parallel framework, PTFlash, that vectorizes algorithms
required for isothermal two-phase flash calculations using PyTorch, and can
facilitate a wide range of downstream applications. In addition, to further
accelerate PTFlash, we design two task-specific neural networks, one for pre-
dicting the stability of given mixtures and the other for providing estimates of
the distribution coefficients, which are trained offline and help shorten com-
putation time by sidestepping stability analysis and reducing the number of
iterations to reach convergence.

The evaluation of PTFlash was conducted on three case studies involving
hydrocarbons, CO2 and N2, for which the phase equilibrium was tested over
a large range of temperature, pressure and composition conditions, using the
Soave-Redlich-Kwong (SRK) equation of state. We compare PTFlash with
an in-house thermodynamic library, Carnot, written in C++ and perform-
ing flash calculations one by one on CPU. Results show speed-ups on large
scale calculations up to two order of magnitudes, while maintaining perfect
precision with the reference solution provided by Carnot.

Keywords: Isothermal flash calculations, two-phase equilibrium,
vectorization, deep learning

1

1. Introduction

Numerical simulation of multi-component multi-phase flow in porous me-
dia is an essential tool for many subsurface applications, from reservoir sim-
ulation to long term CO2 storage. A core element of the simulator for such
applications is to determine the phase distribution of a given fluid mixture
at equilibrium, also known as ”flash” calculations. Starting with the seminal
work of Michelsen [1, 2], researchers have developed robust and efficient al-
gorithms for isothermal two-phase flash calculations. These algorithms have
been implemented in the IFPEN thermodynamic C++ library Carnot.

Nonetheless, flash calculations still account for the majority of simulation
time in a large range of subsurface applications [3, 4]. In most simulators,
flash calculations are performed for each grid cell at each time step. Moreover,
since modern simulators tend to require higher and higher grid resolutions
up to billions of grid cells [5], the share of computing time due to flash
calculations is expected to increase as well. In this context, speeding up
flash calculations has drawn increasing research interest.

Some efforts have been made to accelerate flash calculations. [6–8] pro-
posed a reduction method aiming to reduce the number of independent vari-
ables by leveraging the sparsity of the binary interaction parameter ma-
trix,resulting in a limited speed-up [4]. [9] introduced the shadow region
method using the results of previous time steps to initiate the current one,
which assumes that the changes in pressure, temperature, and composition
of a given block are small between two adjacent time steps in typical compo-
sitional reservoir simulation. [10] presented tie-line based methods, which
approximate the results of flash calculations through linear interpolation
between existing tie-lines and can be seen as a kind of look-up table. In
[11–14], the authors focused on the use of machine learning, which provides
a collection of techniques that can effectively discover patterns and regu-
larities in data. They used support vector machine [15], relevance vector
machine [16] and neural networks [17] to directly predict equilibrium phases
and provide more accurate initial estimates for flash calculations. In [5, 18],
researchers focused on developing faster parallel linear solvers, with [5] men-
tioning specifically that the vectorization of partial equation of state (EOS)
related operations would lead to faster execution.

In this work, we introduce PTFlash, a framework for isothermal two-phase
equilibrium calculations based on the SRK equations of state [19]. PTFlash
is built on the deep learning framework PyTorch [20] and consists in two

2

main elements, namely the vectorization of algorithms and the use of neural
networks. First, we perform a complete rewrite of isothermal two-phase flash
calculation algorithms of Carnot using PyTorch. This enables the systematic
vectorization of the complex iterative algorithms implemented in Carnot, al-
lowing in turn to efficiently harness modern hardware with the help of, e.g.,
Advanced Vector Extensions AVX for Intel CPUs [21] and CUDA for Nvidia
GPUs [22]. Note that vectorization of complex iterative algorithms with
branching is not straightforward and needs specific care. Second, we replace
repetitive and time consuming parts of the original algorithms with deep
neural networks trained on the exact solution. More specifically, one neural
network is used to predict the stability of given mixtures, and another one
is used to provide initial estimates for the iterative algorithms. Once well
trained, neural networks are seamlessly incorporated into PTFlash. These
two elements allow PTFlash to provide substantial speed-ups compared to
Carnot, especially so in the context of flow simulations where parallel execu-
tions of flash calculations for up to a billion grid cells are needed.

The rest of this article is organized as follows. In Section 2, we introduce
the fundamentals of isothermal two-phase flash calculations and present three
case studies. In Section 3, we explain how to efficiently vectorize flash cal-
culations using PyTorch. In Section 4, we present two neural networks to
speed up calculations. In Section 5, we demonstrate the attractive speed-up
due to vectorization and the introduction of neural networks. Finally, we
summarize our work and suggest future research in Section 6.

2. Isothermal two-phase flash calculations

In this section, we introduce the essential concepts of isothermal two-
phase flash calculations. In the following, without loss of generality, we
consider the equilibrium between the liquid and vapor phases.

2.1. Problem setting

We consider a mixture of Nc components. Given pressure (P), temper-
ature (T) and feed composition (z = (z1, . . . , zNc)), the objective of flash
calculations is to determine the system state at equilibrium: single phase
or coexistence of two phases. In the latter case, we need to additionally
compute the molar fraction of vapor phase θV , the composition of the liquid
phase x and that of the vapor phase y. These properties are constrained by

3

the following mass balance equations:

xi(1− θV) + yiθV = zi, for i = 1, . . . , Nc (1a)

Nc∑
i=1

xi =
Nc∑
i=1

yi = 1 (1b)

In addition, the following equilibrium condition should be satisfied:

φL
i (P, T,x)

φV
i (P, T,y)

=
yi
xi

(2)

where the superscripts L and V refer to the liquid and vapor phases, respec-
tively, and φi is the fugacity coefficient of component i, which is a known
nonlinear function of P , T and the corresponding phase composition. This
function depends on an equation of state that relates pressure, temperature
and volume. In this work, we use the SRK equation of state [19] and solve it
using an iterative approach rather than the analytical solution of the cubic
equation, e.g., the Cardano’s formula, which may be subject to numerical
errors in certain edge cases [23]. For more details, see Appendix A.

2.2. Numerical solver

Equations 1 and 2 form a non-linear system, which is generally solved in
a two-stage procedure. First, we establish the stability of a given mixture
via stability analysis (Section 2.2.1). If the mixture is stable, only one phase
exists at equilibrium. Otherwise, two phases coexist. Second, we determine
θV , x and y at equilibrium through phase split calculations (Section 2.2.2).

2.2.1. Stability analysis

A mixture of composition z is stable at specified P and T if and only if its
total Gibbs energy is at the global minimum, which can be verified through
the reduced tangent plane distance [1]:

tpd(w) =
Nc∑
i=1

wi(lnwi + lnφi(w)− ln zi − lnφi(z)) (3)

where w is a trial phase composition. If tpd(w) is non-negative for any w,
the mixture is stable. This involves a constrained minimization problem,
which is generally reframed as an unconstrained one:

tm(W) =
Nc∑
i=1

Wi(lnWi + lnφi(W)− ln zi − lnφi(z)− 1) (4)

4

where tm is the modified tangent plane distance and W is mole numbers.
To locate the minima of tm, we first use the successive substitution method
accelerated by the Dominant Eigenvalue Method (DEM) [24], which iterates:

lnW
(k+1)
i = ln zi + lnφi(z)− lnφi(W

(k)) (5)

It is customary to initiate the minimization with two sets of estimates, that
is, vapour-like estimate Wi = Kizi and liquid-like estimate Wi = zi/Ki,
where Ki is the distribution coefficients, defined as yi/xi and initialized via
the Wilson approximation [19], as follows:

lnKi = ln

(
Pc,i

P

)
+ 5.373(1 + ωi)

(
1− Tc,i

T

)
(6)

where Tc,i and Pc,i refer to the critical temperature and pressure of component
i, respectively, and ωi is the acentric factor.

Once converging to a stationary point (i.e., max(|∂tm/∂W |) < 1.0e-6)
or a negative tm is found, successive substitution stops. If this does not
happen after a fixed number of iterations (9 in our work), especially in the
vicinity of critical points, we resort to a second-order optimization technique,
i.e., the trust-region method [25], to minimize tm(W), which we describe in
Appendix B.1. In addition, based on the results of stability analysis, we can
re-estimate Ki more accurately as zi/W

L
i if tmL < tmV or W V

i /zi otherwise,
where the superscripts V and L denote the results obtained using the vapor-
like and liquid-like estimates, respectively.

2.2.2. Phase split calculations

Substituting Ki = yi/xi into Equations 1 yields the following Rachford
Rice equation [26]:

fRR(θV ,K) =
Nc∑
i=1

(Ki − 1)zi
1 + (Ki − 1)θV

= 0 (7)

Given K = (K1, . . . , KNc), we solve the above equation using the method
proposed by [27] to get θV , which is detailed in Appendix C.

To obtain θV , x and y at equilibrium, phase split calculations start with
the accelerated successive substitution method, as illustrated in Figure 1, and
the corresponding convergence criterion is max(|K(k+1)

i /K
(k)
i −1|) <1.0e-8. If

5

successive substitution fails to converge after a few iterations (9 in our work),
we use the trust-region method to minimize the reduced Gibbs energy:

G =
Nc∑
i=1

nL
i (lnxi + lnφL

i) +
Nc∑
i=1

nV
i (ln yi + lnφV

i) (8)

where nL
i = xi(1 − θV) and nV

i = yiθV are the mole numbers of liquid and
vapor phases, respectively. The convergence criterion is max(|∂G/∂nV

i |) <
1.0e-8. For more details, see Appendix B.2.

𝐾𝐾𝑖𝑖
𝑘𝑘+1𝜃𝜃𝑉𝑉

𝒙𝒙

𝒚𝒚

𝑘𝑘 = 𝑘𝑘 + 1

Yes

𝐾𝐾𝑖𝑖
𝑘𝑘 𝒙𝒙(𝑘𝑘)

𝒚𝒚(𝑘𝑘)
Initial 𝐾𝐾𝑖𝑖

0 Solve the Rachford-
Rice equation

𝐾𝐾𝑖𝑖 =
𝜑𝜑𝑖𝑖
𝐿𝐿(𝑃𝑃, 𝑇𝑇, 𝒙𝒙)

𝜑𝜑𝑖𝑖
𝑉𝑉(𝑃𝑃, 𝑇𝑇, 𝒚𝒚)

𝜃𝜃𝑉𝑉
𝑘𝑘

Solve the mass
balance equations

𝐾𝐾𝑖𝑖 converge ?

No

Figure 1: Successive substitution of phase split calculations

2.2.3. Strategy for isothermal two-phase flash calculations

We basically adopt the rules of thumb proposed by Michelsen in the
book [28] to implement flash calculations, as shown in Figure 2. In the
flowchart, we first initialize the distribution coefficients Ki using the Wilson
approximation. Subsequently, in order to avoid computationally expensive
stability analysis, we carry out the successive substitution of phase split
calculations 3 times, which will end up with 3 possible cases: (1) θV is out
of bounds (0, 1) during iterations. (2) None of ∆G, tpd(x) and tpd(y) are
negative, where tpd(x) and tpd(y) are reduced tangent plane distances using
current vapor and liquid phases as trial phases, and ∆G = θV × tpd(x) +
(1− θV)× tpd(y). (3) Any of ∆G, tpd(x) and tpd(y) is negative.

For the first two cases, we cannot be sure of the stability of the given
mixture, thus continuing with stability analysis. For the third case, we can
conclude that the given mixture is unstable, thereby sidestepping stability
analysis. Finally, if two phases coexist, we perform phase split calculations
to get θV , x and y at equilibrium.

6

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
the Wilson

approximation

Successive substitution
of phase split
calculations

0 < 𝜃𝜃𝑉𝑉 < 1?

∆𝐺𝐺 < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒙𝒙) < 0 or
𝑡𝑡𝑡𝑡𝑡𝑡(𝒚𝒚) <0?

3 timesNo

Yes

Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Stability analysis
Yes

No

Yes

No

Figure 2: Flowchart of isothermal two-phase flash calculations

2.3. Case studies

Here, we introduce three case studies involving hydrocarbons, CO2 and
N2, whose properties are shown in Table 1. In this work, we only consider the
binary interaction parameter (BIP) between CH4 and CO2, which is 0.0882.
The BIPs between the others are 0.

The first case study focuses on a system of two components (CH4 and
C6H14), and the second one involves four components (CH4, C2H6, C3H8

and C4H10). For these two case studies, the ranges of pressure and temper-
ature are 0.1MPa - 10MPa and 200K - 500K, respectively, and we consider
the entire compositional space, i.e., 0 < zi < 1 for i = 1, . . . , Nc. The third
case study includes all 9 components in Table 1. The bounds of pressure and
temperature are 5MPa - 25MPa and 200K - 600K, respectively. In addition,
from a practical perspective, given that some mixtures do not exist in na-
ture, rather than considering the entire compositional space, we specify four
different compositional ranges, as shown in Table 2, each of which represents

7

Table 1: Component properties

Pc (MPa) Tc (K) w

CH4 4.6 190.55 0.0111
C2H6 4.875 305.43 0.097
C3H8 4.268 369.82 0.1536

n-C4H10 3.796 425.16 0.2008
n-C5H12 3.3332 467.15 0.2635
C6H14 2.9688 507.4 0.296
C7H

+
16 2.622 604.5 0.3565

CO2 7.382 304.19 0.225
N2 3.3944 126.25 0.039

one of the common reservoir fluid types, namely wet gas, gas condensate,
volatile oil, and black oil. Figure 3(a) shows phase diagrams of four typical
reservoir fluids at fixed compositions (Appendix D), and we can see that
the more heavy hydrocarbons there are, the lower the pressure range of the
phase envelope and the less volatile the fluid is.

Table 2: Four fluid types characterized by different compositional ranges

Wet gas Gas condensate Volatile oil Black oil

CH4 80% - 100% 60% - 80% 50% - 70% 20% - 40%
C2H6 2% - 7% 5% - 10 % 6% - 10% 3% - 6 %
C3H8 ≤ 3% ≤ 4% ≤ 4.5% ≤ 1.5%

n-C4H10 ≤ 2% ≤ 3% ≤ 3% ≤ 1.5%
n-C5H12 ≤ 2% ≤ 2% ≤ 2% ≤ 1%
C6H14 ≤ 2% ≤ 2% ≤ 2% ≤ 2%
C7H

+
16 ≤ 1% 5% - 10 % 10% - 30% 45% - 65%

CO2 ≤ 2% ≤ 3.5% ≤ 2% ≤ 0.1%
N2 ≤ 0.5% ≤ 0.5% ≤ 0.5% ≤ 0.5%

2.4. Data generation

To efficiently sample input data including P , T and z, we first use Latin
Hypercube Sampling (LHS) technique to take space-filling samples [29]. Sub-
sequently, for P and T , we linearly transform the uniform distribution U(0, 1)
to the expected ranges. For z subject to

∑
zi = 1, we transform a set of

8

200 300 400 500 600
T (K)

5

10

15

20

25

P
(M

P
a)

wet gas
gas condensate

volatile oil
black oil

(a) Phase diagrams

0.00 0.25 0.50 0.75 1.00
zi

0

5

10

15

20

de
ns

ity

z1

z2

z7

others

(b) Marginal distribution of zi for black oil

Figure 3: In Figure (a), the squares on the phase envelopes represent critical points. In
Figure (b), z1, z2 and z7 are the molar fractions of CH4, C2H6 and C7H

+
16, respectively.

U(0, 1) into the Dirichlet distribution Dir(α) whose support is a simplex, as
follows:

xi
i.i.d.∼ U(0, 1) using LHS (9a)

yi = Γ (αi, 1).ppf(xi) (9b)

zi =
yi∑Nc

i=1 yi
(9c)

where α = (α1, . . . , αNc) is the concentration parameters of the Dirichlet
distribution and controls its mode, Γ (αi, 1) is the Gamma distribution, ppf
represents the percent-point function, also known as the quantile function,
and z = (z1, . . . , zNc) ∼ Dir(α).

For the first two case studies, the concentration parameters are α = 1,
i.e., all-ones vector. For the third case study, we adjust α for different fluid
types to make the probability of each compositional range as large as possible,
as shown in Table 3. Figure 3(b) presents the marginal distribution of zi for
black oil. In summary, we sample z using Equations 9 with different α
specified in Table 3, and then we single out the acceptable samples located
in the compositional ranges defined in Table 2. In the following, unless
otherwise specified, four fluid types are always equally represented.

Eventually, the samples of P , T and z are concatenated together to form
the complete input data.

9

Table 3: Concentration parameters α for different fluid types in Table 2

α1 for CH4 α2 for C2H6 α7 for C7H
+
16 αi for others

Wet gas 100 5 1 1
Gas condensate 40 5 5 1

Volatile oil 55 8 20 1
Black oil 25 4 40 1

3. Vectorization of isothermal two-phase flash calculations

We vectorize the isothermal two-phase flash so that it takes as inputs
P = (P1, · · · , Pn), T = (T1, · · · , Tn) and z = (z1, · · · , zn), where P and T
are vectors, z is a matrix, and n denotes the number of samples processed
concurrently and is often referred to as the batch dimension.

In recent years, Automatic Vectorization (AV) has emerged and developed
1, e.g., JAX [30], which can automatically vectorize a function through the
batching transformation that adds a batch dimension to its input. In this
way, the vectorized function can process a batch of inputs simultaneously
rather than processing them one by one in a loop. However, AV comes at
the expense of performance to some extent and is slower than well-designed
manual vectorization, which vectorizes a function by carefully revamping
its internal operations to accommodate to a batch of inputs. For example,
matrix-vector products for a batch of vectors can be directly replaced with
a matrix-matrix product. In addition, flash calculations have an iterative
nature and complicated control flow, which is likely to result in the failure of
AV. Consequently, for finer-grained control, more flexibility, and better per-
formance, we manually vectorize all algorithms involved in flash calculations,
including the solution of the SRK equation of state and the Rachford-Rice
equation, stability analysis and phase split calculations.

To achieve efficient vectorization, one difficulty is asynchronous conver-
gence, that is, for each algorithm, the number of iterations required to reach
convergence generally varies for different samples, which hinders vectoriza-
tion and parallelism. To alleviate this problem, we design a general-purpose
paradigm, synchronizer, to save converged results in time at the end of each

1At the time of writing, PyTorch team released a fledgling library, functorch, which
takes inspiration from JAX and supports Automatic Vectorization.

10

iteration and then remove the corresponding samples in order not to waste
computational resources on them in the following iterations, which is achieved
by leveraging a one-dimensional Boolean mask encapsulating convergence in-
formation to efficiently access data in vectors and matrices, as follows:

X(k+1) ← f(X(k)) (10a)

Save X(k+1)[mask] to X̃ (10b)

X(k+1) ←X(k+1)[∼ mask] (10c)

k ← k + 1 (10d)

where k is the number of iterations, f(X) is a vectorized iterated function
taking as input X ∈ Rn×m (n is the batch dimension, i.e., number of sam-

ples, and m is the dimension of X), X̃ is a placeholder matrix used to save
converged results, mask is a Boolean vector where True means convergence,
and ∼ denotes the logical NOT operator. The number of unconverged sam-
ples gradually decreases as a result of incremental convergence. For the full
version of synchronizer, refer to Appendix E.1. We can use synchronizer to
wrap and vectorize any iterative algorithm. For instance, we illustrate how
to perform vectorized stability analysis in Appendix E.2.

The efficiency of synchronizer may be questioned because previously con-
verged samples are still waiting for unconverged ones before moving to the
next step. This is true, but the situation is not as pessimistic since we try
to shorten the waiting time as much as possible. For example, if successive
substitution fails to converge quickly, we immediately use the trust-region
method. In any case, the delay caused by waiting is insignificant compared
to the acceleration due to vectorization. Furthermore, we leverage neural
networks to provide more accurate initial estimate X(0) so that all samples
converge as simultaneously as possible, thereby reducing asynchrony, which
we will present in Section 4.

Once all algorithms are well vectorized, another problem is how to globally
coordinate different subroutines. To this end, we add barrier synchronization
to the entry points of stability analysis and phase split calculations in Figure
2, which can avoid any subroutine connected to it proceeding further until
all others terminate and arrive at this barrier.

We also optimized the code using TorchScript [20], allowing for more effi-
cient execution through algebraic peephole optimizations and fusion of some
operations, and more practical asynchronous parallelism without the Python

11

global interpreter lock [31], whereby vapor-like and liquid-like estimates are
dealt with in parallel in stability analysis.

4. Acceleration of flash calculations using neural networks

To further accelerate flash calculations, we create and train two task-
specific neural networks, classifier and initializer. The classifier is used to pre-
dict the probability p that a given mixture is stable, i.e., p= classifier(P, T, z),
which involves a binary classification problem. It can predict the stability
of most samples, thereby bypassing stability analysis and saving time. The
initializer is able to initialize Ki more accurately than the Wilson approxima-
tion, i.e., lnKi = initializer(P, T, z), which relates to a regression problem.
It can reduce the number of iterations required to reach convergence and
alleviate the asynchronous convergence we introduced before. Note that the
hyper-parameters of neural networks presented below, e.g., the number of
units and layers, are dedicated to the case study containing 9 components.
Nonetheless, the basic architecture of neural networks and the training meth-
ods can be generalized to any case.

4.1. Classifier

4.1.1. Architecture

The classifier has 3 hidden layers with 32 neurons and using the SiLU
activation function [32–34]. The output layer has only one neuron and uses
the sigmoid activation function compressing a real number to the range (0,
1). The input x consists of P , T and z, and the output is the probability
p that a given mixture is stable. The scaling layer standardizes the inputs
as (x − u)/s, where u and s are the mean and standard deviation of x
over the training set. To train the classifier, we use the binary cross-entropy
(bce), which is the de-facto loss function for binary classification problems
and defined as:

bce(y, p) = y ln p+ (1− y) ln(1− p) (11)

where y is either 0 for unstable mixtures or 1 for stable ones.
The architecture of the classifier is obtained by tuning hyper-parameters

using Tree-Structured Parzen Estimator optimization algorithm [35] with
Asynchronous Successive Halving algorithm [36] as an auxiliary tool to early
stop less promising trials. We create a dataset containing 100,000 sam-
ples (80% for training and 20% for validation), and then tune the hyper-

12

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Hidden layer 1

Output layer with sigmoid

SiLU activation

Scaling layer

𝑝𝑝

Hidden layer 2

SiLU activation

Hidden layer 3

SiLU activation

All hidden
layers have
32 neurons.

(a) The architecture of classifier

1 6
2 4
3 2
4 0
4 8
5 6

8

6 4

0 . 0 0 6

0 . 1

S i L U

R e L U

T a n h

S i g m o i d

1 E - 4

0 . 0 0 1

1 E - 5

0 . 0 1

3

4

5

2

6
a c t i v a t i o nl o s s l r # o f l a y e r s# o f u n i t s

(b) Tuning hyper-parameters of classifier

Figure 4: Figure (a) shows the architecture of the classifier. Figure (b) is a parallel
coordinates plot used to visualize the results of tuning hyper-parameters of the classifier,
where lr stands for learning rate. The colors of lines are mapped to the value of the loss.

parameters of the classifier with 150 trials to minimize the loss on the valida-
tion set (we use Adam [37] as optimizer and the batch size is 512), as shown
in Figure 4(b). We can see that SiLU largely outperforms other activation
functions.

4.1.2. Training

We first generate one million samples in the way described in Section
2.3, and then feed them to PTFlash to determine stability (no need for
phase split calculations), which takes about 2 seconds. Subsequently, these
samples are divided into the training (70%), validation (15%) and test (15%)
sets. To train the classifier, we set the batch size to 512 and use Adam with
Triangular Cyclic Learning Rate (CLR) [38, 39], which periodically increases
and decreases the learning rate during training, as shown in Figure 5(a).
CLR helps neural networks achieve superb performance using fewer epochs
and less time [40]. Early stopping is also used to avoid overfitting [41]. The
total training time is about 5 minutes using Nvidia RTX 3080. The final
performance of the classifier on the test set is bce = 0.002 and accuracy
= 99.93%. For a more intuitive understanding of performance, Figure 5(b)
shows the contours of probabilities predicted by the classifier, where the
blue contour of p = 0.5 basically coincides with the phase envelope. In the

13

zoomed inset, the additional green and yellow contours correspond to p=0.02
and 0.98, respectively, which are quite close to that of p = 0.5. This means
that the prediction of the classifier is very accurate.

1 5 9 13 17 21 25

0.002

0.004

0.006

0.008

0.010

0.012

Le
ar

ni
ng

 ra
te

of epochs

(a) Cyclic learning rate of the classifier

200 300 400 500 600
T (K)

5

10

15

20

25

P
(M

P
a)

0.5

(b) Prediction of the classifier for volatile
oil

Figure 5: Figure (a) shows how the learning rate varies cyclically. Figure (b) illustrates
the contours of probabilities predicted by the classifier for volatile oil at fixed composition.
The red and gray correspond to the two-phase and monophasic regions, respectively.

4.2. Initializer

4.2.1. Architecture

The initializer has 1 hidden layer and 3 residual blocks, as shown in
Figure 6. Each residual block has 2 hidden layers and a shortcut connection
adding the input of the first hidden layer to the output of the second [42].
All hidden layers have 64 neurons and use the SiLU activation function. The
output layer has Nc neurons without activation function. The wide shortcut,
proposed in [43], enables neural networks to directly learn simple rules via it
besides deep patterns through hidden layers, which is motivated by the fact
that the inputs, such as P and T , are directly involved in the calculation of
Ki. The concat layer concatenates the input layer and the outputs of the last
residual block (the concatenation means putting two matrices A ∈ Rd1×d2 and
B ∈ Rd1×d3 together to form a new one C ∈ Rd1×(d2+d3)). In addition, the
targets of the initializer are lnKi instead of Ki, since Ki varies in different
orders of magnitude, which hampers the training of the initializer, whereas
lnKi does not.

14

Wide
shortcut

𝑃𝑃 𝑻𝑻 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝑵𝑵𝒄𝒄

Residual block

Hidden layer

Hidden layer

SiLU activation

SiLU activation
Element-wise addition

Sh
or

tc
ut

 c
on

ne
ct

io
n

Hidden layer 1

Concat layer

Output layer

Residual block 2

Residual block 1

SiLU activation

Scaling layer

All hidden layers have 64 neurons.

Residual block 3

ln𝑲𝑲

Figure 6: The architecture of initializer

We found that the convergence of phase split calculations is robuster if
Ki predicted by the initializer can lead to more accurate values of the vapor
fraction θV , especially around critical points where calculations are quite
sensitive to initial Ki and prone to degenerate into trivial solutions. As a
consequence, the loss function used to train the initializer consists of two
parts, one is the mean absolute error (mae) in terms of Ki and the other is
mae in terms of θV , as follows:

mae(lnK, ln K̂) =
Nc∑
i=1

|lnKi − ln K̂i| (12a)

mae(θV , θ̂V) = |θV − θ̂V | (12b)

where lnK is the ground truth, ln K̂ is the prediction of the initializer,
θV is the vapor fraction at equilibrium, and θ̂V is obtained by solving the
Rice-Rachford equation given z and the prediction K̂.

4.2.2. Training

We generate one million samples on the two-phase region (Ki is not avail-
able at the monophasic region), which are divided into the training (70%),
validation (15%) and test (15%) sets. The training of the initializer is car-
ried out in two stages. First, we train it to minimize mae(lnK, ln K̂), using
Adam with CLR and setting the batch size to 512. Second, after the above

15

training, we further train it to minimize mae(lnK, ln K̂)+mae(θV , θ̂V), using
Adam with a small learning rate 1.0e-5. Here, ∂θ̂V /∂K̂ is required during
backpropagation and can be simply computed via PyTorch’s automatic dif-
ferentiation, which, however, differentiates through all the unrolled iterations.
Instead, we make use of the implicit function theorem [44], as follows:

∂θ̂V /∂K̂ = −[∂θV fRR(θ̂V , K̂)]−1∂KfRR(θ̂V , K̂) (13)

In this way, we efficiently obtain ∂θ̂V /∂K̂ by only using the derivative infor-
mation at the solution point of the Rachford-Rice equation (θ̂V , K̂), avoiding
differentiating through iterations.

Eventually, the performance of the initializer on the test set is mae =
9.66e-4 in terms of lnKi and mae = 1.86e-3 in terms of Ki.

4.3. Strategy for accelerating flash calculations using neural networks

As shown in Figure 7, given P , T and z, we first use the classifier to
predict p. Next, based on two predefined thresholds, pl and pr, satisfying
pl ≤ pr, the given mixture is thought of as unstable if p ≤ pl or stable if
p ≥ pr. If pl < p < pr, we will use stability analysis to avoid unexpected
errors. Here, we can adjust pl and pr to trade reliability for speed. In general,
less errors occur with smaller pl and greater pr, but probably taking more
time on stability analysis, and vice versa. A special case is pl = pr = pc,
where pc could be a well-calibrated probability or simply set to 0.5, which
means that we completely trust the classifier (i.e., stable if p ≥ pc or unstable
otherwise), and no extra stability analysis is required. For the initializer, it
serves both stability analysis when pl < p < pr and phase split calculations.

Neural networks can also be used individually. If only the classifier is
available, one may initialize Ki via the Wilson approximation rather than
the initializer in Figure 7. If only the initializer is available, one may use it
to initialize Ki in Figure 2.

5. Results

In this section, we will compare our proposed framework for vectorized
flash calculations, PTFlash, with Carnot, an in-house thermodynamic library
developed by IFP Energies Nouvelles and based on C++. Carnot performs
isothermal two-phase flash calculations in the manner shown in Figure 2, but
can only handle samples one at a time on CPU. Regarding the hardware, CPU

16

𝑃𝑃,𝑇𝑇, 𝒛𝒛

Input

Initialize 𝐾𝐾𝑖𝑖 via
initializer Single phase?

Phase split
calculations

𝜃𝜃𝑉𝑉 ,𝒙𝒙,𝒚𝒚

Output

Yes

No

Yes

No

classifier

𝑝𝑝 ≥ 𝒑𝒑𝒓𝒓 ?

𝑝𝑝 ≤ 𝒑𝒑𝒍𝒍 ?

No

Yes

Stability analysis

Figure 7: Acceleration of flash calculations using neural networks

is Intel 11700F, whose max turbo frequency can reach 4.9GHz, and GPU is
NVIDIA RTX 3080 featuring 8704 CUDA cores and 10G memory. Note that
since using multiple cores renders the frequency quite unstable due to heat
accumulation, we only use one core of CPU so that the frequency can be
stabilized at 4.5GHz, which allows for a consistent criterion for measuring
the execution time.

PTFlash and Carnot gave identical results (coincidence to 9 decimal
places under double-precision floating-point format) because they use exactly
the same convergence criteria for all iterative algorithms. In the following,
we will focus on comparing their speeds.

5.1. Vectorized flash calculations

We compare the execution time of different methods for flash calcula-
tions with respect to the workload quantified by the number of samples n, as
shown in Figures 8. Due to GPU memory limitations, the maximum number
of samples allowed is 10, 5, and 1 million for the three case studies, respec-
tively. We can see that all three figures exhibit the same behavior. When
the workload is relatively low, e.g., n < 1000, Carnot wins by large margins,
and CPU is also preferable based on the fact that PTFlash runs much faster

17

on CPU than on GPU. On the one hand, PyTorch has some fixed overhead
in the setup of the working environment, e.g., the creation of tensors. On
the other hand, when GPU is used, there are some additional costs of CPU-
GPU communication and synchronization. When n is small, these overheads
dominate. As proof, we can see that the time of PTFlash on GPU hardly
changes as n varies from 100 to 104. In contrast, the time of Carnot is almost
proportional to n.

As the workload increases, the strength of PTFlash on GPU emerges
and becomes increasingly prominent. For the three case studies, PTFlash
on GPU is 163.4 (2 components), 106.3 (4 components) and 50.5 (9 compo-
nents) times faster than Carnot at the maximum number of samples. This
suggests that PTFlash on GPU is more suitable for large-scale computation.
Interestingly, we can observe that PTFlash on CPU also outperforms Carnot
when the workload is relatively heavy, e.g., n > 103. In fact, thanks to Ad-
vanced Vector Extensions, vectorization enables fuller utilization of CPU’s
computational power.

Next, we focus on the mixture of 9 components and analyze the per-
formance of PTFlash for this case study. Table 4 is a performance profiler
of PTFlash on GPU at n = 106, which records the running time of each
subroutine of flash calculations. As a complement, Figures 9 dissect phase
split calculations by tracking the total elapsed time and the convergence per-
centage up to each iteration, as well as the mean of critical distances dc of
converged samples at each iteration, where dc is defined as:

dc =

√√√√ Nc∑
i=1

lnK2
i (14)

The closer to critical points, the smaller dc. In other words, dc indicates the
closeness to critical points.

The observations of Figures 9 are summarized as follows: (1) In Figure
9(a), the slope of time with respect to the number of iterations is decreas-
ing because the workload is reduced due to incremental convergence. (2)
In Figure 9(b), for the samples that do not converge after successive sub-
stitution, the majority of them (92.67%) converge after 3 iterations of the
trust-region method. (3) In Figure 9(c), dc decreases during iterations, which
means that samples close to critical points converge last and also confirms
that convergence is slow around critical points.

18

9 4 6 . 2 9

1 9 3

5 . 7 9

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(a) Mixture of CH4 and C6H14

4 3 9

1 1 2

4 . 1 3

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 5 × 1 0 6

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U

(b) Mixture of 4 components

1 5 5

7 5

3 . 0 7
2 7 . 2

1 . 4

1 0 2 1 0 3 1 0 4 1 0 5 1 0 6
1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Tim
e (

s)

o f s a m p l e s

 C a r n o t o n C P U
 P T F l a s h o n C P U
 P T F l a s h o n G P U
 N N - P T F l a s h o n C P U
 N N - P T F l a s h o n G P U

(c) Mixture of 9 components

Figure 8: Comparison between PTFlash and Carnot in terms of speed. NN-PTFlash is
PTFlash accelerated by neural networks, as presented in Section 4.

The above analysis gives us a general understanding of PTFlash, but in
fact it is not easy to analyze PTFlash comprehensively because each sub-
routine also contains iterative algorithms, such as solving the SRK equation
of state and the Rice-Rachford equation. Nevertheless, given the informa-
tion already obtained, we know that we need to shorten the time of stability
analysis and reduce the number of iterations in order to accelerate PTFlash,
which is exactly the role of the classifier and initializer.

19

Table 4: Performance profiler of PTFlash on GPU (Figure 2) for the mixture of 9 compo-
nents at n = 106 in Figure 8(c)

ss of Stability analysis Phase split

phase split vapor-like estimate liquid-like estimate calculations

calculations ss tr ss tr ss tr

of samples 106 625645 130715 625645 90179 413442 223741

Convergence 37.44% 1 79.11% 100% 85.59% 100% 45.88% 100%

Max number
3 9 18 9 16 9 13

of iterations

Total time 0.4565s
0.4136s 0.3417s 0.4044s 0.2706s 0.7412s 0.5132s

1.3237s 2 1.2544s

ss: successive substitution tr: trust-region method

1 37.44% is the percentage of samples for which any of ∆G, tpdx and tpdy is negative after
3 attempts of successive substitution, as described in Section 2.2.3.

2 The total time of stability analysis is less than the sum of the times of all subroutines
because vapor-like and liquid-like estimates are handled concurrently.

5.2. Deep-learning-powered vectorized flash calculations

We trained neural networks following Section 4 for the mixture of 9 com-
ponents. Here, we will explore the effect of neural networks. First of all, we
set pl = 0.02 and pr = 0.98 as the thresholds of stability and instability, which
are carefully chosen so that no misclassification occurs. In Figure 8(c), we
can see that NN-PTFlash outpaces PTFlash on both CPU (2.7x speed-up)
and GPU (2.2x speed-up). In addition, NN-PTFlash on GPU runs almost
110.7 times faster than Carnot at n = 106.

Table 5 is the performance profiler of NN-PTFlash on GPU. We can see
that the classifier is able to precisely determine the stability of the vast ma-
jority of samples (99.42%), which significantly relieves the burden of stability
analysis and saves time. In addition, compared to phase split calculations
of PTFlash, the convergence percentage of successive substitution increases
from 45.88% to 67.40%, and the overall time is also greatly reduced, which
is contributed to better initial Ki provided by the initializer.

We also performed ablation studies to compare the contributions of the
classifier and initializer by using them individually. For instance, when han-
dling 1 million samples for the case study containing 9 components, NN-
PTFlash with only the classifier on GPU takes 1.88s. However, the attempt

20

1 2 3 4 5 6 7 8 9
0

1 0

2 0

3 0

4 0

5 0
 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

)

4 5 . 8 8 %
7 4 2

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
1 0 0 0

 Ti
me

 (m
s)

(a) Successive substitution

1 3 5 7 9 1 1 1 33 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 C o n v e r g e n c e (%)
 T i m e (m s)

o f i t e r a t i o n s

Co
nv

erg
en

ce
 (%

) 9 2 . 6 7 % 9 9 . 9 7 % 5 1 3

2 0 0

3 0 0

4 0 0

5 0 0

 Ti
me

 (m
s)

(b) Trust-region method

1 3 5 7 9 1 1 1 3s s
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Me
an

 of
 cr

itic
al

dis
tan

ce
s

o f i t e r a t i o n s
(c) Closeness to critical points

Figure 9: Figures (a) and (b) show the convergence percentage and the elapsed time up to
each iteration of phase split calculations of PTFlash on GPU. In Figure (c), on the x-axis,
ss corresponds to the end of successive substitution and other integers are the number of
iterations of the trust-region method.

to use the initializer alone fails because we found its outputs may reach un-
reasonably large values (e.g., 1.0e15) for stable mixtures far away from the
boundary between the single-phase and two-phase regions, which leads to
numerical overflow. From machine learning terminology, this is the out-of-
distribution generalization problem, since the initializer is trained on the two-
phase region and may suffer from large predictive errors when used within
the single-phase region. Nonetheless, there is no problem when the initializer
works in tandem with the classifier because remaining samples located in the
single-phase region are fairly close to the boundary after filtering through
the classifier, as shown in Figure 5(b). In any case, based on the fact that

21

Table 5: Performance profiler of NN-PTFlash on GPU (Figure 7) for the mixture of 9
components at n = 106 in Figure 8(c)

classifier
Stability analysis Phase split

vapor-like estimate liquid-like estimate calculations

ss tr ss tr ss tr

of samples 106 5818 1073 5818 1704 413442 134786

Convergence 99.42% 1 81.56% 100% 70.71% 100% 67.40% 100%

Max number
9 13 9 12 9 13

of iterations

Total time 0.0005s
0.1365s 0.128s 0.0514s 0.12s 0.7043s 0.3388s

0.34s 1.0431s

ss: successive substitution tr: trust-region method

1 99.42% includes 58.38% predicted as stable (i.e., p > pr) and 41.04% predicted as
unstable (i.e., p < pl).

NN-PTFlash using only the classifier always lags behind that using both, we
can conclude that both the classifier and initializer play an important role in
speeding up flash calculations.

5.3. Discussion

The results show that the systematic and exhaustive vectorization of
isothermal two-phase flash calculations does result in attractive speed-up
when large-scale computation is involved, e.g., the number of samples to
process is on the order of millions. Importantly, this speed-up does not come
at the cost of accuracy and stability like [11–14] which are subject to the
unreliability of machine learning models. In addition, we can see that neural
networks, such as the classifier and initializer, really make a big difference.

Due to GPU memory limitations, the number of samples n is limited
in Figures 8. Nonetheless, we can see that the slopes of time with respect
to n differ significantly between different methods. The time of Carnot is
proportional to n, in contrast, the time of PTFlash on GPU is increasing
slowly. Therefore, it is reasonable to believe that the speed advantage of
PTFlash on GPU will become increasingly prominent if n continues to grow.

Using PyTorch has several benefits in addition to its simplicity and flex-
ibility. First, we can seamlessly incorporate neural networks into PTFlash.
Second, any subroutine of PTFlash is fully differentiable through automatic

22

differentiation, and we can also leverage the implicit function theorem for
efficient differentiation, as we did in Section 4.2.2. Third, PyTorch’s highly
optimized and ready-to-use multi-GPU parallelization largely circumvents
the painstaking hand-crafted effort.

PTFlash also has several limitations. First, PTFlash is based on the
SRK equation of state, which is relatively simple and sufficient for mixtures
containing hydrocarbons and non-polar components, but does not take into
account the effect of hydrogen bonding and falls short of adequacy for cross-
associating mixtures having polar components, such as water and alcohol
[45]. In this case, more advanced but also more complicated equations of
state should be employed, such as the SAFT equation of state [46–51] or the
CPA equation of state [52, 53]. Second, PTFlash consumes a large amount
of GPU memory, badly limiting its use on much larger batches of data. We
need to optimize PTFlash to reduce the consumption of GPU memory, e.g.,
by leveraging the sparsity and symmetry of matrices. Third, PTFlash does
not support multi-phase equilibrium. Last but not least, neural networks
are subject to the out-of-distribution generalization problem. If pressure
and temperature are out of predefined ranges used to train neural networks,
predictive performance will deteriorate dramatically. Furthermore, once the
components of the mixture change, we need to create new neural networks
and train them from scratch.

6. Conclusion

In this work, we presented a fast and parallel framework, PTFlash, for
isothermal two-phase flash calculations based on PyTorch and powered by
GPU, which efficiently vectorizes algorithms and gains attractive speed-up at
large-scale calculations. Two neural networks were used to predict the stabil-
ity of given mixtures and to initialize the distribution coefficients more accu-
rately than the Wilson approximation, which greatly accelerate PTFlash. In
addition, PTFlash has much broader utility compared to the aforementioned
methods which are mainly tailored to compositional reservoir simulation.

We compared PTFlash with Carnot, an in-house thermodynamic library,
and we investigated three case studies containing 2, 4 and 9 components with
maximum number of samples of 10, 5 and 1 million, respectively. The results
showed that PTFlash on GPU is 163.4, 106.3 and 50.5 times faster than
Carnot at the maximum number of samples for these three cases, respectively.

23

In the future, we will optimize PTFlash to reduce the consumption of
GPU memory and extend our work to support multi-phase equilibrium and
more advanced equations of state. In addition, we will also apply our work
to downstream applications, e.g., compositional reservoir simulation.

24

Appendix A. SRK equation of state and its solution

The SRK equation of state describes the relationship between pressure
(P), temperature (T) and volume (V) in the following mathematical form:

P =
RT

V − b
− aα

V (V + b)
(A.1)

where R is the gas constant, aα refers to the temperature-dependent energy
parameter, and b denotes the co-volume parameter. We employ the van der
Waals mixing rules and the classical combining rules to calculate aα and b,
as follows:

aα =
Nc∑
i=1

Nc∑
j=1

cicj(aα)ij (A.2a)

(aα)ij = (1− kij)
√

(aα)i(aα)j (A.2b)

b =
Nc∑
i=1

cibi (A.2c)

ai =
0.42748 ·R2 (Tc,i)

2

Pc,i

(A.2d)

bi =
0.08664 ·R Tc,i

Pc,i

(A.2e)

αi =

[
1 +mi

(
1−

√
T

Tc,i

)]2
(A.2f)

mi = 0.480 + 1.574 ωi − 0.176 ω2
i (A.2g)

where the subscripts i and j refer to the components i and j, respectively,
ci denotes the mole fraction of the component i in the phase considered, kij
is the binary interaction parameter between the components i and j, ai and
bi are two substance-specific constants related to the critical temperature
Tc,i and critical pressure Pc,i, and ωi is the acentric factor. We reformulate
Equation A.1 as a cubic equation in terms of the compressibility factor Z:

fsrk(Z) = Z3 − Z2 + ρ1Z − ρ0 = 0 (A.3)

where ρ0 = AB and ρ1 = A − B(1 + B), in which A = aαP/(R2T 2) and
B = bP/(RT). To find the roots of fsrk(Z), we utilize an iterative approach

25

based on Halley’s method as follows:

Z(k+1) = Z(k) − fsrk(Z
(k))

f ′
srk(Z

(k))

[
1− fsrk(Z

(k))

f ′
srk(Z

(k))
· f

′′
srk(Z

(k))

2f ′
srk(Z

(k))

]−1

(A.4)

The above iteration starts with a liquid-like guess and converges to a real
root Z0 (The convergence criterion is |Z(k+1)/Z(k)−1| <1.0e-8), and then we
deflate the cubic equation as:

fsrk(Z) = (Z − Z0)(Z
2 + pZ + q) = 0 (A.5)

where p = Z0 − 1 and q = pZ0 + ρ1. If p
2 < 4q, only one real root Z0 exists,

otherwise, there are three real roots and the other two are−p/2±
√

p2 − 4q/2.
In the latter case, we assign the smallest root to the liquid phase and the
biggest one to the vapour phase. Subsequently, the root corresponding to
the lowest Gibbs energy will be chosen. When Z is known, the fugacity
coefficients φi are calculated as follows:

lnφi(P, T, c) =
bi
b
(Z − 1)− ln(Z −B)

+
A

B

(
bi
b
− 2

aα

Nc∑
j=1

(aα)ijcj

)
ln(1 +

B

Z
) (A.6)

where c is the composition of the phase considered. In addition, the deriva-
tives of the fugacity coefficients with respect to mole numbers, which are
necessary for the trust-region methods of stability analysis and phase split
calculations, are calculated explicitly rather than through PyTorch’s auto-
matic differentiation, which requires retaining intermediate results and con-
sumes prohibitive memory at large-scale computation.

Appendix B. Trust-region method

When successive substitution fails to converge quickly, particularly around
critical points for which liquid and vapor phases are almost indistinguishable,
we will switch to the trust-region method with restricted steps, which is a
second-order optimization technique, to achieve faster convergence.

26

Appendix B.1. Trust-region method for stability analysis

The objective function to be minimized is the modified tangent plane
distance:

tm(W) =
Nc∑
i=1

Wi(lnWi + lnφi(W)− ln zi − lnφi(z)− 1)

The minimization is accomplished by iterating the following equations:

β(k) = 2
√
W (k) (B.1a)

(H(k) + η(k)I) ·∆β + g(k) = 0 s.t. ∥∆β∥ ≤ ∆(k)
max (B.1b)

β(k+1) = β(k) +∆β (B.1c)

W (k+1) =

(
β(k+1)

2

)2

(B.1d)

where I is the identity matrix, g and H are the gradient and Hessian
matrix of tm with respect to β, respectively, and are calculated as follows:

gi =
√

Wi(lnWi + lnφi(W)− ln zi − lnφi(z)) (B.2a)

Hij =
√
WiWj

∂ lnφi

∂Wi

+ σij

(
1 +

gi
βi

)
where σij = 1 ⇔ i = j (B.2b)

In addition, η is the trust-region size used to guarantee the positive defi-
niteness of H + ηI and to tailor the step size to meet ∥∆β∥ ≤ ∆max, where
∆max is adjusted during iterations depending on the match between the ac-
tual reduction δtm = tm(k+1) − tm(k) and the predicted reduction based on
the quadratic approximation δ̂tm = ∆βTg+ 1

2
∆βTH∆β, using the following

heuristic rules:

∆(k+1)
max =

∆

(k)
max

2
, if

∣∣∣δtm/δ̂tm∣∣∣ ≤ 0.25

2∆
(k)
max, if

∣∣∣δtm/δ̂tm∣∣∣ ≥ 0.75

∆
(k)
max, otherwise

(B.3)

The convergence criterion of Equations B.1 is max(|g|) <1.0e-6.

27

Appendix B.2. Trust-region method for phase split calculations

The objective function to be minimized is the reduced Gibbs energy:

G =
Nc∑
i=1

nL
i (lnxi + lnφL

i) +
Nc∑
i=1

nV
i (ln yi + lnφV

i)

where nL
i = xi(1 − θV) and nV

i = yiθV are the mole numbers of liquid and
vapor phases, respectively. We choose nV

i as the independent variable and
perform the following iteration:(

H̃(k) + η̃(k) ·D
(

z

xy

))
·∆nV + g̃(k) = 0 s.t. ∥∆nV ∥ ≤ ∆̃(k)

max (B.4a)

nV,k+1 = nV,k +∆nV (B.4b)

where H̃(k) and g̃(k) are the gradient and hessian matrix of G with respect
to nV

i , respectively, and are calculated as follows:

g̃i = ln yi + lnφV
i − lnxi − lnφL

i (B.5a)

H̃ij =
1

θV (1− θV)

(
zi
xiyi

σij − 1 + θV
∂ lnφL

i

∂nL
j

+ (1− θV)
∂ lnφV

i

∂nV
j

)
(B.5b)

In addition, D(·) is a diagonal matrix with diagonal entries in parenthe-
ses. The above iteration stops if max(|g̃|) <1.0e-8. Here, the trust-region
method is implemented in the same way as in stability analysis.

Appendix C. Solution of the Rachford-Rice equation

The Rachford-Rice equation is as follows:

fRR(θV ,K) =
Nc∑
i=1

(Ki − 1)zi
1 + (Ki − 1)θV

= 0

Given K, the solution of the above equation amounts to finding an appropri-
ate zero yielding all non-negative phase compositions. Concretely, we adopt
the method proposed by [27], which transforms fRR into a helper function
hRR which is more linear in the vicinity of the zero:

hRR(θV ,K) = (θV − αl) · (αr − θV) · fRR(θV) = 0 (C.1)

28

where αl = 1/(1−max(Ki)) and αr = 1/(1−min(Ki)). The above equation is
solved by alternating between the Newton method and the bisection method
used when the Newton step renders θV out of the bounds which contain the
zero and become narrower during iterations. When the Newton step size is
smaller than 1.0e-8, the iteration stops.

Appendix D. Some typical reservoir fluid compositions

Table D.6: Some typical reservoir fluid compositions

Wet gas Gas condensate Volatile oil Black oil

CH4 92.46% 73.19% 57.6% 33.6%
C2H6 3.18% 7.8% 7.35% 4.01%
C3H8 1.01% 3.55% 4.21% 1.01%

n-C4H10 0.52% 2.16% 2.81% 1.15%
n-C5H12 0.21% 1.32% 1.48% 0.65%
C6H14 0.14% 1.09% 1.92% 1.8%
C7H

+
16 0.82% 8.21% 22.57% 57.4%

CO2 1.41% 2.37% 1.82% 0.07%
N2 0.25% 0.31% 0.24% 0.31%

29

Appendix E. Vectorized algorithms

Appendix E.1. Synchronizer

Algorithm 1: PyTorch pseudo-code of synchronizer to save con-
verged results after iteration and remove the corresponding samples

Input: Vectorized iterated function f(X,O), initial estimate X(0),
other f -related inputs O, convergence criterion C, maximum
number of iterations K

1 Initialization
2 Set the number of iterations k ← 1
3 Generate a vector i containing indices from 0 to n− 1

/* n is the number of samples and indexing starts from 0. */

4 Create a placeholder matrix X̃ of the same shape as X(0)

5 while k ≤ K do
6 X(k+1) ← f(X(k), O)
7 mask ← C(· · ·)

/* C returns a Boolean vector and True means convergence. */

8 Saving
9 indices ← i[mask]

10 X̃[indices]←X(k+1)[mask]

11 Removing
12 i← i[∼ mask]
13 O← O[∼ mask]

/* Apply this operation to every element in O */

14 X(k+1) ←X(k+1)[∼ mask]

15 k ← k + 1

16 if len(i) ̸= 0 then

17 X̃[i]←X
/* Also save unconverged results for further utilization. */

Output: Converged results X̃ and unconverged indices i

30

Appendix E.2. Vectorized stability analysis

Algorithm 2: PyTorch pseudo-code of vectorized stability analysis

Input: Pressure P , temperature T , feed composition z, component
properties (Pc, Tc, ω, BIPs), initial estimate W (0), conver-
gence criteria Css and Ctr, maximum numbers of iterations
Kss = 9 and Ktr = 20

1 Initialization
2 Instantiate pteos = PTEOS (Pc, Tc, ω, BIPs)

/* PTEOS is a PyTorch-based class to efficiently calculate the

fugacity coefficients and their partial derivatives. */

3 Successive substitution
4 Iterated function fss specified by Equation 5
5 Other inputs Oss ← {P , T , z}
6 W , iss ← synchronizer(fss,W

(0),Oss,Css, Kss)

7 Trust-region method
8 Iterated function ftr specified by Equations B.1

9 W
(0)
tr ←W [iss]

10 Other inputs Otr ← {P [iss], T [iss], z[iss]}
11 Wtr, itr ← synchronizer(ftr,W

(0)
tr ,Otr,Ctr, Ktr)

12 W [iss]←Wtr and i← iss[itr]
Output: Converged results W and unconverged indices i

31

References

[1] M. L. Michelsen, The isothermal flash problem. part II. phase-split cal-
culation 9 (1) 21–40, publisher: Elsevier.

[2] M. L. Michelsen, The isothermal flash problem. part i. stability 9 (1)
1–19, publisher: Elsevier.

[3] P. Wang, E. H. Stenby, Non-iterative flash calculation algorithm in com-
positional reservoir simulation 95 93–108, publisher: Elsevier.

[4] A. Belkadi, W. Yan, M. L. Michelsen, E. H. Stenby, Comparison of two
methods for speeding up flash calculations in compositional simulations,
in: SPE Reservoir Simulation Symposium, OnePetro.

[5] A. H. Dogru, L. S. K. Fung, U. Middya, T. Al-Shaalan, J. A. Pita, A
next-generation parallel reservoir simulator for giant reservoirs, in: SPE
Reservoir Simulation Symposium, OnePetro.

[6] M. L. Michelsen, Simplified flash calculations for cubic equations of state
25 (1) 184–188, publisher: ACS Publications.

[7] E. M. Hendriks, Reduction theorem for phase equilibrium problems
27 (9) 1728–1732, publisher: ACS Publications.

[8] E. M. Hendriks, A. Van Bergen, Application of a reduction method to
phase equilibria calculations 74 17–34, publisher: Elsevier.

[9] C. P. Rasmussen, K. Krejbjerg, M. L. Michelsen, K. E. Bjurstrøm,
Increasing the computational speed of flash calculations with applica-
tions for compositional, transient simulations 9 (1) 32–38, publisher:
OnePetro.

[10] D. Voskov, H. A. Tchelepi, Compositional space parameterization for
flow simulation, in: SPE Reservoir Simulation Symposium, OnePetro.

[11] V. Gaganis, N. Varotsis, An integrated approach for rapid phase behav-
ior calculations in compositional modeling 118 74–87, publisher: Else-
vier.

32

[12] V. Gaganis, N. Varotsis, Machine learning methods to speed up composi-
tional reservoir simulation, in: SPE Europec/EAGE annual conference,
OnePetro.

[13] A. Kashinath, M. Szulczewski, A. Dogru, A fast algorithm for calcu-
lating isothermal phase behavior using machine learning 465 73–82.
doi:10.1016/j.fluid.2018.02.004.

[14] S. Wang, N. Sobecki, D. Ding, L. Zhu, Y.-S. Wu, Accelerating and sta-
bilizing the vapor-liquid equilibrium (VLE) calculation in compositional
simulation of unconventional reservoirs using deep learning based flash
calculation 253 209–219. doi:10.1016/j.fuel.2019.05.023.

[15] C. Cortes, V. Vapnik, Support-vector networks 20 (3) 273–297, pub-
lisher: Springer.

[16] M. E. Tipping, Sparse bayesian learning and the relevance vector ma-
chine 1 211–244.

[17] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press.

[18] Z. Chen, H. Liu, S. Yu, B. Hsieh, L. Shao, GPU-based parallel reservoir
simulators, in: Domain Decomposition Methods in Science and Engi-
neering XXI, Springer, pp. 199–206.

[19] G. Soave, Equilibrium constants from a modified redlich-kwong equation
of state 27 (6) 1197–1203, publisher: Elsevier.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, others, Pytorch: An im-
perative style, high-performance deep learning library 32 8026–8037.

[21] C. Lomont, Introduction to intel advanced vector extensions 23.

[22] J. Sanders, E. Kandrot, CUDA by example: an introduction to general-
purpose GPU programming, Addison-Wesley Professional.

[23] Y. Zhi, H. Lee, Fallibility of analytic roots of cubic equations of state in
low temperature region 201 (2) 287–294, publisher: Elsevier.

33

https://doi.org/10.1016/j.fluid.2018.02.004
https://doi.org/10.1016/j.fuel.2019.05.023

[24] O. Orbach, C. Crowe, Convergence promotion in the simulation of chem-
ical processes with recycle-the dominant eigenvalue method 49 (4) 509–
513, publisher: Wiley Online Library.

[25] M. Hebden, An algorithm for minimization using exact second deriva-
tivesPublisher: Citeseer.

[26] H. H. Rachford, J. Rice, Procedure for use of electronic digital computers
in calculating flash vaporization hydrocarbon equilibrium 4 (10) 19–3,
publisher: OnePetro.

[27] C. Leibovici, J. Neoschil, A new look at the rachford-rice equation 74
303–308. doi:10.1016/0378-3812(92)85069-K.

[28] M. L. Michelsen, J. Mollerup, Thermodynamic modelling: fundamentals
and computational aspects, Tie-Line Publications.

[29] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code 42 (1) 55–61, publisher: Taylor & Francis.

[30] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, Q. Zhang, JAX: composable transformations of python+NumPy
programs.
URL http://github.com/google/jax

[31] G. Van Rossum, F. L. Drake, The python language reference manual,
Network Theory Ltd.

[32] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus).

[33] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neu-
ral network function approximation in reinforcement learning 107 3–11,
publisher: Elsevier.

[34] P. Ramachandran, B. Zoph, Q. V. Le, Swish: a self-gated activation
function 7 1, publisher: Technical report.

[35] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization 24.

34

https://doi.org/10.1016/0378-3812(92)85069-K
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax

[36] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt,
B. Recht, A. Talwalkar, A system for massively parallel hyperparameter
tuning 2 230–246.

[37] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization.

[38] L. N. Smith, No more pesky learning rate guessing games 5.

[39] L. N. Smith, Cyclical learning rates for training neural networks,
in: 2017 IEEE winter conference on applications of computer vision
(WACV), IEEE, pp. 464–472.

[40] L. N. Smith, N. Topin, Super-convergence: Very fast training of neural
networks using large learning rates, in: Artificial Intelligence and Ma-
chine Learning for Multi-Domain Operations Applications, Vol. 11006,
International Society for Optics and Photonics, p. 1100612.

[41] L. Prechelt, Early stopping-but when?, in: Neural Networks: Tricks of
the trade, Springer, pp. 55–69.

[42] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778.

[43] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, others, Wide & deep
learning for recommender systems, in: Proceedings of the 1st workshop
on deep learning for recommender systems, pp. 7–10.

[44] S. G. Krantz, H. R. Parks, The implicit function theorem: history, the-
ory, and applications, Springer Science & Business Media.

[45] G. M. Kontogeorgis, G. K. Folas, Thermodynamic models for industrial
applications: from classical and advanced mixing rules to association
theories, John Wiley & Sons.

[46] M. S. Wertheim, Fluids with highly directional attractive forces. II. ther-
modynamic perturbation theory and integral equations 35 (1) 35–47,
publisher: Springer.

[47] M. Wertheim, Fluids with highly directional attractive forces. i. statis-
tical thermodynamics 35 (1) 19–34, publisher: Springer.

35

[48] M. Wertheim, Fluids with highly directional attractive forces. IV. equi-
librium polymerization 42 (3) 477–492, publisher: Springer.

[49] M. Wertheim, Fluids with highly directional attractive forces. III. mul-
tiple attraction sites 42 (3) 459–476, publisher: Springer.

[50] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, New reference
equation of state for associating liquids 29 (8) 1709–1721, publisher:
ACS Publications.

[51] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse,
and associating molecules 29 (11) 2284–2294, publisher: ACS Publica-
tions.

[52] G. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, An
equation of state for associating fluids 35 (11) 4310–4318, publisher:
ACS Publications.

[53] G. M. Kontogeorgis, I. V. Yakoumis, H. Meijer, E. Hendriks,
T. Moorwood, Multicomponent phase equilibrium calculations for wa-
ter–methanol–alkane mixtures 158 201–209, publisher: Elsevier.

36

	Introduction
	Isothermal two-phase flash calculations
	Problem setting
	Numerical solver
	Stability analysis
	Phase split calculations
	Strategy for isothermal two-phase flash calculations

	Case studies
	Data generation

	Vectorization of isothermal two-phase flash calculations
	Acceleration of flash calculations using neural networks
	Classifier
	Architecture
	Training

	Initializer
	Architecture
	Training

	Strategy for accelerating flash calculations using neural networks

	Results
	Vectorized flash calculations
	Deep-learning-powered vectorized flash calculations
	Discussion

	Conclusion
	SRK equation of state and its solution
	Trust-region method
	Trust-region method for stability analysis
	Trust-region method for phase split calculations

	Solution of the Rachford-Rice equation
	Some typical reservoir fluid compositions
	Vectorized algorithms
	Synchronizer
	Vectorized stability analysis

