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Appendix 1 From large number of agents to field formalism

This appendix summarizes the most useful steps of the method developed in Gosselin, Lotz and Wambst
(2017, 2020, 2021), to switch from the probabilistic description of the model to the field theoretic formalism
and summarizes the translation of a generalization of (16) involving different time variables. By convention
and unless otherwise mentioned, the symbol

R
refers to all the variables involved.

A1.1 Probabilistic formalism

The probabilistic formalism for a system with N identical economic agents in interaction is based on the
minimization functions described in the text. Classically, the dynamics derives through the optimization
problem of these functions. The probabilistic formalism relies on the contrary on the fact, that, due to
uncertainties, shocks... agents do not optimize fully these functions. Moreover, given the large number
of agents, there may be some discrepancy between agents minimization functions, and this fact may be
translated in an uncertainty of behavior around some average minimization, or objective function.
We thus assume that each agent chooses for his action a path randomly distributed around the optimal

path. The agent’s behavior can be described as a weight that is an exponential of the intertemporal utility,
that concentrates the probability around the optimal path. This feature models some internal uncertainty
as well as non-measurable shocks. Gathering all agents, it yields a probabilistic description of the system in
terms of a probabilistic weight.
In general, this weight includes utility functions and internalizes forward-looking behaviors, such as

intertemporal budget constraints and interactions among agents. These interactions may for instance arise
through constraints, since income flows depend on other agents demand. The probabilistic description then
allows to compute the transition functions of the system, and in turn compute the probability for a system
to evolve from an initial state to a final state within a given time span. They have the form of Euclidean
path integrals.
In the context of the present paper, we have seen that the minimization functions for the system considered

in this work have the form:

Z
dt





X

i



dAi (t)

dt
−
X

j,k,l...

f (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

+
X

i




X

j,k,l...

g (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)










(109)
This minimization of this function will yield a dynamic equation for N agents in interaction described by a
set of dynamic variables Ai (t) during a given timespan T .
The probabilistic description is straightforwardly obtained from (109). The probability associated to a

configuration (Ai (t))i=1,...,N
06t6T

is directly given by:

N exp




− 1

σ2

Z
dt





X

i



dAi (t)

dt
−
X

j,k,l...

f (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(110)

+
X

i




X

j,k,l...

g (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)













whereN is a normalization factor and σ2 is a variance whose magnitude describes the amplitude of deviations
around the optimal path.
As in the paper, the system is in general modelled by several equations, and thus, several minimization

function. The overall system is thus described by several functions, and the minimization function of the
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whole system is described by the set of functions:

Z
dt





X

i



dAi (t)

dt
−
X

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

+
X

i




X

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)










(111)
where α runs over the set equations describing the system’s dynamics. The associated weight is then:

N exp




−





X

i,α

1

σ2α

Z
dt



dAi (t)

dt
−
X

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(112)

+
X

i,α




X

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)













The appearance of the sum of minimization functions in the probabilistic weight (112) translates the
hypothesis that the deviations with respect to the optimization of the functions (111) are assumed to be
independent.
For a large number of agents, the system described by (112) involves a large number of variables Ki (t),

Pi (t) and Xi (t) that are difficult to handle. To overcome this difficulty, we consider the space H of complex
functions defined on the space of a single agent’s actions. The space H describes the collective behavior
of the system. Each function Ψ of H encodes a particular state of the system. We then associate to each
function Ψ of H a statistical weight, i.e. a probability describing the state encoded in Ψ. This probability
is written exp (−S (Ψ)), where S (Ψ) is a functional, i.e. the function of the function Ψ. The form of S (Ψ)
is derived directly from the form of (112) as detailed in the text. As seen from (112), this translation can in
fact be directly obtained from the sum of "classical" minimization functions weighted by the factors 1

σ2α
:

X

i,α

1

σ2α

Z
dt



dAi (t)

dt
−
X

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

+
X

i,α




X

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





This is this shortcut we used in the text.

A1.2 Interactions between agents at different times

A straightforward generalization of (16) involve agents interactions at different times. The terms considered
have the form:

X

i



dAi (t)

dt
−
X

j,k,l...

Z
f (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt





2

(113)

+
X

i

X

j,k,l...

Z
g (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt

where t stands for (ti, tj , tk, tl...) and dt stands for dtidtjdtkdtl...
The translation is straightforward. We introduce a time variable θ on the field side and the fields write

|Ψ(A, θ)|2 and
���Ψ̂
�
Â, θ̂

����
2

. The second term in (113) becomes:

X

i

X

j

X

j,k...

Z
g (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt

→
Z
g
�
A,A′,A′′, Â, Â

′
...,θ, θ̂

�
|Ψ(A, θ)|2

��Ψ
�
A
′, θ′
���2 ��Ψ

�
A
′′, θ′′

���2 dAdA′dA′′ (114)

×
���Ψ̂
�
Â, θ̂

����
2 ���Ψ̂

�
Â
′, θ̂

′����
2

dÂdÂ′
dθdθ̂
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where θ and θ̂ are the multivariables
�
θ, θ′, θ′′...

�
and

�
θ̂, θ̂

′
...
�
respectively and dθdθ̂ stands for dθdθ′dθ′′...

and dθ̂dθ̂
′
...

Similarly, the first term in (113) translates as:

X

i



dAi (t)

dt
−
X

j,k,l...

Z
f (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt





2

(115)

→
Z
Ψ† (A, θ)

�
−∇A(α)

�
σ2
A(α)

2
∇A(α) + Λ(A, θ)

��
Ψ(A, θ) dAdθ (116)

by:

Λ(A, θ) =

Z
f (α)

�
A,A′,A′′, Â, Â

′
...,θ, θ̂

� ��Ψ
�
A
′, θ′
���2 ��Ψ

�
A
′′, θ′′

���2 dA′dA′′ (117)

×
���Ψ̂
�
Â, θ

����
2 ���Ψ̂

�
Â
′, θ′′

����
2

dÂdÂ′
dθ̄dθ̂

with dθ̄ = dθ′dθ′′.
Ultimately, as in the text, additional terms (25):

Ψ† (A, θ)

�
−∇θ

�
σ2θ
2
∇θ − 1

��
Ψ(A, θ) (118)

+Ψ̂†
�
Â, θ

��
−∇θ

�
σ2θ
2
∇θ − 1

��
Ψ̂
�
Â, θ

�
+ α |Ψ(A)|2 + α

���Ψ̂
�
Â

����
2

are included to the action functional to take into account for the time variable.

A1.3 Translation of the minimization functions

Real economy

Translation of the minimization function: Physical capital allocation Let us start by translating
in terms of fields the expression (26):

X

i




�
dXi
dt

−∇XR (Ki, Xi)H (Ki)

�2
+ τ

X

j

δ (Xi −Xj)



 (119)

To do so, we first consider the last term τ
P

i

P
j δ (Xi −Xj). This term contains no derivative. The form

of the translation is given by formula (17). Since the expression contains two indices, both of them are
summed.
The first step of the translation is to replace Xi and Xj by two variables X et X ′, and substitute:

τδ (Xi −Xj)→ τδ (X −X ′)

The sum over i and the sum over j are then replaced directly by the integrals
R
|Ψ(K,X)|2 d (K,X),R

|Ψ(K ′, X ′)|2 d (K ′, X ′), which leads to the following translation:

τ
X

i

X

j

δ (Xi −Xj) →
Z
|Ψ(K,X)|2 d (K,X)

Z
|Ψ(K ′, X ′)|2 d (K ′, X ′) τδ (X −X ′)

=

Z
τ |Ψ(K,X)|2 |Ψ(K ′, X)|2 d (K,X) dK ′ (120)

To translate the first term in formula (119):

X

i

�
dXi
dt

−∇XR (Ki, Xi)H (Ki)

�2
(121)
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We use the translation (23) of a type-(22) expression. The gradient term appearing in equation (23) is ∇X .
We thus obtain the translation:

X

i

�
dXi
dt

−∇XR (Ki, Xi)H (Ki)

�2
(122)

→
Z
Ψ† (K,X)

�
−∇X

�
σ2X
2
∇X + Λ(X,K)

��
Ψ(K,X) dKdX

Note that the variance σ2X reflects the probabilistic nature of the model hidden behind the field formalism.
This σ2X represents the characteristic level of uncertainty of the sectors space dynamics. It is a parameter
of the model. The term Λ(X,K) is the translation of the term −∇XR (Ki, Xi)H (Ki) in the parenthesis of
(121). This term is a function of one sole index "i". In that case, the term Λ is simply obtained by replacing
(Ki, Xi) by (K,X). We use the translation (21) of (19)-type term, so that Λ writes:

Λ(X,K) = −∇XR (K,X)H (K)
and the translation of expression (121) is:

X

i

�
dXi
dt

−∇XR (Ki, Xi)H (Ki)

�2
(123)

→
Z
Ψ† (K,X)

�
−∇X

�
σ2X
2
∇X −∇XR (K,X)H (K)

��
Ψ(K,X) dKdX

Using equations (120) and (123), the translation of (119) is thus:

S1 = −
Z
Ψ† (K,X)∇X

�
σ2X
2
∇X −∇XR (K,X)H (K)

�
Ψ(K,X) dKdX (124)

+τ

Z
|Ψ(K ′, X)|2 |Ψ(K,X)|2 dK ′dKdX

Translation of the minimization function: Physical capital We can now turn to the translation of
the second equation (27):

X

i



 d

dt
Ki +

1

ε



Ki (t)−
F2 (R (Ki (t) , Xi (t)))G

�
Xi (t)− X̂j (t)

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j (t)

�K̂j (t)









2

(125)

To detail the computations, we have kept the expanded formula (7) for F2

�
R (Ki (t) , Xi (t)) , X̂j (t)

�
Once

again, we use the translation (21) of (19)-type term, and start by building the field functional associated to
the term inside the square:

Ki (t)−
X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j (t)

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j (t)

�K̂j (t)

We replace:

(Ki (t) , Xi (t)) → (K,X)

(Kl (t) , Xl (t)) → (K ′, X ′)
�
K̂j (t) , X̂j (t)

�
→

�
K̂, X̂

�

and:

Ki (t)−
X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j

�K̂j (t)→ K −
X

j

F2 (R (K,X))G
�
X − X̂

�

P
l F2 (R (K

′, X ′))G
�
X ′ − X̂

�K̂

(126)
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The sum over l is then replaced by an integral
R
|Ψ(K ′, X ′)|2 d (K ′, X ′):

Ki (t)−
X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j

�K̂j (t) (127)

→ K −
X

j

F2 (R (K,X))G
�
X − X̂

�

R
|Ψ(K ′, X ′)|2 d (K ′, X ′)F2 (R (K ′, X ′))G

�
X ′ − X̂j

�K̂

Recall that investors’ variables are denoted with an upper script ˆ.

Finally, the sum over j and the second field are replaced by
R ���Ψ̂

�
K̂, X̂

����
2

d
�
K̂, X̂

�
. After introducing

the characteristic factor 1
ε of the capital accumulation time scale (see (11)), the translation becomes:

1

ε



Ki (t)−
X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j

�K̂j (t)





→ 1

ε



K −
Z ���Ψ̂

�
K̂, X̂

����
2

d
�
K̂, X̂

� F2 (R (K,X))G
�
X − X̂

�
K̂

R
|Ψ(K ′, X ′)|2 d (K ′, X ′)F2 (R (K ′, X ′))G

�
X ′ − X̂

�





≡ Λ (K,X) (128)

Using the translation (23) of (22)-type term, we are led to the translation of (125). Since the square (125)
includes a derivative d

dtKi, the expression starts with a gradient with respect to K, and we have:

X

i



 d

dt
Ki +

1

ε



Ki −
X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j

�

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j

�K̂j (t)









2

(129)

→
Z
Ψ† (K,X)

�
−∇K

�
σ2K
2
∇K + Λ(K,X)

��
Ψ(K,X) dKdX

where, here again, the variance σ2K reflects the probabilistic nature of the model that is hidden behind the
field formalism. Recall that it represents the characteristic level of uncertainty in the dynamics of capital.
Inserting result (128) in equation (129), the translation of (??) becomes:

S2 = −
Z
Ψ† (K,X)∇K

�
σ2K
2
∇K +

1

ε

�
K −

Z
F̂2

�
R (K,X) , X̂

�
K̂
���Ψ̂
�
K̂, X̂

����
2

dK̂dX̂

��
Ψ(K,X)

(130)
with:

F̂2

�
R (K,X) , X̂

�
=

F2 (R (K,X))G
�
X − X̂

�

R
F2 (R (K,X))G

�
X − X̂

�
|Ψ(K,X)|2

as quoted in the text.

Financial markets

The functions to be translated are those of the financial capital dynamics (28) and of the financial capital
allocation (29). Both expressions include a time derivative and are thus of type (18). As for the real economy,
the application of the translation rules is straightforward.
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Translation of the minimization function: Financial capital dynamics We consider the function
(28):

X

j



 d

dt
K̂j −

1

ε




X

i

 

ri + F1

 
R (Ki, Xi)P

l δ (Xl −Xi)R (Kl, Xl)
,
K̇i (t)

Ki (t)

!!
F2 (R (Ki, Xi))G

�
Xi − X̂j

�

P
l F2 (R (Kl, Xl))G

�
Xl − X̂j

�K̂j









2

(131)
which translates, using the general translation formula of expression (22) in (23), into:

Z
Ψ̂†
�
K̂, X̂

� 

−∇K̂

 
σ2
K̂

2
∇K̂ + Λ

�
K̂, X̂

�!!

Ψ̂
�
K̂, X̂

�
dK̂dX̂

The function Λ
�
K̂, X̂

�
is obtained, as before, by translating the term following the derivative in the function

(131):

1

ε

X

i

 

ri + F1

 
R (Ki, Xi)P

l δ (Xl −Xi)R (Kl, Xl)
,
K̇i (t)

Ki (t)

!!
F2 (R (Ki, Xi))G

�
Xi − X̂j

�

P
l F2 (R (Kl, Xl))G

�
Xl − X̂j

�K̂j → Λ
�
K̂, X̂

�

(132)
First, we use the price dynamics equation (2) at the zero-th order in fluctuations to translate the capital

dynamics K̇i(t)
Ki(t)

:

K̇i (t)

Ki (t)
=

X

j

F2 (R (Ki (t) , Xi (t)))G
�
Xi (t)− X̂j

�

Ki

P
l F2 (R (Kl (t) , Xl (t)))G

�
Xl (t)− X̂j

�K̂j (t)−Ki (t)

→ Γ (K,X)

where:

Γ (K,X) =

R F2(R(K,X))G(X−X̂)
R
F2(R(K,X))G(X−X̂)kΨ(K,X)k2

K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

�
−K

K
(133)

=

Z F2 (R (K,X))G
�
X − X̂

�

K
R
F2 (R (K,X))G

�
X − X̂

�
kΨ(K,X)k2

K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

�
− 1

Then, using the translation (21) of (19), we translate expression (132) by replacing:

(Ki, Xi) → (K,X)

(Kl, Xl) → (K ′, X ′)
�
K̂j , X̂j

�
→

�
K̂, X̂

�

We also replace the sums by integrals times the appropriate square of field, which yields:

Λ
�
K̂, X̂

�
= −K̂

ε

Z  

r (K,X)− γ
R
K ′ kΨ(K ′, X)k2

K
+ F1

 
R (K,X)

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

,Γ (K,X)

!!

×
F2 (R (K,X))G

�
X − X̂

�

R
F2 (R (K ′, X ′))G

�
X ′ − X̂

�
kΨ(K ′, X ′)k2 d (K ′, X ′)

kΨ(K,X)k2 d (K,X)

7



Ultimately, the translation of (28) is:

S3 = −
Z
Ψ̂†
�
K̂, X̂

�
∇K̂

 
σ2
K̂

2
∇K̂ −

K̂

ε

Z  

r (K,X)− γ
R
K ′ kΨ(K ′, X)k2

K

+F1

 
R (K,X)

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

,Γ (K,X)

!!

×
F2 (R (K,X))G

�
X − X̂

�

R
F2 (R (K ′, X ′))G

�
X ′ − X̂

�
kΨ(K ′, X ′)k2 d (K ′, X ′)

kΨ(K,X)k2 d (K,X)



 Ψ̂
�
K̂, X̂

�

Using expressions (32) and (34) yields the expression of the text.

Translation of the minimization function: Financial capital allocation The translation of the
function for financial capital allocation (29) follows the previous pattern. We obtain:

S4 = −
Z
Ψ̂†
�
K̂, X̂

�
∇X̂

�
σ2
X̂
∇X̂ −

Z


∇X̂F0
�
R
�
K, X̂

��
+ ν∇X̂F1




R
�
K, X̂

�

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)









×




Ψ
�
K, X̂

�



2

dK

R 


Ψ
�
K ′, X̂

�



2

dK ′




 Ψ̂

�
K̂, X̂

�

and (34) yields the formula quoted in the text.

Appendix 2 expression of Ψ(K,X) as function of financial variables

A2.1 Finding Ψ(K,X): principle

In this paragraph, we give the principle of resolution for Ψ(K,X) for an arbitrary function H. The full
resolution for some particular cases is given below. Given a particular state Ψ̂, we aim at minimizing the
action functional S1+S2+S3+S4. However, given our assumptions, the action functional S3+S4 depends
on Ψ(K,X), through average quantities, and moreover, we have assumed that physical capital dynamics
depends on financial accumulation. Consequently, we can neglect, in first approximation, the impact of
Ψ(K,X) on S3 + S4 and consider rather the minimization of S1 + S2 which is given by:

S1 + S2 = −
Z
Ψ† (K,X)

�
∇X

�
σ2X
2
∇X −∇XR (K,X)H (K)

�
− τ

�Z
|Ψ(K ′, X)|2 dK ′

�
(134)

+ ∇K
�
σ2K
2
∇K + u

�
K,X,Ψ, Ψ̂

���
Ψ(K,X) dKdX

with:

u
�
K,X,Ψ, Ψ̂

�
=
1

ε



K −
Z F2 (R (K,X))G

�
X − X̂

�

R
F2 (R (K,X))G

�
X − X̂

�
kΨ(K,X)k2

K̂



Ψ̂
�
K̂, X̂

�



2

dK̂dX̂



 (135)

and:

Γ (K,X) =

Z F2 (R (K,X))G
�
X − X̂

�

K
R
F2 (R (K,X))G

�
X − X̂

�
kΨ(K,X)k2

K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

�
− 1

This is done in two steps. First, we find Ψ(X), the background field for X when K determined by X. We
then find the corrections to the particular cases considered and compute Ψ(K,X).
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A2.1.1 Particular case: K determined by X

A simplification arises, assuming K adapting to X. We assume that in first approximation K is a function
of X, written KX :

K = KX =

Z F2 (R (KX , X))G
�
X − X̂

�

R
F2 (R (K ′

X′ , X ′))G
�
X ′ − X̂

�
kΨ(X ′)k2 dX ′

K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

�
(136)

This means that for any sector X, the capital of all agents in this sector are equal. At the individual level,
this corresponds to set d

dtKi (t) = 0. The level of capital adapts faster than the motion in sector space and
reaches quickly its equilibrium value. Incindently, (136) implies that Γ (K,X) = 0. Actually, using (136):

Γ (K,X) =

Z F2 (R (K,X))G
�
X − X̂

�

K
R
F2 (R (K,X))G

�
X − X̂

�
kΨ(K,X)k2

K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

�
− 1

=

Z F2 (R (K,X))G
�
X − X̂

�
K̂



Ψ̂
�
K̂,X

�



2

dK̂

R
F2 (R (KX , X))G

�
X − X̂

�
K̂



Ψ̂
�
K̂, X̂

�



2

d
�
K̂, X̂

� − 1

= 0

A2.1.1.1 Justification of approximation (136) Approximation (136) justifies in the following way.
When F2 is slowly varying with K, we perform the following change of variable in (134):

Ψ → Ψexp



−
R
u
�
K,X,Ψ, Ψ̂

�
dK

σ2K



 ≃ Ψexp
�
− 1

2σ2K
εu2

�
K,X,Ψ, Ψ̂

��

Ψ† → Ψ† exp

�
1

σ2K

Z
u
�
K,X,Ψ, Ψ̂

�
dK

�
≃ Ψ† exp

�
− 1

2σ2K
εu2

�
K,X,Ψ, Ψ̂

��

and this replaces S2 in (134) by:

−
Z
Ψ† (K,X)

�
σ2K
2
∇2K −

u2

2σ2K

�
K,X,Ψ, Ψ̂

�
+
1

2
∇Ku

�
K,X,Ψ, Ψ̂

��
Ψ(K,X) dKdX (137)

The change of variable modifies S1 in (134). Actually, the derivative∇X acts on exp
�
− 1
2σ2

K

u2
�
K,X,Ψ, Ψ̂

��

and the term:

−
Z
Ψ† (K,X)∇X

�
σ2X
2
∇X −∇XR (K,X)H (K)

�
Ψ(K,X) dKdX

becomes:

−
Z
Ψ† (X)∇X

�
σ2X
2
∇X −∇XR (K,X)H (K)

�
Ψ(X) dKdX (138)

+ε

Z
Ψ† (K,X)

�
σ2X
2σ2K

u∇Xu
�
∇XΨ(K,X) dKdX + ε

Z
Ψ† (K,X)

�
σ2X
2σ2K

�
(∇Xu)2 + u∇2Xu

��
Ψ(K,X) dKdX

−
Z
Ψ† (K,X)

�
ε
u∇Xu
σ2K

∇XR (K,X)H (K) + ε2
σ2X
2σ4K

(u∇Xu)2
�
Ψ(K,X) dKdX

Using that u is of order 1
ε (see(135)), the minimum of S1 + S2 is obtained when the potential:

Z
Ψ† (K,X)

�
u2

2σ2K
− 1
2
∇Ku

�
Ψ(K,X) dKdX (139)

+ε

Z
Ψ† (K,X)

�
σ2X
2σ2K

�
(∇Xu)2 + u∇2Xu

��
Ψ(K,X) dKdX

−
Z
Ψ† (K,X)

�
ε
u∇Xu
σ2K

∇XR (K,X)H (K) + ε2
σ2X
2σ4K

(u∇Xu)2
�
Ψ(K,X) dKdX
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is nul. The dominant term in (139) for ε << 1 is:

Z
Ψ† (K,X)

�
u2

2σ2K
− ε2 σ

2
X

2σ4K
(u∇Xu)2

�
Ψ(K,X) dKdX (140)

For σ2X << σ
2
K it implies that the minimum for S1 + S2 is obtained for:

u
�
K,X,Ψ, Ψ̂

�
≃ 0

with solution (136).

A2.1.1.2 Rewriting the action S1 + S2 With our choice G
�
X − X̂

�
= δ

�
X − X̂

�
we find:

KX =

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2
(141)

and Ψ(K,X) becomes a function Ψ(X):

Ψ(K,X)→ Ψ(X)

To find the action for Ψ(X) we evaluate (139) using u
�
KX , X,Ψ, Ψ̂

�
= 0, and compute the first term in

(140) for Ψ(X) = Ψ (KX , X) δ (u) by replacing:

δ (u)→ exp
�
−εu2

�
√
2πε

We obtain:

−
Z
Ψ† (K,X)

�
σ2K
2
∇2K

�
Ψ(K,X) dKdX =

σ2K
2

Z
|Ψ(X)|2 dX

Z
exp

�
−εu2

�
√
2πε

∇2K
exp

�
−εu2

�
√
2πε

dK

≃ σ2K
2ε

Z
|Ψ(X)|2 dX

and the action S1 restricted to the variable X is given by:

S1 =

Z
Ψ† (X)

�
−∇X

�
σ2X
2
∇X − (∇XR (X)H (KX))

�
+ τ |Ψ(X)|2

�
Ψ(X)

+

Z
Ψ† (K,X)

�
σ2X
4σ2K

�
∇Xu

�
KX , X,Ψ, Ψ̂

��2�
Ψ(K,X) dKdX

+

Z �
σ2K
2ε

− 1
2
∇Ku

�
KX , X,Ψ, Ψ̂

��
|Ψ(X)|2 dX

In our order of approximation ∇Ku
�
KX , X,Ψ, Ψ̂

�
≃ ε. Ultimately, for σ2X << σ2K , action S1 reduces to:

S1 =

Z
Ψ† (X)

�
−∇X

�
σ2X
2
∇X − (∇XR (X)H (KX))

�
+ τ |Ψ(X)|2 + σ

2
K − 1
2ε

�
Ψ(X) (142)

and we look for Ψ(X) minimizing (142).
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A2.1.1.3 Minimization of (142) To minimize (142), we assume for the sake of simplicity, that for i 6= j:
��∇Xi

∇Xj
R (X)

�� <<
��∇2Xi

R (X)
��

which is the case for example if R (X) is a function with separated variables : R (X) =
P
Ri (Xi). This can

be also realized if locally, one chooses the variables Xi to diagonalize ∇Xi
∇Xj

R (X) at some points in the
sector space.
We then perform the change of variables:

exp

 Z X ∇XR (X)
σ2X k∇XR (X)k

H (KX)

!

Ψ(X)→ Ψ(X)

and:

exp

 

−
Z X

∇XR (X)H (KX)

!

Ψ† (X)→ Ψ† (X)

so that (142) becomes:

Z
Ψ† (X)

�
−σ

2
X

2
∇2X +

1

2σ2X
(∇XR (X)H (KX))

2
+
∇2XR (KX , X)

2
H (KX) + τ |Ψ(X)|2 +

σ2K − 1
2ε

�
Ψ(X)

(143)
which is of second order in derivatives with a potential:

τ kΨ(X)k4 + 1

2σ2X

Z
(∇XR (X)H (KX))

2 kΨ(X)k2

We assume the number of agents fixed equal to N . We must minimize (143) with the constraint kΨ(X)k2 > 0
and

R
kΨ(X)k2 = N . We thus replace (143) by:
Z
Ψ† (X)

 

−σ
2
X∇2X
2

+
(∇XR (X)H (KX))

2

2σ2X
+
∇2XR (KX , X)

2
H (KX) + τ |Ψ(X)|2 +

σ2K − 1
2ε

!

Ψ(X)

+D
�
kΨk2

��Z
kΨ(X)k2 −N

�
+

Z
µ (X) kΨ(X)k2 (144)

we have written D
�
kΨk2

�
the Lagrange multiplier for

R
kΨ(X)k2, to keep track of its dependency multiplier

in kΨk2. By a redefinition D
�
kΨk2

�
− σ2K−1

2ε → D
�
kΨk2

�
,

D(kΨk2)

D(kΨk2)−
σ2
K
2ε

N → N we can write (144) as:

Z
Ψ† (X)

�
−σ

2
X

2
∇2X +

1

2σ2X
(∇XR (X)H (KX))

2
+
H (KX)∇2XR (KX , X)

2
+ τ |Ψ(X)|2

�
Ψ(X)(145)

+D
�
kΨk2

��Z
kΨ(X)k2 −N

�
+

Z
µ (X) kΨ(X)k2

Introducing the change of variable for ∇XR (X) for the sake of simplicity:

(∇XR (X))2 + σ2X
∇2XR (KX , X)

H (KX)
→ (∇XR (X))2 (146)
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the minimization of the potential yields, for σ2X << 1:

iD
�
kΨk2

�
+ µ (X) (147)

= 2τ kΨ(X)k2 −
H ′
� R

K̂kΨ̂(K̂,X)k2dK̂
kΨ(X)k2

�

2σ2XH

� R
K̂kΨ̂(K̂,X)k2dK̂

kΨ(X)k2

�

×




∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2 R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k4
kΨ(X)k2

+
1

2σ2X




∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2

Moreover, multiplying (147) by kΨ(X)k2 and integrating yields:

D
�
kΨk2

�
N = 2τ

Z
|Ψ(X)|4 (148)

−
Z H ′

� R
K̂kΨ̂(K̂,X)k2dK̂

kΨ(X)k2

�

2σ2XH

� R
K̂kΨ̂(K̂,X)k2dK̂

kΨ(X)k2

�




∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2
Z
K̂



Ψ̂
�
K̂,X

�



2

dK̂

+
1

2σ2X

Z



∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2

kΨ(X)k2

≃ 2τ

Z
|Ψ(X)|4 + 1

2σ2X

Z



∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2

kΨ(X)k2

Note that in first approximation, for H ′ << 1, (147) and (148) become:

D
�
kΨk2

�
+ µ (X) = 2τ kΨ(X)k2 + 1

2σ2X
(∇XR (X))2H2






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2




 (149)

and:

ND
�
kΨk2

�
= 2τ

Z
|Ψ(X)|4 + 1

2σ2X

Z



∇XR (X)H






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2











2

kΨ(X)k2 (150)

A2.1.1.4 Resolution of (149) and (150) Two cases arise in the resolution:

Case 1: kΨ(X)k2 > 0 For kΨ(X)k2 > 0, (147) writes:

D
�
kΨk2

�
= 2τ kΨ(X)k2 + 1

2σ2X
(∇XR (X))2H2

 
K̂X

kΨ(X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ(X)k2



 (151a)
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with:

K̂X =

Z
K̂



Ψ̂
�
K̂,X

�



2

dK̂ = KX kΨ(X)k2 (152)

Note that restoring the initial variable:

(∇XR (X))2 → (∇XR (X))2 + σ2X
∇2XR (KX , X)

H (KX)
(153)

yields (57) in the text.
Given the setup, we can assume that

H2

 
K̂X

kΨ(X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ(X)k2





is a decreasing function of kΨ(X)k2. Assume a minimum Ψ0 (X) for the right hand side of (151a). It leads

to a condition for D
�
kΨk2

�
:

D
�
kΨk2

�
> 2τ kΨ0 (X)k2 +

1

2σ2X
(∇XR (X))2H2

 
K̂X

kΨ0 (X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ0 (X)k2



 (154)

and the solution of (151a) writes:







Ψ

 

X, (∇XR (X))2 ,
K̂X

K̂X,0

!






2

(155)

where K̂X,0 is a constant representing some average to normalize
K̂X

K̂X,0
as a dimensionless number.

Case 2 kΨ(X)k2 = 0 On the other hand, if:

D
�
kΨk2

�
< 2τ kΨ0 (X)k2 +

1

2σ2X
(∇XR (X))2H2

 
K̂X

kΨ0 (X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ0 (X)k2



 (156)

the solution of (151a) is kΨ(X)k2 = 0

Gathering both cases The value of kΨk2 thus depends on the conditions (154) and (156). To compute
the value of D

�
kΨk2

�
we integrate (151a) over V/V0 with V0 locus where kΨ(X)k2 = 0. V0 will be then

defined by (156) once D
�
kΨk2

�
found. For H slowly varying, we can replace K̂X

kΨ(X)k2 by:

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂dX
R
kΨ(X)k2 dX

=

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂dX

N

so that the integration of (156) over X yields:
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D
�
kΨk2

�
(V − V0) ≃ 2τN +

1

2σ2X

Z
(∇XR (X))2H2






R
K̂



Ψ̂
�
K̂,X

�



2

dK̂dX

N






×




1−

H ′
� R

K̂kΨ̂(K̂,X)k2dK̂dX
N

�

H

� R
K̂kΨ̂(K̂,X)k2dK̂dX

N

�

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂dX

N






= 2τN +
1

2σ2X
(∇XR (X))2H2





D
K̂
E

N








1−

H ′
�
hK̂i
N

�

H

�
hK̂i
N

�

D
K̂
E

N






Consequently:

D
�
kΨk2

�
≃ 2τ N

V − V0
+

1

2σ2X

D
(∇XR (X))2

E

V/V0
H2





D
K̂
E

N








1−

H ′
�
hK̂i
N

�

H

�
hK̂i
N

�

D
K̂
E

N






and V0 is defined by (156):

2τ
N

V − V0
+

1

2σ2X

D
(∇XR (X))2

E

V/V0
H2





D
K̂
E

N








1−

H ′
�
hK̂i
N

�

H

�
hK̂i
N

�

D
K̂
E

N




 (157)

< 2τ kΨ0 (X)k2 +
1

2σ2X
(∇XR (X))2H2

 
K̂X

kΨ0 (X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ0 (X)k2





On V/V0, kΨk2 is given by (155) and on V0, kΨk2 = 0.
Below, we give explicitaly the form of Ψ(X) form two different form of the function H.

A2.1.2 Introducing the K dependency

A2.1.2.1 First order condition To go beyond approximation (136) and solve for the field Ψ(K,X) that
minimizes (134), we come back to the full system for K and X:

Z
Ψ† (K,X)

��
−∇X

�
σ2X
2
∇X −

� ∇XR (K,X)
k∇XR (K,X)k

�
H (K) + τ |Ψ(K,X)|2

��
(158)

−∇K
�
σ2K
2
∇K + u

�
K,X,Ψ, Ψ̂

��
− 1
2
∇Ku

�
K,X,Ψ, Ψ̂

��
Ψ(K,X)

with u
�
K,X,Ψ, Ψ̂

�
given by (135). We then look for a minimum of (158) of the form:

Ψ(K,X) = Ψ (X)Ψ1 (K −KX) (159)

with KX given in (141):

KX =

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

kΨ(X)k2
(160)
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and Ψ1 peaked around 0 and of norm 1. When H (K) is slowly varying around KX , the minimization of
(158) for Ψ1 (K −KX) writes:

∇K
�
σ2K
2
∇K + u

�
K,X,Ψ, Ψ̂

�
+
1

2
∇Ku

�
K,X,Ψ, Ψ̂

��
Ψ1 (K −KX) = 0 (161)

Then, using that, in first approximation:
Z
F2 (R (K

′, X)) kΨ(K ′, X)k2 dK ′ ≃ F2 (R (KX , X)) kΨ(X)k2

Equation (161) becomes:

∇K
�
σ2K
2
∇K +K − F2 (R (K,X))KX

F2 (R (KX , X))

�
Ψ1 (K −KX) = 0 (162)

A2.1.2.2 Solving (162) To solve the first order condition (162) we perform the change of variable:

Ψ1 (K −KX)→ exp

�
1

σ2K

Z �
K − F2 (R (K,X))KX

F2 (R (KX , X))

�
dK

�
Ψ1 (K −KX)

and (162) is transformed into

−σ
2
K

2
∇2KΨ1 (K −KX) +

1

2σ2K

�
K − F2 (R (K,X))KX

F2 (R (KX , X))

�2
Ψ1 (K −KX) = 0 (163)

This equation can be solved by implementing the constraint:
Z
kΨ1 (K −KX)k2 = 1

and we find:

Ψ1 (K −KX) ≃ N exp

 

− 1

σ2K

�
K − F2 (R (K,X))KX

F2 (R (KX , X))

�2!

≃ N exp

 

− 1

σ2K

�
K −KX − (K −KX)

∂KR (KX , X)F
′
2 (R (KX , X))

F2 (R (KX , X))
KX

�2!

= N exp

 

− 1

σ2K

�
1− ∂KR (KX , X)F

′
2 (R (K,X))

F2 (R (KX , X))
KX

�2
(K −KX)

2

!

with the normalization factor N given by:

N =

vuut
c

σ2K

�
1− ∂KR(KX ,X)F ′

2(R(K,X))
F2(R(KX ,X))

KX

�2

A2.1.2.3 Expression for the density of firms kΨ(K,X)k2 Having found Ψ1, and using (155) and

(159) we obtain the expression for kΨ(K,X)k2:

kΨ(K,X)k2 = N kΨk2
 

X, (∇XR (X))2 ,
K̂X

K̂X,0

!

(164)

× exp



− 1

σ2K

 

K − F2 (R (K,X))

F2 (R (KX , X)) kΨ(X)k2
Z
K̂



Ψ̂
�
K̂,X

�



2

dK̂

!2



= kΨk2
 

X, (∇XR (X))2 ,
K̂X

K̂X,0

! c exp
�
− 1
σ2
K

�
1− ∂KR(KX ,X)F

′
2(R(K,X))

F2(R(KX ,X))
KX

�2
(K −KX)

2

�

1
σ2
K

�
1− ∂KR(KX ,X)F ′

2(R(K,X))
F2(R(KX ,X))

KX

�2
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for X ∈ V/V0 and kΨ(K,X)k2 = 0 otherwise.
As stated in the text, note that the form of the exponential in (164) implies that:

Z
K kΨ(K,X)k2 dK̂ =

Z
K̂



Ψ̂
�
K̂,X

�



2

dK̂

A2.2 Examples

We solve the minimization for Ψ(K,X) for two particular forms of the function H (K).

A2.2.1 Example 1

We compute Ψ(K,X) for the specific function:

H (y) =

�
y

1 + y

�ς
, H ′ (y) = ς

�
y
y+1

�ς

y (y + 1)

We use the simplified equations (149) and (150) that yield:

D
�
kΨk2

�
+µ (X) = τ kΨ(X)k2+

1
σ2
X

(∇XR (X))2
�� R

K̂kΨ̂(K̂,X)k2dK̂
kΨ(X)k2

�ς�2


1− ς 1� R
K̂kΨ̂(K̂,X)k2dK̂

kΨ(X)k2
+hK̂i

�





�D
K̂
E
+
R
K̂kΨ̂(K̂,X)k2dK̂

kΨ(X)k2

�2ς

or equivalently:

D
�
kΨk2

�
+ µ (X) = τ kΨ(X)k2

+

1
σ2
X

(∇XR (X))2
�R

K̂



Ψ̂
�
K̂,X

�



2

dK̂

�2ς

�D
K̂
E
kΨ(X)k2 +

R
K̂



Ψ̂
�
K̂,X

�



2

dK̂

�2ς+1

×
�Z

K̂



Ψ̂
�
K̂,X

�



2

dK̂ + (1− ς)
D
K̂
E
kΨ(X)k2

�

For ς ≃ 1
2 , this reduces to:

D
�
kΨk2

�
+ µ (X) = τ kΨ(X)k2 +

1
σ2
X

(∇XR (X))2 K̂X

�
K̂X +

1
2

D
K̂
E
kΨ(X)k2

�

�D
K̂
E
kΨ(X)k2 + K̂X

�2

and for
D
K̂
E
kΨ(X)k2 << K̂X this becomes:

D
�
kΨk2

�
+ µ (X) ≃ τ kΨ(X)k2 +

1
σ2
X

(∇XR (X))2 K̂X
�D
K̂
E
kΨ(X)k2 + K̂X

� (165)

Two cases arise.
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When 1
σ2
X

(∇XR (X))2 << τ :

kΨ(X)k2 =

�
D
�
kΨk2

�
− τ K̂X

hK̂i

�
+

s�
D
�
kΨk2

�
− τ K̂X

hK̂i

�2
− 4τ K̂X

hK̂i
�
(∇XR(X))

2

σ2
X

−D
�
kΨk2

��

2τ
(166)

=
4τ K̂X

hK̂i
�

1
σ2
X

(∇XR (X))2 −D
�
kΨk2

��

2τ




�
D
�
kΨk2

�
− τ K̂X

hK̂i

�
−
s�

D
�
kΨk2

�
− τ K̂X

hK̂i

�2
− 4τ K̂X

hK̂i
�
(∇XR(X))

2

σ2
X

−D
�
kΨk2

��




This is positive on the set:








D
�
kΨk2

�
− τ K̂XD

K̂
E



 > 0





∪
�
1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
< 0

�
(167)

To detail these two conditions, we write (165) for kΨ(X)k2 > 0:

D
�
kΨk2

�
≃ τ kΨ(X)k2 +

1
σ2
X

(∇XR (X))2 K̂X

hK̂i�
kΨ(X)k2 + K̂X

hK̂i

�

which is equivalent to:

1
σ2
X

(∇XR (X))2 −D
�
kΨk2

�

�
kΨ(X)k2 + K̂X

hK̂i

� K̂XD
K̂
E =

−τ kΨ(X)k2 +D
�
kΨk2

�
− τ K̂X

hK̂i�
kΨ(X)k2 + K̂X

hK̂i

� kΨ(X)k2

Then, we have the implication:

1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
> 0⇒ D

�
kΨk2

�
− τ K̂XD

K̂
E > 0 (168)

This implies that (167) is always satisfied, and formula (166) is valid for all X.

The second case arises when 1
σ2
X

(∇XR (X))2 << τ . In this case, the solution is:

kΨ(X)k2 =

�
D
�
kΨk2

�
− τ K̂X

hK̂i

�
−
s�

D
�
kΨk2

�
− τ K̂X

hK̂i

�2
− 4τ K̂X

hK̂i
�
(∇XR(X))

2

σ2
X

−D
�
kΨk2

��

2τ

This solution is valid, i.e. kΨ(X)k2 > 0, under the conditions:




D
�
kΨk2

�
− τ K̂XD

K̂
E > 0





∩
�
1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
> 0

�
(169)

and kΨk2 = 0 for:




D
�
kΨk2

�
− τ K̂XD

K̂
E < 0





∪
�
1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
< 0

�
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To detail these two conditions, we use the implication (168) that is equivalent to:

D
�
kΨk2

�
− τ K̂XD

K̂
E < 0⇒ 1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
< 0

Consequently, kΨ(X)k2 = 0 only if:

1

σ2X
(∇XR (X))2 −D

�
kΨk2

�
< 0 (170)

We find D
�
kΨk2

�
by integration of:

D
�
kΨk2

�
+ µ (X) ≃ τ kΨ(X)k2 +

1
σ2
X

(∇XR (X))2 K̂X
�D
K̂
E
kΨ(X)k2 + K̂X

� (171)

and this leads to:

Z

V/V0

D
�
kΨk2

�
≃ τN +

Z

V/V0

1
σ2
X

(∇XR (X))2 K̂X

hK̂i�
kΨ(X)k2 + K̂X

hK̂i

�

≃ τN +
1

2

Z

V/V0

1

σ2X
(∇XR (X))2 = τN +

1

2
(V − V0)

�
1

σ2X
(∇XR (X))2

�

V/V0

we thus have:

D
�
kΨk2

�
≃ τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

(172)

and V0 is defined using (170). It is the set of points X such that:

τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

− 1

σ2X
(∇XR (X))2 > 0 (173)

Similarly, the set V/V0 is defined by:

τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

− 1

σ2X
(∇XR (X))2 < 0 (174)

To each function R (X) and any d > 0, we associate two functions that depend on the form of 1
σ2
X

(∇XR (X))2

over the whole space. First, v (V − V0) is a decreasing function of V − V0, defined by:

V

�
1

σ2X
(∇XR (X))2 > v (V − V0)

�
= V − V0 (175)

Second, for every d > 0, the function h (d) is given by:

h (d) =
1R

∇XR(X)>d
dX

Z

∇XR(X)>d

1

σ2X
(∇XR (X))2 dX (176)

This is an increasing function of d.
Thus, we can rewrite (174) as:

τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

= v (V − V0) (177)
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and moreover, by integration of (174) over V/V0:

�
1

σ2X
(∇XR (X))2

�

V/V0

= h

 
τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

!

(178)

Equations (177) and (178) combine as:

2

�
v (V − V0)−

τN

V − V0

�
= h (v (V − V0)) (179)

which is an equation depending on the form of R (X). If it has a solution, the set on which kΨ(X)k2 = 0 is
defined by:

1

σ2X
(∇XR (X))2 < v (V − V0)

and D
�
kΨk2

�
is given by

D
�
kΨk2

�
≃ v (V − V0)

Once the solution of (179) is known, the constant D
�
kΨk2

�
is given by (172) and:

kΨ(X)k2 =
2 K̂X

hK̂i
�

1
σ2
X

(∇XR (X))2 −D
�
kΨk2

��

D
�
kΨk2

�
− τ K̂X

hK̂i +
s�

D
�
kΨk2

�
− τ K̂X

hK̂i

�2
− 4τ K̂X

hK̂i
�

1
σ2
X

(∇XR (X))2 −D
�
kΨk2

��

(180)
for X ∈ V/V0.

A2.2.2 Example 2

We choose H (y) = y and equations (149) and (150) yield:

D
�
kΨk2

�
≃ τ kΨ(X)k2 + 1

σ2X
(∇XR (X))2

K̂X

kΨ(X)k2

If:

D
�
kΨk2

�
> 2

s

τ
1

σ2X
(∇XR (X))2 K̂X (181)

then:

kΨ(X)k2 = 1

2τ

 

D
�
kΨk2

�
−
s
�
D
�
kΨk2

��2
− 4K̂X

1

σ2X
(∇XR (X))2 τ

!

> 0

To solve (172) and to find V0, we compute D
�
kΨk2

�
by integrating (171) and (172) is still valid:

D
�
kΨk2

�
≃ τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

(182)

We proceed as in the previous paragraph to find D
�
kΨk2

�
and V0. Using (182), (181) becomes:

1

4τK̂X

 
τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

!2
>

1

σ2X
(∇XR (X))2 (183)
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Definitions (175) and (176) allow to rewrite (182) and (183):

1

4τK̂X

 
τN

V − V0
+
1

2

�
1

σ2X
(∇XR (X))2

�

V/V0

!2
= v (V − V0)

�
1

σ2X
(∇XR (X))2

�

V/V0

= h (v (V − V0))

that reduce to an equation for V − V0:

2

�
2

q
τv (V − V0) K̂X −

τN

V − V0

�
= h (v (V − V0))

If it has a solution, the set on which kΨ(X)k2 = 0 is defined by:
1

σ2X
(∇XR (X))2 < v (V − V0)

and D
�
kΨk2

�
is given by

D
�
kΨk2

�
≃ 2
q
τv (V − V0) K̂X

Appendix 3. Computation of the background field Ψ̂
�
K̂, X̂

�
and

average capital K̂X

A3.1 System for Ψ̂
�
K̂, X̂

�

A3.1.1 Replacing quantities depending on (K,X)

Having found Ψ(K,X), we can rewrite an action functional for Ψ̂
�
K̂, X̂

�
. To do so, we first replace

the quantities depending on Ψ(K,X) in the action (38). Given the form of this function we can use the
approximation K ≃ KX : at the collective level, the relevant quantity, from the point of view of investors are
the sectors.
Using that:

R (K,X)
R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

≃ R (K,X)
R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′

we first start by rewriting F1 and we have:

F1

 
R (K,X)

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

,Γ (K,X)

!

≃ F1
 

R (KX , X)R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′
,Γ (K,X)

!

As explained in appendix 1, when K ≃ KX , we also have:

Γ (K,X) =

Z
F2 (R (K,X))

KXF2 (R (KX , X)) kΨ(KX , X)k
K̂



Ψ̂
�
K̂,X

�



2

dK̂ − 1 = 0

Then, we rewrite the expression involving F2 in (38):

F2

�
R
�
K, X̂

��

R
F2

�
R
�
K ′, X̂

��


Ψ
�
K ′, X̂

�



2

dK ′




Ψ
�
K, X̂

�



2

≃
F2

�
R
�
K, X̂

��

F2

�
R
�
KX̂ , X̂

��


Ψ
�
X̂
�




2




Ψ
�
K, X̂

�



2

=
F2

�
R
�
K, X̂

��

Ψ0
�
K −KX̂

�

2

F2

�
R
�
KX̂ , X̂

��
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and the Ψ̂
�
K̂, X̂

�
part of the action functional (38) writes:

S3 + S4 = −
Z
Ψ̂†
�
K̂, X̂

� 

∇K̂

 
σ2
K̂

2
∇K̂ − K̂f

�
K,X,Ψ, Ψ̂

�!

(184)

+∇X̂

 
σ2
X̂

2
∇X̂ − g

�
K,X,Ψ, Ψ̂

�!!

Ψ̂
�
K̂, X̂

�

where:

f
�
X̂,Ψ, Ψ̂

�
=

1

ε

Z  

∇KR (K,X)− γ
R
K ′ kΨ(K ′, X)k2

K
+ F1

 
R (K,X)

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

!!

×
F2

�
R
�
K, X̂

��

Ψ0
�
K −KX̂

�

2

F2

�
R
�
KX̂ , X̂

�� dK (185)

g
�
X̂,Ψ, Ψ̂

�
=

Z



∇X̂F0

�
R
�
K, X̂

��




∇X̂R
�
K, X̂

�



+ ν∇X̂F1




R
�
K, X̂

�

R
R (K ′, X ′) kΨ(K ′, X ′)k2 d (K ′, X ′)

,Γ (K,X)









×




Ψ
�
K, X̂

�



2

dK

R 


Ψ
�
K ′, X̂

�



2

dK ′
(186)

Another simplification arises for the function F2

�
R
�
K, X̂

��
. Actually:

F2

�
R
�
K, X̂

��

R
F2

�
R
�
K ′, X̂

��


Ψ
�
K ′, X̂

�



2

dK ′




Ψ
�
K, X̂

�



2

≃
F2

�
R
�
K, X̂

��

R
F2

�
R
�
KX̂ , X̂

��


Ψ
�
X̂
�




2




Ψ
�
K, X̂

�



2

≃
F2

�
R
�
K, X̂

��

F2

�
R
�
KX̂ , X̂

��


Ψ
�
K −KX̂

�

2

and by integration in (185) and (186), we have:

f
�
X̂,Ψ, Ψ̂

�
=

1

ε



r
�
KX̂ , X̂

�
− γ




Ψ
�
X̂
�




2

+ F1




R
�
KX̂ , X̂

�

R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′







 (187)

g
�
X̂,Ψ, Ψ̂

�
=

∇X̂F0
�
R
�
KX̂ , X̂

��




∇X̂R
�
KX̂ , X̂

�



+ ν∇X̂F1




R
�
KX̂ , X̂

�

R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′





In the sequel, for the sake of simplicity, we will write f
�
X̂
�
and g

�
X̂
�
for f

�
X̂,KX̂

�
and g

�
X̂,KX̂

�

respectively. We then perform the following change of variable in (184):

Ψ̂ → exp

 
1

σ2
X̂

Z
g
�
X̂
�
dX̂

!

Ψ̂

Ψ̂† → exp

 
1

σ2
X̂

Z
g
�
X̂
�
dX̂

!

Ψ̂†
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so that (184) becomes:

S3 + S4 = −
Z
Ψ̂†
 
σ2
X̂

2
∇2
X̂
− 1

2σ2
X̂

�
g
�
X̂,KX̂

��2
− 1
2
∇X̂g

�
X̂,KX̂

�!

Ψ̂ (188)

−
Z
Ψ̂†
 

∇K̂

 
σ2
K̂

2
∇K̂ − K̂f

�
X̂,KX̂

�!!

Ψ̂

This action functional for Ψ̂ will be minimized in the next paragraph. Note that we should also include
to (188), the action functional S1 + S2 evaluated at the background field Ψ, since this one depends on Ψ̂.

However, we have seen that at the background field Ψ, for K ≃ KX , u
�
K,X,Ψ, Ψ̂

�
≃ 0 and the action

functional S1 + S2 defined in (134) reduces to:

S1 + S2 ≃
Z
Ψ† (X)

�
−∇X

�
σ2X
2
∇X − (∇XR (X)H (KX))

�
+ τ |Ψ(X)|2 + σ

2
K − 1
2ε

�
Ψ(X) (189)

and this depends on through KX . Then, due to the first order condition for Ψ(X), one has:

δ

δΨ̂
(S1 + S2) =

δKX

δΨ̂

∂

∂KX
(S1 + S2)

We have assumed previously that H (KX) is slowly varying. Moreover, due to is definition:

δKX

δΨ̂
�
K̂,X

� =
K̂

kΨ(X)k2

In most of the cases, this reduces to:

δKX

δΨ̂
�
K̂,X

� ≃ K̂

D
�
kΨk2

� << K̂

Consequently, we can assume that δ
δΨ̂
(S1 + S2) will be negligible with respect to the other quantities in the

minimization with respect to Ψ̂
�
K̂,X

�
. The rationale for this approximation is the following. The field

action S1 + S2 for Ψ(X) depends on the global quantity
R
K̂



Ψ̂
�
K̂,X

�



2

dK̂ that represents the total

investment in sector X. While minimizing the field action S1 + S2 with respect to Ψ̂
�
K̂,X

�
, we compute

the change in this action with respect to an individual variation Ψ̂
�
K̂,X

�
, and the impact of this variation

is, consequently, negligible.

A3.1.2 Minimization for Ψ̂
�
K̂, X̂

�

Adding the Lagrange multiplier λ̂ implementing the constraint
R 


Ψ̂

�
K̂, X̂

�



2

= N̂ , the minimization of

(188) with the functions given by (187) leads to the first order conditions:

0 =





σ2
X̂
∇2
X̂

2
−

�
g
�
X̂,KX̂

��2

2σ2
X̂

−
∇X̂g

�
X̂,KX̂

�

2




 Ψ̂ +∇K̂

 
σ2
K̂
∇K̂
2

− K̂f
�
X̂,KX̂

�
− λ̂
!

Ψ̂ (190)

−
 Z

Ψ̂†
δ

δΨ̂†

 
1

2σ2
X̂

�
g
�
X̂,KX̂

��2
+
1

2
∇X̂g

�
X̂,KX̂

�!

Ψ̂

!

−
�Z

Ψ̂†∇K̂
δ

δΨ̂†

�
K̂f

�
X̂,KX̂

��
Ψ̂

�
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Using that:
δ

δΨ̂†
KX̂ =

K̂



Ψ
�
X̂
�




2 Ψ̂

equation (190) becomes:

0 =

 
σ2
X̂

2
∇2
X̂
− 1

2σ2
X̂

�
g
�
X̂,KX̂

��2
− 1
2
∇X̂g

�
X̂,KX̂

�!

Ψ̂ (191)

+

 

∇K̂

 
σ2
K̂

2
∇K̂ − K̂f

�
X̂,KX̂

�!

− λ̂
!

Ψ̂− F
�
X̂,KX̂

�
K̂Ψ̂

with:

F
�
X̂,KX̂

�
=

�
∇K

X̂

�
(g(X̂,KX̂))

2

2σ2
X̂

+ 1
2∇X̂g

�
X̂,KX̂

���




Ψ
�
X̂
�




2 +

D
∇K̂

�
K̂∇K

X̂
f
�
X̂,KX̂

��E




Ψ
�
X̂
�




2 (192)

The brackets in (192) are given by:

*

∇K
X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�





+

=

Z
Ψ̂†
�
X̂, K̂

�
∇K

X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�



 Ψ̂

�
X̂, K̂

�
dK̂

≡ ∇K
X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�







Ψ̂
�
X̂
�




2

D
∇K̂

�
K̂∇K

X̂
f
�
X̂,KX̂

��E

=

Z
Ψ̂†
�
X̂,KX̂

�
∇K̂

�
K̂∇K

X̂
f
�
X̂,KX̂

��
Ψ̂
�
X̂,KX̂

�
dK̂

= −∇K
X̂
f
�
X̂,KX̂

�Z  

K̂∇K̂



Ψ̂
�
X̂,KX̂

�



2

− 2K̂
2

σ2
K̂

f
�
X̂
�


Ψ̂

�
X̂,KX̂

�



2
!

dK̂

= ∇K
X̂
f
�
X̂,KX̂

�


Ψ̂
�
X̂
�




2

+
∇K

X̂
f2
�
X̂,KX̂

�

σ2
K̂

D
K̂2
E

X̂
(193)

Where the average
D
K̂2
E

X̂
is defined by:

D
K̂2
E

X̂
=

Z 


Ψ̂
�
X̂, K̂

�



2

dK̂
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The previous expression (193) for F
�
X̂,KX̂

�
can also be rewritten as:

F
�
X̂,KX̂

�
=

�
∇K

X̂

�
(g(X̂,KX̂))

2

2σ2
X̂

+ 1
2∇X̂g

�
X̂,KX̂

���




Ψ
�
X̂
�




2 +

D
∇K̂

�
K̂∇K

X̂
f
�
X̂,KX̂

��E




Ψ
�
X̂
�




2 (194)

= ∇K
X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�








Ψ̂
�
X̂
�




2




Ψ
�
X̂
�




2

+
∇K

X̂
f2
�
X̂,KX̂

�

σ2
K̂




Ψ
�
X̂
�




2

D
K̂2
E

X̂

It will be useful to rewrite the last term as:

∇K
X̂
f2
�
X̂,KX̂

�

σ2
K̂




Ψ
�
X̂
�




2

D
K̂2
E

X̂
≃
∇K

X̂
f2
�
X̂,KX̂

�

σ2
K̂

D
K̂
E2

X̂
=
∇K

X̂
f2
�
X̂,KX̂

�

σ2
K̂




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2 (195)

Consequently:

F
�
X̂,KX̂

�
= ∇K

X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�








Ψ̂
�
X̂
�




2




Ψ
�
X̂
�




2 (196)

+
∇K

X̂
f2
�
X̂,KX̂

�

σ2
K̂




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2

We also have an equation for Ψ̂† similar to (191):

0 =

 
σ2
X̂

2
∇2
X̂
− 1

2σ2
X̂

�
g
�
X̂,KX̂

��2
− 1
2
∇X̂g

�
X̂,KX̂

�!

Ψ̂† (197)

+

  
σ2
K̂

2
∇K̂ + K̂f

�
X̂,KX̂

�!

∇K̂ − λ̂
!

Ψ̂− F
�
X̂,KX̂

�
K̂Ψ̂†

A3.1.3 Resolution of (191)

A3.1.3.1 zeroth order in σ2X We consider σ2X << 1 (which means that fluctuation in X << fluctuation
in K). Thus (191) writes at the lowest order:




∇K̂

 
σ2
K̂

2
∇K̂ − K̂f

�
X̂,KX̂

�!

−

�
g
�
X̂
��2

2σ2
X̂

−
∇X̂g

�
X̂,KX̂

�

2
− F

�
X̂,KX̂

�
K̂ − λ̂




 Ψ̂ = 0 (198)

Performing the change of variable:

Ψ̂→ exp

 
K̂2

σ2
K̂

f
�
X̂
�!

Ψ̂
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leads to the equation for K̂:

σ2
K̂

2
∇2
K̂
Ψ̂−





K̂2

2σ2
K̂

f2
�
X̂
�
+ F

�
X̂,KX̂

�
K̂ +

1

2
f
�
X̂,KX̂

�
+

�
g
�
X̂
��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ λ̂




 Ψ̂ ≃ 0

(199)

This equation can be normalized by dividing by f2
�
X̂
�
:

σ2
K̂
∇2
K̂
Ψ̂

2f2
�
X̂
� −





K̂2

2σ2
K̂

+
F
�
X̂,KX̂

�
K̂

f2
�
X̂
� +

f(X̂,KX̂)
2 +

(g(X̂))
2

2σ2
X̂

+ 1
2∇X̂g

�
X̂,KX̂

�
+ λ̂

f2
�
X̂
�




 Ψ̂ ≃ 0

We then define:

y =
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)q
σ2
K̂

�
f2
�
X̂
�� 1

4

and (191) is transformed into:

∇2yΨ̂−





y2

4
+

�
g
�
X̂
��2

+ σ2
X̂

�
f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

+ λ̂

�

σ2
X̂

r
f2
�
X̂
�




Ψ ≃ 0 (200)

Solutions of (200) are obtained by rewriting (200):

Ψ̂′′ +

�
p
�
X̂, λ̂

�
+
1

2
− 1
4
y2
�
Ψ̂

where:

p
�
X̂, λ̂

�
= −

�
g
�
X̂
��2

+ σ2
X̂

�
f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

+ λ̂

�

σ2
X̂

r
f2
�
X̂
� − 1

2
(201)

The solution of (200) is thus:

Ψ̂
(0)

λ̂,C

�
X̂, K̂

�
=
√
CDp(X̂,λ̂)





����f

�
X̂
����
� 1
2

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�

σK̂




 (202)

where Dp denotes the parabolic cylinder function with parameter p and C is a normalization constant that

will be computed as a function of λ using the constraint
R 


Ψ̂

�
K̂, X̂

�



2

= N̂ .

A similar equation to (198) can be obtained for Ψ̂†. The equivalent of (190) is (197):

0 =

 
σ2
X̂

2
∇2
X̂
− 1

2σ2
X̂

�
g
�
X̂,KX̂

��2
− 1
2
∇X̂g

�
X̂,KX̂

�!

Ψ̂ (203)

+

  
σ2
K̂

2
∇K̂ + K̂f

�
X̂,KX̂

�!

∇K̂ − λ̂
!

Ψ̂− F
�
X̂,KX̂

�
K̂Ψ̂

The change of variable:

Ψ̂† → exp

 

−K̂
2

σ2
K̂

f
�
X̂
�!

Ψ̂†
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and the approximation σ2
X̂
<< 1 lead ultimately to:

σ2
K̂

2
∇2
K̂
Ψ̂†−

 
K̂2

2σ2
K̂

f2
�
X̂
�
+
1

2
∇X̂f

�
X̂,KX̂

�
+

1

2σ2
X̂

�
g
�
X̂
��2

+
1

2
∇X̂g

�
X̂,KX̂

�
+ F

�
X̂,KX̂

�
+ λ̂

!

Ψ̂† ≃ 0

(204)
which is the same equation as (199). Consequently, the solutions of (204) write:

Ψ̂
(0)†
λ,C

�
X̂, K̂

�
= Ψ̂

(0)
λ,C

�
X̂, K̂

�
=
√
CDp(X̂,λ̂)





����f

�
X̂
����
� 1
2

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�

σK̂




 (205)

To conclude this section, we detail the expressions for
σ2
K̂
F(X̂,KX̂)
f2(X̂)

and
σ2
K̂
F 2(X̂,KX̂)
2f2(X̂)

. Given the expression

for F
�
X̂,KX̂

�
in (196), the term

σ2
K̂
F(X̂,KX̂)
f2(X̂)

arising in (202) and (205)

σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂,KX̂

� =
σ2
K̂

f2
�
X̂
�∇K

X̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�








Ψ̂
�
X̂
�




2




Ψ
�
X̂
�




2

+
∇K

X̂
f2
�
X̂,KX̂

�

f2
�
X̂,KX̂

�




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2

≃
∇K

X̂
f
�
X̂,KX̂

�

f
�
X̂,KX̂

�




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2 (206)

σ2
K̂
F 2(X̂,KX̂)
2f2(X̂)

arising in the definition (201) of p
�
X̂, λ̂

�
is equal to:

σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
� =

σ2
K̂

2










∇K

X̂

�
g
�
X̂,KX̂

��2
+ σ2

X̂

�
∇2
X̂
g
�
X̂,KX̂

�
+∇K

X̂
f
�
X̂,KX̂

��

2σ2
X̂
f
�
X̂,KX̂

�









Ψ̂
�
X̂
�




2




Ψ
�
X̂
�




2

+2∇K
X̂
f
�
X̂,KX̂

�



Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2






2

(207)

and this simplifies as:

σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
� ≃ 2σ2

K̂




∇K

X̂
f
�
X̂,KX̂

�



Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2






2

(208)

since:

∇K
X̂

�
g
�
X̂,KX̂

��2
+ σ2

X̂

�
∇2
X̂
g
�
X̂,KX̂

�
+∇K

X̂
f
�
X̂,KX̂

��

2σ2
X̂
f
�
X̂,KX̂

�




Ψ̂
�
X̂
�




2




Ψ
�
X̂
�




2

∼

�
g
�
X̂,KX̂

��2
+ σ2

X̂

�
∇2
X̂
g
�
X̂,KX̂

�
+∇K

X̂
f
�
X̂,KX̂

��

2σ2
X̂
f
�
X̂,KX̂

�









Ψ̂
�
X̂
�




2

KX̂




Ψ
�
X̂
�




2




 << 1
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A3.1.3.2 Corrections in σ2X : To introduce the corrections in σ2X in (191) we factor the solution as:

Ψ̂λ,C

�
K̂, X̂

�
=

√
C exp

 
K̂2

σ2
K̂

f
�
X̂
�!

Dp(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�








 Ψ̂(1)

�
K̂, X̂

�

≡ Ψ̂
(0)
λ,C

�
K̂, X̂

�
Ψ̂(1)

�
K̂, X̂

�

and we look for Ψ̂(1) of the form:
Ψ̂(1) = exp

�
σ2Xh (K,X)

�
(209)

Introducing the postulated form in (191) we are led to:

σ2X
2
∇2
X̂

�
Ψ̂(1)Ψ̂

(0)
λ,C

�
+

 
σ2
K̂

2
∇2
K̂
Ψ̂(1)

!

Ψ̂
(0)
λ,C +

�
∇K̂Ψ̂(1)

��
σ2
K̂
∇K̂Ψ̂

(0)
λ,C − K̂f

�
X̂
�
Ψ̂
(0)
λ,C

�
= 0

Written in terms of h
�
K̂, X̂

�
, this equation becomes at the first order in σ2X :

∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

+ σ2
K̂
∇2
K̂
h
�
K̂, X̂

�
+ 2

�
∇K̂h

�
K̂, X̂

�� 

σ2
K̂

∇K̂Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

− K̂f
�
X̂
�!

= 0 (210)

The solution of (210) is of the type:

∇K̂ (h (K,X)) = C
�
K̂,X

�
exp



−2
Z


∇K̂Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

−
K̂f

�
X̂
�

σ2
K̂



 dK̂



 = C
�
K̂,X

�
exp

 

−
 

2 ln Ψ̂
(0)
λ,C −

K̂2

σ2
K̂

f
�
X̂
�!!

where C (X) satisfies:

C ′
�
K̂,X

�
= −

∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,Cσ

2
K̂

exp



2 ln Ψ̂(0)λ,C −
K̂2f

�
X̂
�

σ2
K̂



 = −
∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

�
Ψ̂
(0)
λ,C

�2
exp



−
K̂2f

�
X̂
�

σ2
K̂





and the solution of (210) is:

∇K̂ (h (K,X)) = exp
 

−
 

2 ln Ψ̂
(0)
λ,C −

K̂2

σ2
K̂

f
�
X̂
�!! 

C −
Z ∇2

X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,Cσ

2
K̂

�
Ψ̂
(0)
λ,C

�2
exp

 

−K̂
2

σ2
K̂

f
�
X̂
�!

dK̂

!

letting C = 0, we obtain:

∇K̂ (h (K,X)) = −
1

σ2
K̂

�
Ψ̂
(0)
λ,C

�2 exp

 
K̂2

σ2
K̂

f
�
X̂
�! Z ∇2

X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

�
Ψ̂
(0)
λ,C

�2
exp

 

−K̂
2

σ2
K̂

f
�
X̂
�!

dK̂

!

(211)

To compute h (K,X), we must estimate
∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

in (211). To do so, we write, for ε << 1, i.e.
���f
�
X̂
���� >> 1:
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exp

 
K̂2

σ2
K̂

f
�
X̂
�!

Dp(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�










≃ exp





K̂2

σ2
K̂

f
�
X̂
�
−

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2 ���f
�
X̂
����

4σ2
K̂















���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�










p(X̂,λ̂)

= exp





K̂2

σ2
K̂

f
�
X̂
�
−

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2 ���f
�
X̂
����

4σ2
K̂






× exp





�
p
�
X̂, λ̂

��
ln










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�















which allows to compute the successives derivatives of Ψ̂. We find, for f > 0:

∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

≃





−f ′σ2

X̂
λ̂− g2f ′ + 2fgg′
σ2
X̂
f2

ln








K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�








f
�
X̂
�

σ2
K̂





1
2



 (212)

+
1

2






�
g
�
X̂
��2

+ σ2
X̂

�
f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

+ λ̂

�

σ2
X̂

r
f2
�
X̂
� +

1

2





f ′

f

+

K̂2 −




K̂+

σ2
K̂
F(X̂,K

X̂)
f2(X̂)
2





2

σ2
K̂

f ′






2

≃






 

4K̂2 −
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

4σ2
K̂






2

The same approximation is valid for f < 0 and we find for this case:

∇2
X̂
Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

≃






 

4K̂2 +

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

4σ2
K̂






2
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Then, introducing ∓ to account for the sign of −f , (211) becomes:

∇K̂ (h (K,X)) = − 1

σ2
K̂

�
Ψ̂
(0)
λ,C

�2 exp

 
K̂2

σ2
K̂

f
�
X̂
�!Z






 

4K̂2 ∓
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

4σ2
K̂






2

(213)

×
�
Ψ̂
(0)
λ,C

�2
exp

 

−K̂
2

σ2
K̂

f
�
X̂
�!

dK̂

≃ − 1

σ2
K̂

�
Ψ̂
(0)
λ,C

�2 exp

 
K̂2

σ2
K̂

f
�
X̂
�!Z






 

4K̂2 ∓
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

4σ2
K̂






2

× exp






K̂2f
�
X̂
�
− 1

2

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2 ���f
�
X̂
����

σ2
K̂





dK̂ (214)

≃ − 1

σ2
K̂

�
Ψ̂
(0)
λ,C

�2 exp

 
K̂2

σ2
K̂

f
�
X̂
�!Z





σ2
K̂

 

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

�
2K̂f

�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�2






2

×∂4
K̂
exp






K̂2f
�
X̂
�
− 1

2

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2 ���f
�
X̂
����

σ2
K̂





dK̂ (215)
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Assuming
σ2
K̂
F(X̂,KX̂)
f2(X̂)

<< 1, we have ultimately:

∇K̂ (h (K,X)) ≃ − 1

σ2
K̂

�
Ψ̂
(0)
λ,C

�2 exp

 
K̂2

σ2
K̂

f
�
X̂
�!




σ2
K̂

 

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

2K̂f
�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����






2

×∂3
K̂
exp






K̂2f
�
X̂
�
− 1

2

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2 ���f
�
X̂
����

σ2
K̂






= −






 

K̂2− 1
4

 

K̂+
σ2
K̂
F(X̂,K

X̂)
f2(X̂)

!2!

f ′(X)

σ2
K̂






2

2K̂f
�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����

= −

  

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�

Replacing in first approximation K̂ by
kΨ(X̂)k2K̂X̂

kΨ̂(X̂)k2 in (212), and using (211) and (209) leads to:

Ψ̂(1)
�
X̂
�
=
√
C exp





−
Z

  

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂






with C a constant to be computed using the normalization condition.
To find Ψ†, we need also Ψ̂(1)†. Writing:

Ψ̂(1)† = exp
�
σ2Xg (K,X)

�

with a function g (K,X) that satisfies:

∇2
X̂
Ψ̂
(0)†
λ,C

Ψ̂
(0)
λ,C

+ σ2
K̂
∇2
K̂
g
�
K̂, X̂

�
+ 2

�
∇K̂g

�
K̂, X̂

�� 

σ2
K̂

∇K̂Ψ̂
(0)†
λ,C

Ψ̂
(0)
λ,C

+ K̂f
�
X̂
�!

= 0

with:

Ψ̂
(0)†
λ,C = exp

 

−K̂
2

σ2
K̂

f
�
X̂
�!

Dp(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�










we find:

∇K̂ (g (K,X)) = −
∇2
X̂
Ψ̂
(0)†
λ,C

Ψ̂
(0)
λ,C

exp

 

−K̂
2

σ2
K̂

f
�
X̂
�! Z ∇2

X̂
Ψ̂
(0)†
λ,C

Ψ̂
(0)†
λ,C

�
Ψ̂
(0)†
λ,C

�2
exp

 
K̂2

σ2
K̂

f
�
X̂
�!

dK̂

!

and:
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Ψ̂(1)†
�
X̂
�
=
√
C exp






Z

  

K̂2 ± 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

σ2
K̂

�
2K̂f

�
X̂
�
+

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂






where ± accounts for the sign of f .
Ultimately, coming back to the initial definition of the fields we obtain for Ψ̂λ,C

�
K̂, X̂

�
and Ψ̂†λ,C

�
K̂, X̂

�
:

Ψ̂λ,C

�
K̂, X̂

�
=

√
C exp





−σ2X

Z

  

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂






× exp
 
1

σ2
X̂

Z
g
�
X̂
�
dX̂ +

K̂2

σ2
K̂

f
�
X̂
�!

Dp(X̂,λ̂)




K̂





���f
�
X̂
����

σ2
K̂





1
2





Ψ̂†λ,C

�
K̂, X̂

�
=

√
C exp





σ2X

Z

  

K̂2 ± 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
+

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂






× exp
 

−
 
1

σ2
X̂

Z
g
�
X̂
�
dX̂ +

K̂2

σ2
K̂

f
�
X̂
�!!

Dp(X̂,λ̂)




K̂





���f
�
X̂
����

σ2
K̂





1
2




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A3.1.3.3 Computation of



Ψ̂
�
K̂, X̂

�



2

As a consequence of the previsous result, we can compute



Ψ̂λ,C

�
K̂, X̂

�



2

. We start with Ψ̂(1)†Ψ̂(1). We have:

Ψ̂(1)†Ψ̂(1) = C exp





−σ2X

Z






  

K̂2 ∓ 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
−
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�

−

  

K̂2 ± 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂f

�
X̂
�
+

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂











= C exp





−σ2X

Z






  

K̂2 − 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

σ2
K̂

�
2K̂

���f
�
X̂
����−

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�

− −

  

K̂2 + 1
4

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�2!

f ′ (X)

!2

�
σ2
K̂

�2�
2K̂

���f
�
X̂
����+

�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

� ���f
�
X̂
����
�dK̂











And for
σ2
K̂
F(X̂,KX̂)
f2(X̂)

<< 1:

Ψ̂(1)†Ψ̂(1) ≃ C exp




−σ2X

Z





�
3
4K̂

2f ′ (X)
�2

�
σ2
K̂

�2
K̂
���f
�
X̂
����
−

�
5
4K̂

2f ′ (X)
�2

3
�
σ2
K̂

�2
K̂f

�
X̂
�




 dK̂






= C exp




− σ2XK̂

4 (f ′ (X))2

96
�
σ2
K̂

�2 ���f
�
X̂
����






Gathering the previous results, we obtain the norm of



Ψ̂λ,C

�
K̂, X̂

�



2

:




Ψ̂λ,C
�
K̂, X̂

�



2

≃ C exp




− σ2XK̂

4 (f ′ (X))2

96
�
σ2
K̂

�2 ���f
�
X̂
����




D2

p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�










(216)
with:

f
�
X̂,KX̂

�
=



r
�
KX̂ , X̂

�
− γ




Ψ
�
X̂
�




2

+ F1




R
�
KX̂ , X̂

�

R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′







 (217)

g
�
X̂,KX̂

�
=




∇X̂F0

�
R
�
KX̂ , X̂

��




∇X̂R
�
KX̂ , X̂

�



+ ν∇X̂F1




R
�
KX̂ , X̂

�

R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′







 (218)
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The solutions are parametrized by C and λ̂ and K̂X̂ . Using the constraint



Ψ̂
�
K̂, X̂

�



2

= N̂ will reduce

the solutions to a one-parameter set of solutions. The computation of the average capital over this set will
lead to the defining equation for K̂X̂ .

Replacing in first approximation K̂ by its average
kΨ(X̂)k2K̂X̂

kΨ̂(X̂)k2 in the first term yields:




Ψ̂λ,C
�
K̂, X̂

�



2

≃ C exp





−
σ2X

�
kΨ(X̂)k2K̂X̂

kΨ̂(X̂)k2
�4
(f ′ (X))2

96
�
σ2
K̂

�2 ���f
�
X̂
����





D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�










(219)

A3.1.4 Estimation of S3

�
Ψ̂λ̂

�
K̂, X̂

��
+ S4

�
Ψ̂λ̂

�
K̂, X̂

��

For later purposes, we compute an estimation of S3

�
Ψ̂λ̂

�
K̂, X̂

��
+ S4

�
Ψ̂λ̂

�
K̂, X̂

��
for any background

field Ψ̂λ̂

�
K̂, X̂

�
. We multiply (64)by Ψ̂†

λ̂

�
K̂, X̂

�
on the left and integrate the equation over K̂ and X̂. It

yields:

0 = S3

�
Ψ̂λ̂

�
K̂, X̂

��
+S4

�
Ψ̂λ̂

�
K̂, X̂

��
−λ̂
Z 


Ψ̂λ̂

�
K̂, X̂

�



2

dK̂dX̂−
Z
F
�
X̂,KX̂

�
K̂



Ψ̂λ̂

�
K̂, X̂

�



2

dK̂dX̂

Using the constraint about the number of investors:

Z 


Ψ̂λ̂
�
K̂, X̂

�



2

dK̂ = N̂

we find:

S3

�
Ψ̂λ̂

�
K̂, X̂

��
+ S4

�
Ψ̂λ̂

�
K̂, X̂

��
= λ̂N̂ +

Z
F
�
X̂,KX̂

�
K̂



Ψ̂λ̂

�
K̂, X̂

�



2

dK̂dX̂

Moreover, equation (66) implies34 :

Z
F
�
X̂,KX̂

�
K̂



Ψ̂λ̂

�
K̂, X̂

�



2

dK̂dX̂ (220)

=

Z
KX̂∇KX̂






�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�







Ψ̂
�
X̂
�




2

dX̂

+

Z
KX̂

∇K
X̂
f2
�
X̂,KX̂

�

σ2
K̂

D
K̂2
E

X̂
dX̂

In our applications the involved functions are roughly power functions in KX̂ , and consequently, the integral
R
F
�
X̂,KX̂

�
K̂



Ψ̂λ̂

�
K̂, X̂

�



2

dK̂dX̂ is of order:

Z





�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�







Ψ̂
�
X̂
�




2

dX̂ +

Z f2
�
X̂,KX̂

�

σ2
K̂

D
K̂2
E

X̂
dX̂ (221)

34All averages in the next formula are computed in state Ψ̂
λ̂

�
K̂, X̂

�
.
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Since
D
K̂2
E

X̂
≃ K2

X̂

kΨ(X̂)k2
kΨ̂(X̂)k2 , the second term in (??) is negligible if we assume

kΨ(X̂)k2
kΨ̂(X̂)k2 << 1, i.e. the

number of firms is smaller than the number of investors. Consequently, (??) reduces to:

Z





�
g
�
X̂,KX̂

��2

2σ2
X̂

+
1

2
∇X̂g

�
X̂,KX̂

�
+ f

�
X̂,KX̂

�







Ψ̂
�
X̂
�




2

dX̂ .

Z
M



Ψ̂
�
X̂
�




2

dX̂

= MN̂

where M is the lowest bound for
���λ̂
���, computed below in (242) and (243). Our previous estimation relies on

σ2
K̂
F 2(X̂,KX̂)
2f2(X̂)

<< 1,which is true for f2
�
X̂
�
>> 1. As a consequence:

S3

�
Ψ̂λ̂

�
K̂, X̂

��
+ S4

�
Ψ̂λ̂

�
K̂, X̂

��
=
�
λ̂+M

�
N̂ = −

����λ̂
���−M

�
N̂ (222)

A3.1.4 Identification of KX̂ and



Ψ
�
X̂
�




2

:

A3.1.4.1 Formula depending on λ̂ and C In this paragraph, we compute the average capital KX̂ and

the density of investors



Ψ̂
�
X̂
�




2

at X̂ that are defined by using (152):

KX̂




Ψ
�
X̂
�




2

=

Z ∞

0

K̂C exp




−

σ2Xu
�
X̂, K̂X̂

�

�
σ2
K̂

�2




 (223)

×D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�








 dK̂

and:




Ψ̂
�
X̂
�




2

= C

Z ∞

0

exp




−

σ2Xu
�
X̂, K̂X̂

�

�
σ2
K̂

�2






×D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2


K̂ +
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�








 dK̂

with:

u
�
X̂, K̂X̂

�
=

�
kΨ(X̂)k2K̂X̂

kΨ̂(X̂)k2
�4
(f ′ (X))2

96
���f
�
X̂
����

(224)

Note that in these formulas, KX̂ and



Ψ̂
�
X̂
�




2

depend implicitely of λ̂ since they have been computed in the

state defined by the background field Ψ̂λ,C

�
K̂, X̂

�
. In the sequel, for the sake of simplicity, Ψ̂λ,C

�
K̂, X̂

�
,

the indices λ and C may be omitted.

We will also need
K
X̂kΨ(X̂)k2
kΨ̂(X̂)k2 that arises in (224):

KX̂




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2 =

R∞
0
K̂D2

p(X̂,λ̂)

 �
|f(X̂)|
σ2
K̂

� 1
2
�
K̂ +

σ2
K̂
F(X̂,KX̂)
f2(X̂)

�!

dK̂

R∞
σ2
K̂
F(X̂,K

X̂)
f2(X̂)

K̂D2
p(X̂,λ̂)

 �
|f(X̂)|
σ2
K̂

� 1
2

K̂

!

dK̂
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By a change of variable K̂ +
σ2
K̂
F(X̂,KX̂)
f2(X̂)

→ K̂ we can also write:

KX̂




Ψ
�
X̂
�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂




Z ∞

σ2
K̂
F(X̂,K

X̂)
f2(X̂)

K̂D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2

K̂




 dK̂




Ψ̂
�
X̂
�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

16σ2
K̂




Z ∞

σ2
K̂
F(X̂,K

X̂)
f2(X̂)

D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2

K̂




 dK̂

and by a zeroth order expansion around 0 of K̂D2
p(X̂,λ̂)

and D2
p(X̂,λ̂)

we have:

KX̂




Ψ
�
X̂
�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

16σ2
K̂




Z ∞

0

K̂D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2

K̂




 dK̂ (225)




Ψ̂
�
X̂
�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

16σ2
K̂










Z ∞

0

D2
p(X̂,λ̂)










���f
�
X̂
����

σ2
K̂





1
2

K̂




 dK̂ −

�
|f(X̂)|
σ2
K̂

�− 1
2

2
p(X̂,λ̂)

2
√
π

Γ

�
1−p(X̂,λ̂)

2

�
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�






(226)

To compute



Ψ̂
�
X̂
�




2

we use that the function D satisfies:

Z
D2
p =

√
π

2
3
2

Psi
�
1
2 −

p
2

�
− Psi

�
−p
2

�

Γ (−p)

The computation of the norm implies a second change of variable K̂ → K̂

�
|f(X̂)|
σ2
K̂

� 1
2

and we obtain for

(226):




Ψ̂
�
X̂
�




2

=

Z 


Ψ̂λ,C
�
K̂, X̂

�



2

dK̂ (227)

= C exp



−
σ2Xu

�
X̂, K̂X̂

�

16σ2
K̂










Z
D2
p(X̂,λ̂)

�
K̂
�
f2
�
X̂
�� 1

4

�
dK −

�
|f(X̂)|
σ2
K̂

�− 1
2

2
p(X̂,λ̂)

2
√
π

Γ

�
1−p(X̂,λ̂)

2

�
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�






= C exp



−
σ2Xu

�
X̂, K̂X̂

�

16σ2
K̂









���f
�
X̂
����

σ2
K̂





− 1
2

×






√
π

2
3
2

Psi

�
1−p(X̂,λ̂)

2

�
− Psi

�
−p(X̂,λ̂)

2

�

Γ
�
−p
�
X̂, λ̂

�� − 2
p(X̂,λ̂)

2
√
π

Γ

�
1−p(X̂,λ̂)

2

�
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�






Expression (225) is computed using that:
Z ∞

0

zD2
p (z) dz =

Z ∞

0

Dp+1 (z)Dp (z) dz + p

Z ∞

0

Dp−1 (z)Dp (z) dz

Z ∞

0

zD2
p (z) dz =

Γ
�
−p+1

2

�
Γ
�
1−p
2

�
− Γ

�
−p
2

�
Γ
�
−p
2

�

2p+2Γ (−p− 1) Γ (−p) + p
Γ
�
−p
2

�
Γ
�
2−p
2

�
− Γ

�
−p−1

2

�
Γ
�
−p−1

2

�

2p+1Γ (−p) Γ (−p+ 1)
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and: Z
K̂D2

p(X̂,λ̂)

�
K̂
�
f2
�
X̂
�� 1

4

�
=
�
f
�
X̂
��−1 Z

uD2
p(X̂,λ̂) (u)

We obtain:

KX̂




Ψ
�
X̂
�




2

≃ exp




−

σ2Xu
�
X̂, K̂X̂

�

16
�
σ2
K̂

�2










���f
�
X̂
����

σ2
K̂





−1

C (228)

×
 
Γ
�
−p+1

2

�
Γ
�
1−p
2

�
− Γ

�
−p
2

�
Γ
�−p
2

�

2p+2Γ (−p− 1) Γ (−p) + p
Γ
�
−p
2

�
Γ
�
2−p
2

�
− Γ

�
−p−1

2

�
Γ
�
−p−1

2

�

2p+1Γ (−p) Γ (−p+ 1)

!

where:
p = p

�
X̂, λ̂

�
(229)

Ultimately we can compute
K
X̂kΨ(X̂)k2
kΨ̂(X̂)k2 :

KX̂




Ψ
�
X̂
�




2




Ψ̂
�
X̂
�




2 ≃





���f
�
X̂
����

σ2
K̂





− 1
2 Γ(− p+1

2 )Γ(
1−p
2 )−Γ(−

p
2 )Γ(

−p
2 )

2p+2Γ(−p−1)Γ(−p) + p
Γ(− p

2 )Γ(
2−p
2 )−Γ(−

p−1
2 )Γ(−

p−1
2 )

2p+1Γ(−p)Γ(−p+1)
√
π

2
3
2

Psi( 1−p2 )−Psi(−
p
2 )

Γ(−p)

≡





���f
�
X̂
����

σ2
K̂





− 1
2

h (p)

≃





���f
�
X̂
����

σ2
K̂





− 1
2 r

p+
1

2

so that:

exp




−

σ2Xu
�
X̂, K̂X̂

�

�
σ2
K̂

�2




 ≃ exp




−

σ2X
�
p+ 1

2

�2
(f ′ (X))2
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���f
�
X̂
����
3




 (230)

We end this section by finding asymptotic form for



Ψ̂
�
X̂
�




2

and KX̂




Ψ
�
X̂
�




2

For ε << 1 an asymptotic form yields that:

Dp(X̂,λ̂)

�
K̂
�
f2
�
X̂
�� 1

4

�
≃ exp



−
K̂2
���f
�
X̂
����

4σ2
K̂








K̂





���f
�
X̂
����

σ2
K̂





1
2





p(X̂,λ̂)

(231)

and we obtain:




Ψ̂
�
X̂
�




2

= C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂





×
Z ∞

0
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



−

�
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F(X̂,KX̂)
f2(X̂)

�2 ���f
�
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����

2σ2
K̂












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K̂
F
�
X̂,KX̂

�
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�
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�









���f
�
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σ2
K̂





1
2





2p(X̂,λ̂)

dK̂
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A change of variable w =

 

K̂+
σ2
K̂
F(X̂,K

X̂)
f2(X̂)

!2

|f(X̂)|
2σ2

K̂

leads to:
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�
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�




2

≃ C exp


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σ2Xu

�
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�

σ2
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






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σ2
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


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2




2

p(X̂,λ̂)− 1
2Γ

�
p
�
X̂, λ̂

�
+
1

2

�
− 2

p(X̂,λ̂)
2
√
π

Γ

�
1−p(X̂,λ̂)

2

�
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�






(232)
By the same token we can use the asymptotic form (231) to find KX̂ :

KX̂




Ψ
�
X̂
�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂




Z
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
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K̂2
���f
�
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����

2σ2
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






K̂





���f
�
X̂
����

σ2
K̂





1
2





2p(X̂,λ̂)

dK̂

=

σ2
K̂
C exp

�
−σ2Xu(X̂,K̂X̂)

σ2
K̂

�

���f
�
X̂
����

Z
y exp

�
−y

2

2

�
y2p(X̂,λ̂)

We set y =
√
2w and we obtain:

KX̂




Ψ
�
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�




2

≃ C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂



 2p(X̂,λ̂)
σ2
K̂���f
�
X̂
����

Z
exp (−w)wp(X̂,λ̂)dw

= C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂



 2p(X̂,λ̂)
σ2
K̂���f
�
X̂
����
Γ
�
p
�
X̂, λ̂

�
+ 1
�

A3.1.4.2 Computation of C as a function of λ̂: Ultimately, we need to determine the value of the
Lagrange multiplier λ̂ and of the associated value of C. We do so by integrating (216) and the result is
constrained to be N̂ , the total number of agents:

N̂ =

Z 


Ψ̂λ,C
�
K̂, X̂

�



2

dK̂dX̂ =

Z 


Ψ̂
�
X̂
�




2

dX̂

Using (227) and (230), we have:

N̂ =

Z 


Ψ̂
�
X̂
�




2

≃
Z
C exp



−
σ2Xu

�
X̂, K̂X̂

�

σ2
K̂









���f
�
X̂
����

σ2
K̂





− 1
2

(233)

×






√
π

2
3
2

Psi

�
1−p(X̂,λ̂)

2

�
− Psi

�
−p(X̂,λ̂)

2

�

Γ
�
−p
�
X̂, λ̂

�� − 2
p(X̂,λ̂)

2
√
π

Γ

�
1−p(X̂,λ̂)

2

�
σ2
K̂
F
�
X̂,KX̂

�

f2
�
X̂
�




 dX̂

≃
Z
C exp




−

σ2Xσ
2
K̂

�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3










���f
�
X̂
����

σ2
K̂





− 1
2 √

π

2
3
2

Psi

�
1−p(X̂,λ̂)

2

�
− Psi

�
−p(X̂,λ̂)

2

�

Γ
�
−p
�
X̂, λ̂

�� dX̂

with f and g given by (217) and (218). We thus obtain C as a function of λ̂. For f
�
X̂
�
slowly varying around

its average we can replace
���f
�
X̂
���� and f ′ (X) by

D���f
�
X̂
����
E
and hf ′ (X)i, where the bracket

D
A
�
X̂
�E
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represents the average of the quantity A
�
X̂
�
over the sectors space. Given that the integrated function is

of order Γ (p), we can replace the integral by the maximal values of the integrand. Consequently, we have:

C
�
p̄
�
λ̂
��
≃

exp




−

σ2Xσ
2
K̂

 
(p̄(λ̂)+1

2 )f′(X0)
f(X̂0)

!2

96|f(X̂0)|




 N̂Γ

�
−p̄
�
λ̂
��

�
h|f(X̂)|i

σ2
K̂

�− 1
2

Vr

�
Psi

�
− p̄(λ̂)−1

2

�
− Psi

�
− p̄(λ̂)

2

�� (234)

where:

p̄
�
λ̂
�
=





−
(g(X̂0))

2

σ2
X̂

+

�
f
�
X̂0

�
+ 1

2

���f
�
X̂0

����+∇X̂g
�
X̂0,KX̂0

�
− σ2

K̂
F 2
�
X̂0,KX̂0

�

2f2(X̂0)
+ λ̂

�

���f
�
X̂0

����






(235)

and:

X̂0 = argmin
X̂






σ2Xσ
2
K̂

�
(p(λ̂)+ 1

2 )f
′(X)

f(X̂)

�2

96
���f
�
X̂
����






(236)

and Vr is the volume of the reduced space where the maximum is reached defined by:

Vr =
X

X̂/p(X̂,λ̂)=p̄(λ̂)

1�����

�
kΨ̂(X̂)k2

�′′

C

�����

We thus can replace C by C
�
λ̂
�
and we are left with an infinite number of solutions of (198) parametrized

by λ̂ and given by (216). We write



Ψ̂λ̂

�
K̂, X̂

�



2

the solution for λ̂.

A3.1.4.2 Identification equation for KX̂ To each state



Ψ̂λ̂

�
K̂, X̂

�



2

, we can associate an average

level of KX̂,λ̂ satisfying (228) rewritten as a function of λ̂. Using (230) we find:

KX̂,λ̂




Ψ̂λ̂
�
X̂
�




2

= K̂X̂,λ̂ (237)

= exp




−

σ2Xσ
2
K̂

�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3










���f
�
X̂
����

σ2
K̂





−1

×C
�
p̄
�
λ̂
�� Γ

�
−p+1

2

�
Γ
�
1−p
2

�
− Γ

�
−p
2

�
Γ
�−p
2

�

2p+2Γ (−p− 1) Γ (−p) + p
Γ
�
−p
2

�
Γ
�
2−p
2

�
− Γ

�
−p−1

2

�
Γ
�
−p−1

2

�

2p+1Γ (−p) Γ (−p+ 1)

!

where:

p
�
X̂, λ̂

�
= −

�
g
�
X̂
��2

+ σ2
X̂

�
f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

+ λ̂

�

σ2
X̂

r
f2
�
X̂
� − 1

2
(238)

As explained in the core of the paper, to compute KX̂ we must average (237) over λ̂ with the weight

exp (− (S3 + S4)). Given equation (191), a solution (216) for a given λ̂ and taking into account the constraint


Ψ̂
�
K̂, X̂

�



2

= N̂ , has the associated normalized weight (see (222)):

38



w
����λ̂
���
�
=

exp
�
−
����λ̂
���−M

�
N̂
�

R
|λ̂|>M exp

�
−
����λ̂
���−M

�
N̂
�
d
���λ̂
���

with M is the lower bound for
���λ̂
���.

This lower bound is found by considering (199) and adding the term proportional to
σ2
X̂

2 :

σ2
X̂

2
∇2
X̂
Ψ̂ +∇2yΨ̂−






r
f2
�
X̂
�y2

4
+

�
g
�
X̂
��2

σ2
X̂

+



f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
−
σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
� + λ̂








Ψ

(239)
multiplying (239) by Ψ̂† and integrating. It yields:

0 = −
σ2
X̂

2

Z �
∇X̂Ψ̂†

��
∇X̂Ψ̂

�
(240)

−1
2

Z r
f2
�
X̂
���

∇yΨ̂†
��
∇yΨ̂

�
+ Ψ̂†

y2

4
Ψ̂

�
+

Z
Ψ̂†y=0

�
∇yΨ̂

�

y=0

−
Z
Ψ̂†






r
f2
�
X̂
�y2

4
+

�
g
�
X̂
��2

σ2
X̂

+



f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
−
σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
� + λ̂








Ψ

The first part of the right hand side in (240):

−
σ2
X̂

2

Z �
∇X̂Ψ̂†

��
∇X̂Ψ̂

�
−
Z r

f2
�
X̂
��1

2

�
∇yΨ̂†

��
∇yΨ̂

�
+ Ψ̂†

y2

4
Ψ̂

�
(241)

includes the hamiltonian of a sum of harmonic oscillators, and thus (241) is lower than −
R
Ψ̂†
q
f2(X̂)Ψ̂
2 .

Consequently, we have the inequality for all X̂:

Ψ̂†y=0

�
∇yΨ̂

�

y=0
+

Z
Ψ̂†





���λ̂
���−

�
g
�
X̂
��2
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X̂

−



f
�
X̂
�
+∇X̂g

�
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�
−
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K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
�








ΨdK̂

>

R
Ψ̂†
r
f2
�
X̂
�
Ψ̂dK̂

2

Since: ���λ̂
���
Z
|Ψ|2 dK̂ =

���λ̂
���
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�
X̂
�




2

and Ψ̂†y=0

�
∇yΨ̂

�

y=0
is of order 1 <<




Ψ̂
�
X̂
�




2

since it is integrated over X̂ only. Consequently, the

condition reduces to:

���λ̂
���



Ψ̂
�
X̂
�




2

>

Z
Ψ̂†






�
g
�
X̂
��2
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X̂

+ f
�
X̂
�
+
1

2

r
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�
X̂
�
+∇X̂g

�
X̂,KX̂

�
−
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K̂
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�
X̂,KX̂

�

2f2
�
X̂
�




ΨdK̂

that is:

���λ̂
��� >

�
g
�
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��2
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X̂
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�
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�
+
1

2

r
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�
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�
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�
X̂,KX̂

�
−
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�
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�

2f2
�
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�
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for each X̂, and we have:

M = max
X̂






�
g
�
X̂
��2

σ2
X̂

+ f
�
X̂
�
+
1

2

r
f2
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
−
σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
�




 (242)

Note that in general, for ε << 1, f
�
X̂
�
>> 1 and:

σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
� <<

�
g
�
X̂
��2

σ2
X̂

+ f
�
X̂
�
+
1

2

r
f2
�
X̂
�
+∇X̂g

�
X̂,KX̂

�

so that:

M ≃ max
X̂






�
g
�
X̂
��2
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X̂

+ f
�
X̂
�
+
1

2

r
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�
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�
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�



 (243)

Having found M , this yields:

w
����λ̂
���
�
= N̂ exp

�
−
����λ̂
���−M

�
N̂
�

(244)

Consequently, averaging equation (237) yields:

KX̂ =

Z
KX̂,λ̂N̂ exp

�
−
����λ̂
���−M

�
N̂
�
dλ̂

KX̂




Ψ
�
X̂
�




2

=

Z
C
�
λ̂
�
w
����λ̂
���
�
exp




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σ2Xσ
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�
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(f ′ (X))2
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�
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







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K̂


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−1

(245)

×
 
Γ
�
−p+1

2

�
Γ
�
1−p
2

�
− Γ

�
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2

�
Γ
�−p
2

�

2p+2Γ (−p− 1) Γ (−p) + p
Γ
�
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Γ
�
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2

�
− Γ

�
−p−1
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�
Γ
�
−p−1

2

�

2p+1Γ (−p) Γ (−p+ 1)

!

dλ̂

with C
�
p̄
�
λ̂
��

given by (234). Given (244), the average value of
���λ̂
��� is M + 1

N̂
and have:

KX̂




Ψ
�
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�




2 ���f
�
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�
p̄

�
−
�
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(246)

×
 
Γ
�
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�
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2

�
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�
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Γ
�
−p
2
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Γ
�
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2

�
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�
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�
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with:
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�
g
�
X̂
��2

+ σ2
X̂

�
f
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

−
�
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N̂
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σ2
X̂

r
f2
�
X̂
� − 1

2

We can consider that 1
N̂
<< 1 so that C

�
p̄
�
−
�
M − 1

N̂

���
≃ C (p̄ (−M)). It amounts to consider

���λ̂
��� =M .

We will also write p̄ (−M) = p̄ and given (??) we have:
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
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

M − (g(X̂0))
2
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+

�
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�
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(247)
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and:

p =

M −
 
(g(X̂))

2

σ2
X̂

+

 

f
�
X̂
�
+

q
f2(X̂)
2 +∇X̂g

�
X̂,KX̂

�
− σ2

K̂
F 2(X̂,KX̂)
2f2(X̂)

!!

r
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�
X̂
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Equation (234) rewrites:

C (p̄) ≃

exp




−

σ2Xσ
2
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(p̄(λ̂)+1

2 )f′(X0)
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


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�
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�
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and (246) reduces to:
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�
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�
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1

2

�
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with:

Γ̂
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!

We note that, asymptotically:
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�
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2

�
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


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A3.1.4.3 Replacing kΨ(X)k2 in the KX̂equation We can isolate KX̂ in (246) by using (166) and (180)

to rewrite



Ψ
�
X̂
�




2

:

Using (151a):

D
�
kΨk2

�
= 2τ kΨ(X)k2 + 1

2σ2X
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K̂X

kΨ(X)k2

!

1−
H ′
�
K̂X

�

H
�
K̂X

� K̂X

kΨ(X)k2





= 2τ kΨ(X)k2 + 1

2σ2X
(∇XR (X))2H2 (KX)

�
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�

We rewrite kΨ(X)k2 as a function of KX :
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D
�
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�
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X

(∇XR (X))2H2 (KX)
�
1− H′(KX)

H(KX)
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�

2τ
≡ D − H̄ (X,KX) (253)

Ultimately, the equation (250) for KX̂ can be rewritten:

KX̂

���f
�
X̂
���� =

C (p̄)σ2
K̂

kΨ(X)k2
Γ̂

�
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1

2

�
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�
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1

2

�
(254)

with C (p̄) given by (249), Γ̂
�
p+ 1

2

�
defined in (251) and p given by (248).
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A3.2 Approaches to solutions for KX̂

We detail some computations of the three approaches detailed in the core of the paper.

A3.2.1 First approach: Differential form of (75)

To understand the behavior of the solutions of (75), we can write its differential version. Assume a variation

δY
�
X̂
�
for any parameter of the system at point X̂. This parameter Y

�
X̂
�
can be either R (X), its

gradient, or any parameter arising in the definition of f and g. This induces a variation δKX̂ for the average
capital. The equation for δKX̂ is obtained by differentiation of (75):
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
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and:
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A. 3.2.1.1 Expanded form of (255) In an expanded form (255) writes:
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with H the heaviside function. Moreover:
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f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂Y


Ψ

�
X̂,KX̂

�



2 +mY

�
X̂,KX̂

�









δY

D

with:

D = 1 +











∂f(X̂,KX̂)
∂K

X̂

�
p+H

�
f
�
X̂,KX̂

��
+ 1

2

�
k (p)

f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂K

X̂


Ψ
�
X̂,KX̂

�



2 + l

�
X̂,KX̂

�



 (257)

−k (p) ∂K
X̂
(p)
�
KX̂

A. 3.2.1.2 Local stability As explained in the text, equation (77) can be understood as the fixed-point
equation of a dynamical system through the following mechanism.

Each variation δY
�
X̂
�
in the parameters impacts the average capital, which must then be computed

with the new parameters. The first change induced is written δK
(1)

X̂
:

δK
(1)

X̂
=

∂

∂Y
�
X̂
�






σ2
K̂
C (p̄) 2Γ̂

�
p+ 1

2

�

���f
�
X̂,KX̂

����



Ψ
�
X̂,KX̂

�



2




 δY

�
X̂
�

(258)
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In a second step, the variation δKX̂ impacts the various functions implied in (75), and indirectly modifies
KX̂ through the first term in the rhs of (77):




−






∂f(X̂,KX̂)
∂K

X̂

f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂K

X̂


Ψ
�
X̂,KX̂

�



2




+ k (p)

∂p

∂KX̂




KX̂δK

(1)

X̂
(259)

These two effects combined, (258) and (259), yield the total variation δKX̂ .

Importantly, note that if we can interpret δK
(1)

X̂
as a variation at time t, we can also infer from the

indirect effect (259) that δKX̂ is itself a variation at time t+ 1. Equation (77) can thus be seen as the fixed
point equation of a dynamical system written:

δKX̂ (t+ 1) =




−






∂f(X̂,KX̂)
∂K

X̂

f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂K

X̂


Ψ
�
X̂,KX̂

�



2 + l

�
X̂,KX̂

�



+ k (p)

∂p

∂KX̂




KX̂δKX̂ (t)(260)

+
∂

∂Y
�
X̂, t

�






σ2
K̂
C (p̄) 2Γ̂

�
p+ 1

2

�

���f
�
X̂,KX̂

����



Ψ
�
X̂,KX̂

�



2




 δY

�
X̂, t

�

whose fixed point is the solution of (77):

δKX̂ =

∂

∂Y (X̂)

�
σ2
K̂
C(p̄)2Γ̂(p+ 1

2 )
|f(X̂,KX̂)|kΨ(X̂,KX̂)k2

�

1 +








∂f(X̂,K

X̂)
∂K

X̂

f(X̂,KX̂)
+

∂kΨ(X̂,K
X̂)k2

∂K
X̂

kΨ(X̂,KX̂)k2
+ l
�
X̂,KX̂

�


− k (p) ∂p
∂K

X̂



KX̂

δY
�
X̂
�

(261)

This solution (??) is stable when:

�������
k (p)

∂p

∂KX̂

−






∂f(X̂,KX̂)
∂K

X̂

f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂K

X̂


Ψ
�
X̂,KX̂

�



2 + l

�
X̂,KX̂

�





�������
< 1 (262a)

i.e. when D, defined in (??), is positive, and unstable otherwise. So that the stability of this average capital
depends, in last analysis, on the sign of D.

A 3.2.1.3 Applications of the differential form: dependency in expected returns The main
application of equation (??) is to consider a parameter denoted Y (X̂), that encompasses the relative expected
returns of sector X vis-à-vis its neighbouring sectors, and defined as:

Y (X̂) = p
�
X̂
�

(263)

Interpretations are given in the text. To compute the dependency of averagecapital in this parameter, we
use (??), and we have:

δKX̂

KX̂

=

k(p)

f(X̂,KX̂)

D
δp
�
X̂
�

(264)

Given equation (??), k (p) is positive at the first order in σ2X . More precisely, using equation (??):

k (p) ∼∞

s
p− 1

2

2
−
σ2Xσ

2
K̂

�
p+ 1

2

�
(f ′ (X))2

48
���f
�
X̂
����
3
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along with equation (??), we can infer that

q
p− 1

2

2 is of order 1
σX

and
σ2Xσ

2
K̂
(p+ 1

2 )(f
′(X))

2

48|f(X̂)|3 ∼ 1.
Consequently, in a stable equilibrium, i.e. for D > 0, equation (79) implies that the dependency of KX̂

in the parameter p
�
X̂
�
is positive:

δKX̂

δp
�
X̂
� > 0

We have seen above that p
�
X̂
�
is maximal for a maximum expected long-term return R

�
X̂,KX̂

�
: when

the equilibrium is stable, capital accumulation is maximal for sectors that are themselves a local maximum

for R
�
X̂,KX̂

�
.

On the other hand, when the equilibrium is unstable, i.e. for D < 0, the capital KX̂ is minimal for

R
�
X̂,KX̂

�
maximal.

Actually, as seen above, in the instability range D < 0 ,the average capital KX̂ acts as a threshold. When,
due to variations in the system’s parameters, the average capital per firm is shifted above the threshold KX̂ ,
capital will either move to the next stable equilibrium, possibly zero, or tend to infinity. Our results show
that when the expected long-term return of a sector increases, the threshold KX̂ decreases, which favours
capital accumulation.

A 3.2.1.3 Applications of the differential form: dependency in short term returns A second

use of equation (??) is to consider Y (X̂) as any parameter-function involved in the definition of f
�
X̂,KX̂

�

that may condition either real short-term returns or the price-dividend ratio.

We can see that in this case, Y (X̂) only impacts f
�
X̂,KX̂

�
, so that equation (??) simplifies and yields:

δKX̂

KX̂

= −
mY

�
X̂,KX̂

�

D
δY (265)

− 1
D






∂f(X̂,KX̂)
∂Y

�
1 +

�
p+H

�
f
�
X̂,KX̂

��
+ 1

2

�
k (p)

�

f
�
X̂,KX̂

� +

∂kΨ(X̂,KX̂)k2
∂Y


Ψ

�
X̂,KX̂

�



2




 δY

Incidentally, note that p being proportional to f−1
�
X̂
�
, mY

�
X̂,KX̂

�
rewrites:

−mY

�
X̂,KX̂

�
=

σ2Xσ
2
K̂

�
3
�
∇Y

���f
�
X̂
����
� �
f ′
�
X̂
��2

−∇Y
�
f ′
�
X̂
��2 ���f

�
X̂
����
� �
p+ 1

2

�2

120
���f
�
X̂
����
4 (266)

+∇Y
���f
�
X̂
����
σ2Xσ

2
K̂
p
�
p+ 1

2

�
(f ′ (X))2

48
���f
�
X̂
����
4

The first term in the rhs of (265) is the impact of an increase in investors’ short-term returns. The second is
the variation in capital needed to maintain investors’ overall returns.

The sign of
δK

X̂

K
X̂

given by equation (265) can be studied under two cases: the stable and the unstable

equilibrium.
Let us first consider the case of a stable equilibrium, i.e. D > 0.
The first term in the rhs of (265), the variation induced by an increase in short-term returns, is in general

positive for f ′
�
X̂
�
proportional to f

�
X̂
�
, that is for instance when the function f

�
X̂
�
, that describes

short-term returns and prices, depends on the variable KX̂ raised to some arbitrary power.
Indeed in that case:

3
�
∇Y

���f
�
X̂
����
� �
f ′
�
X̂
��2

−∇Y
�
f ′
�
X̂
��2 ���f

�
X̂
���� =

�
∇Y

���f
�
X̂
����
� �
f ′
�
X̂
��2
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The second term in the rhs of (265) is in general negative. When
∂f(X̂,KX̂)

∂Y > 0, i.e. when returns are
increasing in Y , a rise in Y increases returns and decreases the capital needed to maintain these returns.

Similarly, when
∂kΨ(X̂,KX̂)k2

∂Y > 0, i.e. when the number of agents in sector X̂ is increasing in Y , a rise in Y

increases the number of agents that move towards point X̂, and the average capital per firm diminishes.
The net variation (265) of KX̂ is the sum of these two contributions. Considering an expansion of

(265) in powers of σ2X , the first contribution −mY

�
X̂,KX̂

�
is of magnitude

�
σ2X
�−1

, whereas the second

is proportional to k (p) ∼ (σX)
−1
. The variation

δK
X̂

K
X̂

is thus positive:
δK

X̂

K
X̂

> 0. In most cases, a higher

short-term return, decomposed as a sum of dividend and price variation, induces a higher average capital.
This effect is magnified for larger levels of capital: the third approach will confirm that, in most cases, the

return f
�
X̂
�
is asymptotically a constant c << 1 when capital is high: KX̂ >> 1.

Turning now to the case of an unstable equilibrium, i.e. D < 0, the variation
δK

X̂

K
X̂

is negative:
δK

X̂

K
X̂

< 0.

In the instability range, and due to this very instability, an increase in returns f
�
X̂
�
reduces the threshold

of capital accumulation for low levels of capital. When short-term returns f
�
X̂
�
increase, a lower average

capital will trigger capital accumulation towards an equilibrium. Otherwise, when average capital KX̂ is
below this threshold, it will converge toward 0.

A3.2.2 Second approach: Expansion around particular solutions

As explained in the text, we choose to expand (250), or equivalently (254), around solutions with p = 0.

A3.2.2.1 Equation (75) for p = 0 To find the solution with p = 0, we maximize the function:

A
�
X̂
�
=

�
g
�
X̂
��2

σ2
X̂

+ f
�
X̂
�
+
1

2

r
f2
�
X̂
�
+∇X̂g

�
X̂,KX̂

�
−
σ2
K̂
F 2
�
X̂,KX̂

�

2f2
�
X̂
�

We write:
M = max

X̂
A
�
X̂
�

(267)

and denote by
�
X̂M ,KX̂M

�
the solutions X̂M of (267) with KX̂M

their associated value of average capital

per firm.
Given that

Γ̂

�
1

2

�
= exp




−

σ2Xσ
2
K̂

�
f ′
�
X,KX̂,M

��2

384
���f
�
X̂,KX̂,M

����
3




 (268)

(250) becomes at points
�
X̂M ,KX̂M

�
and p = 0:

KX̂,M

���f
�
X̂M ,KX̂M

����



Ψ
�
X̂M ,KX̂M

�



2

≃ σ2
K̂
C (p̄) exp




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σ2Xσ
2
K̂

�
f ′
�
X̂M ,KX̂M

��2

384
���f
�
X̂M ,KX̂M

����
3




 (269)

This equation has in general several solutions, depending on the assumptions on f
�
X̂M ,KX̂M

�
.

Note that once a solution KX̂ of (254) is found, the value of C (p̄) can be obtained by solving (247) and
using (249). These solutions are discussed in the text.
The next paragraph computes the expansion of (250) around these solutions with p = 0. Remark that

coming back to (250) and (254) for general values of p defined in (248), the value of C (p̄)σ2
K̂
can be replaced

by KX̂M

���f
�
X̂M ,KX̂M

����



Ψ
�
X̂M ,KX̂M

�



2

for any solution
�
X̂M ,KX̂M

�
.
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A3.2.2.2 Expansion around particular solutions To better understand the behavior of the solutions

of equation (75), we expand this equation around the points
�
X̂,KX̂,M

�
that solve equation (75). We can

find approximate solutions to (250):

KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
���� = C (p̄)σ2

K̂
Γ̂

�
p+

1

2

�
(270)

with:
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×
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�−p
2

�
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!

for general form of the functions f
�
X̂
�
and g

�
X̂
�
by expanding (270), for each X̂,around the closest point

X̂M satisfying (270) with p = 0. We use that:
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(272)

= 1− p (γ0 + ln 2− 2) + o (p)

with γ0 the Euler-Mascheroni constant, as well as the following relations:
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the expansion of (270) at the lowest order, is:
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Given the maximization (267), the two last terms in the right hand side is equal to 0.

�
KX̂ −KX̂,M

�
=

1

D




σ2Xσ

2
K̂

3
�
f ′
�
X̂
��3

− 2f ′ (X) f ′′
�
X̂
� ���f

�
X̂
����

120
���f
�
X̂
����
4 (273)
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To find a contribution due to this term, we must expand (270) to the second order. The second order con-

tributions proportional to
�
KX̂ −KX̂,M

�2
modifies slightly (273) and the term

�
KX̂ −KX̂,M

��
X̂ − X̂M

�

shifts D at the first order. Both modifications do not alter the interpretation for (273). We can thus consider
the sole term:
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Due to (254), for H
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slowly varying, the contribution due to the derivatives of
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�
X̂
�




2

can be

neglected. Moreover the contribution due to the derivative of
���f
�
X̂
���� are negligible with respect to the first

order terms. We can thus consider only the second order contributions due to Γ̂
�
p+ 1

2

�
. In the rhs of (271),

the second term is dominant. Moreover, we can check that in the second order expansion of (272), the term
in p2 can be neglected compared to −p (γ0 + ln 2− 2). Consequently, the relevant second order correction
to (273) is :

b
�
X̂ − X̂M

�
∇2
X̂
p
�
X̂ − X̂M

�
= b

�
X̂ − X̂M

�
∇2
X̂





M − (g(X̂,KX̂))

2

σ2
X̂

+ 3
2f
�
X̂,KX̂

�
+∇X̂g

�
X̂,KX̂

�

���f
�
X̂
����





�
X̂ − X̂M

�

and the relevant contributions to (273) are:

�
KX̂ −KX̂,M

�
=

1

D




σ2Xσ

2
K̂

3
�
f ′
�
X̂
��3

− 2f ′ (X) f ′′
�
X̂
� ���f

�
X̂
����

120
���f
�
X̂
����
4 (274)

−
∂f(X̂,KX̂)

∂X̂

f
�
X̂,KX̂

� −
∂kΨ(X̂,KX̂)k2

∂X̂


Ψ
�
X̂,KX̂

�



2






K
X̂,M

�
X̂ − X̂M

�

+
1

D

b

2

�
X̂ − X̂M

�
∇2
X̂





M − (g(X̂,KX̂))

2

σ2
X̂

+ 3
2f
�
X̂,KX̂

�
+∇X̂g

�
X̂,KX̂

�

���f
�
X̂
����






K
X̂,M

�
X̂ − X̂M

�

A3.2.2.3 Interpretation of (274) As in the first approach, D > 0 corresponds to a stable equilibrium,
and D < 0 to an unstable one. The expansion (??) describes the local variations of KX̂ in the neighbourhood
of the points KX̂,M . This approximation (??) suffices to understand the role of the parameters of the system.
We consider the case of stable equilibria, i.e. D > 0. Note that under unstable equilibria, D < 0, the

interpretations are inverted, since KX̂ is interpreted as a threshold35 .

The equation (??), that expands average capital at sector X̂M , is composed of a first order and a second
order contributions.
The first order part in the expansion (??) writes:

1

D




σ2Xσ

2
K̂

3
�
f ′
�
X̂
��3

− 2f ′ (X) f ′′
�
X̂
� ���f

�
X̂
����

120
���f
�
X̂
����
4 −

∂f(X̂,KX̂)
∂X̂

f
�
X̂,KX̂

� −
∂kΨ(X̂,KX̂)k2

∂X̂


Ψ
�
X̂,KX̂

�



2






K
X̂,M

�
X̂ − X̂M

�

(275)
It represents the variation of equilibrium capital as a function of its position. It is decomposed in three
contributions:

35See the first approach.
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For f ′
�
X̂
�
> 0, the second contribution in (275):

−
∂f(X̂,KX̂)

∂X̂

�
X̂ − X̂M

�

f
�
X̂,KX̂

�

is positive. It represents the decrease in capital needed to reach equilibrium. Actually, the return is higher
at point X̂ than at X̂M : a lower capital will yield the same overall return at point X̂. On the contrary, the
first contribution in (275):

σ2Xσ
2
K̂

3(f ′(X̂))
3−2f ′(X)f ′′(X̂)|f(X̂)|
120|f(X̂)|4

�
X̂ − X̂M

�

D

describes the "net" variation of capital due to a variation in f (X). When returns are decreasing, i.e. when

f ′
�
X̂
�
> 0 and f ′′

�
X̂
�
< 0, this first contribution has the sign of f ′

�
X̂
�
. An increase in returns attracts

capital.
The third term in (275):

− 1
D






∂kΨ(X̂,KX̂)k2
∂X̂


Ψ

�
X̂,KX̂

�



2






K
X̂,M

�
X̂ − X̂M

�

represents the number effect. Actually, when:

∂kΨ(X̂,KX̂)k2
∂X̂


Ψ

�
X̂,KX̂

�



2 > 0

the number of agents is higher at X̂ than at X̂M : the average capital per agent is reduced.
The second order contribution in (??) represents the effect of the neighbouring sector space on each

sector. Given the first order condition (82):

∇2
X̂




M −A

�
X̂
�

f
�
X̂
�





K
X̂,M

=




∇2
X̂

�
M −A

�
X̂
��

f
�
X̂
�





K
X̂,M

and since A
�
X̂M

�
is a maximum, we have:

�
X̂ − X̂M

�
∇2
X̂




M −A

�
X̂
�

f
�
X̂
�





K
X̂,M

�
X̂ − X̂M

�
> 0

When f
�
X̂
�
is constant, A

�
X̂M

�
is a local maximum, and KX̂M

is a minimum. To put it differently,

KX̂ is a decreasing function of A
�
X̂
�
. This is in line with the definition of A

�
X̂
�
36 , which measures the

relative attractiveness of sector X̂’s neighbours: the higher A
�
X̂
�
, the lower the incentive for capital to stay

in sector X̂.

A3.2.3 Third approach: Resolution for particular form for the functions

As stated in the text, we can find approximate solutions to (254) by choosing some forms for the parameters
functions. The solutions are then studied in some ranges for average capital per firm KX : KX >> 1,
KX >>> 1, KX << 1 and the intermediate range ∞ > KX > 1 In the case KX >>> 1, the distinction
between stable and unstable cases has to be made.
36See discussions after equations (??) and (??).
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A3.2.3.1 Function H2 (KX) We can choose for H2 (KX) a power function of KX :

H (KX) = K
η
X (276)

so that equation (57) rewrites:

kΨ(X)k2 ≃
D
�
kΨk2

�
− F

2σ2
X

�
(∇XR (X))2 + 2σ2X∇2

XR(KX ,X)
H(KX)

�
Kη
X

2τ
≡ D − L (X) (∇XR (X))2Kη

X (277)

A3.2.3.2 Function f To determine the function f , we must first assume a form for r (K,X), the physical
capital marginal returns, and for F1, the function that measures the impact of expected long-term return on
investment choices.
Assuming the production functions are of Cobb-Douglas type, i.e. B (X)Kα with B (X) a productivity

factor, we have for r (K,X):

r (K,X) =
∂r (K,X)

∂K
= αB (X)Kα−1 (278)

For function F1, the simplest choice would be a linear form:

F1




R
�
KX̂ , X̂

�

R
R (K ′

X′ , X ′) kΨ(X ′)k2 dX ′



 ≃ F1




R
�
KX̂ , X̂

�

D
Kα
X̂

ED
R
�
X̂
�E



 = b




Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1





where, for any function u
�
X̂
�
,
D
u
�
X̂
�E

denotes its average over the sector space, and b an arbitrary

parameter.

However, when capitalKα
X̂
→∞ and is concentrated at X̂, we have hKα

Xi ≃
Kα

X̂

Nα(X) , so that
Kα

X̂
R(X̂)

hKα
XihR(X)i →

Nα(X)R(X̂)
hR(X)i >> 1. To impose some bound on moves in the sector space we rather choose:

F1




R
�
KX̂ , X̂

�

D
Kα
X̂

ED
R
�
X̂
�E



 ≃ b arctan




Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1



 (279)

so that F1

�
R(KX̂

,X̂)
hKα

X̂
ihR(X̂)i

�
> 0 when

Kα

X̂
R(X̂)

hKα
XihR(X)i > 1.

Given the above assumptions, the general formula for f given in equation (60) rewrites:

f
�
X̂,Ψ, Ψ̂

�
=
1

ε



r
�
X̂
�
Kα−1
X̂

− γ



Ψ
�
X̂
�




2

+ b arctan




Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1







 (280)

This general formula can be approximated for
Kα

X̂
R(X̂)

hKα
XihR(X)i ≃ 1, when average capital in sector X̂ is close to

the average capital of the whole space, which is usually the case.

Using our choices (87), (278) and (279) for kΨ(X)k2 r
�
X̂
�
and F1 respectively, the equation (60) for

f
�
X̂,Ψ, Ψ̂

�
becomes:

f
�
X̂,Ψ, Ψ̂

�
=
1

ε







r
�
X̂
�
+

bR
�
X̂
�
Kα
X̂D

Kα
X̂

ED
R
�
X̂
�E



+ γL
�
X̂
�
Kη
X − γD − b





We may assume without impairing the results that η = α. We thus have:

f
�
X̂,Ψ, Ψ̂

�
=

1

ε








r
�
X̂
�

Kα
X̂

+
bR
�
X̂
�

D
Kα
X̂

ED
R
�
X̂
�E + γL

�
X̂
�


Kα
X̂
− γD − b



 (281)

≡ B1

�
X̂
�
Kα−1
X̂

+B2

�
X̂
�
Kα
X̂
− C

�
X̂
�
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where:

B1

�
X̂
�

=
αB

�
X̂
�

ε

B2

�
X̂
�

=
bR
�
X̂
�

ε
D
Kα
X̂

ED
R
�
X̂
�E +

γ

ε

C
�
X̂
�

= γD + b

A3.2.3.3 Function g To determine the form of function g, equation (61), we must first choose a form for
the function F0.

We assume that:
F0

�
R
�
X̂,KX̂

��
= a arctan

�
Kα
X̂
R
�
X̂
��

(282)

where is a an arbitrary constant.
Combined to our assumption for F1, (279), the formula (61) for g can be written:

g
�
X̂,Ψ, Ψ̂

�
= a∇X̂ arctan

�
Kα
X̂
R
�
X̂
��
+ b∇X̂ arctan




Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1



 (283)

where the arctan function ensures that the velocity in the sector space g increases with capital and is maximal
when average capital per firm in sector X̂ tends to infinity, i.e. Kα

X̂
→∞.

This general formula, equation (??), can be approximated for
Kα

X̂
R(X̂)

hKα
XihR(X)i ≃ 1, when average capital in

sector X̂ is close to the average capital of the whole space. It then reduces to:

g
�
X̂,Ψ, Ψ̂

�
≃

Kα
X̂D

Kα
X̂

E∇X̂R
�
X̂
�


1 +
bD

R
�
X̂
�E



 ≡ ∇X̂R
�
X̂
�
A
�
X̂
�
Kα
X̂

(284)

which in turn allows to approximate the gradient of g, ∇X̂g
�
X̂,Ψ, Ψ̂

�
, by:

∇X̂g
�
X̂,Ψ, Ψ̂

�
≃
∇2
X̂
R
�
X̂
�

D
Kα
X̂

E



1 +
bD

Kα
X̂

ED
R
�
X̂
�E



Kα
X̂
≡ ∇2

X̂
R
�
X̂
�
A
�
X̂
�
Kα
X̂

(285)

A3.2.3.4 Solving (254) Equation (254) can be studied by considering five cases presented in the text:

Case 1. Very high capital, KX̂ >>> 1, stable case In that case, KX̂ >>> 1, and we assume in

first approximation that (discarding the factor L
�
X̂
�
):




Ψ
�
X̂
�




2

≃ D −
�
∇XR

�
X̂
��2

Kα
X̂
<< 1 (286)
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This corresponds to a very high level of capital. Consequently, equation (280) implies that the function

f
�
X̂
�
can be rewritten:

f
�
X̂
�

=
1

ε



r
�
X̂
�
Kα−1
X̂

− γ



Ψ
�
X̂
�




2

+ b arctan




Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1









≃ b



π
2
− hK

α
Xi hR (X)i
Kα
X̂
R
�
X̂
�





≡ c− d

Kα
X̂
R
�
X̂
� ≃ c > 0

Consequently, the expressions for f ′
�
X̂
�
g
�
X̂
�
and ∇X̂g

�
X̂
�
(297) and (298) are still valid.

Two different cases arise in the resolution of (250).

First, we assume that
�
∇X̂R

�
X̂
��2

6= 0.

In this case, we will solve (250) by using (286) to replace KX̂ ≃
�

D

(∇XR(X̂))
2

� 1
α

. We also change the

variable D

(∇XR(X̂))
2 → D temporarily for the sake of simplicity.

Inequality (286) along with KX̂ >>> 1 and (280) implies that only the case f > 0 has to be considered.
Note that using our results about stability, it is easy to check that in that case, this solution is locally

unstable. A very high level of capital has the tendency to attract more investments.
Given our assumptions, equation (254) becomes:

�
∇XR

�
X̂
��2

D
1
α

�
D −Kα

X̂

�
= C (p̄)σ2

K̂
exp




−

σ2Xσ
2
K̂

�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3





Γ
�
p+ 3

2

�
���f
�
X̂
����

(287)

or equivalently:

Kα
X̂
= D −

C (p̄)σ2
K̂
exp

�
−σ2Xσ

2
K̂
(p+ 1

2 )
2
(f ′(X))

2

96|f(X̂)|3
�
Γ
�
p+ 3

2

�

�
∇XR

�
X̂
��2

D
1
α

���f
�
X̂
����

(288)

Then, defining V = 1
Kα

X̂

as in the first case, we can write (288) as an equation for V << 1 by replacing

all quantities in term of V and then perform a first order expansion.
First, we write (288) as:

V − 1

D −
C(p̄)σ2

K̂
exp

 

−
σ2
X
σ2
K̂
(p+1

2 )
2
(f′(X))2

96|f(X̂)|3

!

Γ(p+ 3
2 )

(∇XR(X̂))
2
D

1
α |f(X̂)|

= 0 (289)

As in the previous case, the first order expansion in V of Γ
�
p+ 3

2

�
arising in (289) is given by:

Γ

�
p+

3

2

�
≃ Γ

�
M

c

�
+
MV

c




∇2
X̂
R
�
X̂
�
f

MR
�
X̂
� +

d

cR
�
X̂
�



Γ′
�
M

c

�
(290)

Moreover, at the first order:

exp




−

σ2Xσ
2
K̂

�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3




 ≃ 1
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and (289) becomes:

V −

�
∇X̂R

�
X̂
��2

D
1
α

���f
�
X̂
����

�
∇X̂R

�
X̂
��2

D1+ 1
α

���f
�
X̂
����− C (p̄)σ2

K̂
Γ
�
p+ 3

2

� = 0

that is:

V −

�
∇X̂R

�
X̂
��2

D
1
α

�
c− dV

R(X̂)

�

�
∇X̂R

�
X̂
��2

D1+ 1
α

�
c− dV

R(X̂)

�
− C (p̄)σ2

K̂
Γ
�
p+ 3

2

� = 0 (291)

Using (290) the first order expansion of the dominator in (291) is:

�
∇X̂R

�
X̂
��2

D1+ 1
α



c− dV

R
�
X̂
�



− C (p̄)σ2
K̂
Γ

�
p+

3

2

�

=
�
∇X̂R

�
X̂
��2

D1+ 1
α c− C (p̄)σ2

K̂
Γ

�
M

c

�

−




�
∇X̂R

�
X̂
��2

D1+ 1
α

d

R
�
X̂
� +

C (p̄)σ2
K̂
M

c




∇2
X̂
R
�
X̂
�
f

MR
�
X̂
� +

d

cR
�
X̂
�



Γ′
�
M

c

�

V

so that (291) writes:

�
∇X̂R

�
X̂
��2

D
1
α c

�
∇X̂R

�
X̂
��2

D1+ 1
α c− C (p̄)σ2

K̂
Γ
�
M
c
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=





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�
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��2

D
1
α c

��
∇X̂R

�
X̂
��2
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d
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M

c

�
∇2
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R(X̂)f

MR(X̂)
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�
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�
M
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�
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��2

D1+ 1
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Γ
�
M
c

��2





V
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�
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�
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��2

D
1
α

d

R(X̂)
�
∇X̂R

�
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��2

D1+ 1
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K̂
Γ
�
M
c

�V

Equation (292) can be solved for V with solution:

1

V
= D −

C (p̄)σ2
K̂
Γ
�
M
c

�

�
∇X̂R

�
X̂
��2

D
1
α c
+

d

cR
�
X̂
�




1−

�
1 +

C(p̄)σ2
K̂
MΓ(Mc )

c(∇X̂
R(X̂))

2
D1+ 1

α

�
∇2
X̂
R(X̂)f
Md + 1

c

�
Psi
�
M
c

��

�
1− C(p̄)σ2

K̂
Γ(Mc )

(∇X̂
R(X̂))

2
D1+ 1

α c

�






Ultimatly, restoring the variable:

D → D
�
∇X̂R

�
X̂
��2
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we obtain the solution Kα
X̂
= 1

V :

Kα
X̂

=
D

�
∇X̂R

�
X̂
��2 −

C (p̄)σ2
K̂
Γ
�
M
c

�

�
∇X̂R

�
X̂
��2(1− 1

α )
D

1
α c

(293)

+
d

cR
�
X̂
�





1−

�
1 +

C(p̄)(∇X̂
R(X̂))

2
α σ2

K̂

cD1+ 1
α

�
M
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∇2
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R(X̂)f
d

�
Γ′
�
M
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��

 

1− (∇X̂
R(X̂))

2
αC(p̄)σ2

K̂

cD1+ 1
α

Γ
�
M
c

�
!






As stated in the text, this is increasing in c, i.e. in f
�
X̂
�
and in R

�
X̂
�
. This corresponds to a stable level

of capital.

Case 2. Very high capital, KX̂ >>> 1, unstable case In this second case, we consider that
�
∇X̂R

�
X̂
��2

→ 0 and formula (286)and (293) are not valid anymore. Coming back to (146) leads rather

to replace (∇XR (X))2:

(∇XR (X))2 → (∇XR (X))2 + σ2X
∇2XR (KX , X)

H (KX)
= σ2X

∇2XR (KX , X)

H (KX)

Thus, if ∇2XR (KX , X) < 0, (287) is replaced by:
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�
D + σ2X
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��K

α
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X̂
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Γ
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2

�
���f
�
X̂
����

with:

p+
3

2
≃
M −∇X̂g

�
X̂,KX̂

�

f
�
X̂
�

and the equation for KX writes:

σ2X
��∇2XR (KX , X)

��K
3
2α

X̂
=

C (p̄)σ2
K̂
Γ

�
M−∇

X̂
g(X̂,KX̂)

f(X̂)

�

���f
�
X̂
����

Since, given our assumptions f
�
X̂
�
→ c we find:

KX̂ =




C (p̄)σ2

K̂��∇2XR (KX , X)
�� c
Γ




M −∇X̂g

�
X̂,KX̂

�

c









2
3α

(294)

Note that given (294), an equilibrium in the range KX̂ >>> 1 is only possible for c << 1 Otherwise,
there is no equilibrium for a maximum of R (KX , X). This equilibrium value of KX̂ decreases with c, which
corresponds to an unstable equilibrium, as detailed in the text.

On the other hand, if ∇XR (X) = 0 and ∇2XR (KX , X) > 0, expression (286) becomes:
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≃ D − σ2X
∇2XR (KX , X)

H (KX)
Kα
X̂
= D − σ2X∇2XR (KX , X)K

α
2

X̂

and thus:

Kα
X̂
≃
�

D

σ2X∇2XR (KX , X)

�2
(295)
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However, this solution with KX >> 1 corresponds to points such that ∇2XR (KX , X) > 0 and ∇XR (X) = 0.
Then, these points are minima of R (X). This equilibrium may exist only if the level of capital (295) is high
enough to compensate the weakness of the purely position dependent part of expected return and match the
condition:

Kα
X̂
R
�
X̂
�

hKα
Xi hR (X)i

− 1 > 0

This equilibrium is thus unlikely and may be discarded in general.

Case 3. High capital, KX̂ >> 1 In that case, we assume KX̂ relatively large, but bounded, to ensure
that the approximation: 
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2

≃ D (296)

is still valid.
Equations (280) and (283) imply that the function f

�
X̂
�
is independent of KX̂ and that g

�
X̂
�
is

proportional to ∇X̂R
�
X̂
�
. Given (280), the function f

�
X̂
�
can be rewritten:

f
�
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=
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
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− γ
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R
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Consequently, the expression for f ′
�
X̂
�
is:
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�
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�
≃
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�

Kα
X̂
R2
�
X̂
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Similarly,we can approximate (283) as:

g
�
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�
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R
�
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� (298)
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X̂
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Given (296), and including the constant α in the definition of C (p̄), equation (254) is:
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with:
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Defining V = 1
Kα

X̂

, we can write (299) as an equation for V << 1 by replacing all quantities in term of V

and then perform a first order expansion. To do so, we first, we write (299) as:
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and then find an expansion in V for Γ
�
p+ 3

2

�
.

The first order expansion in V of p+ 3
2 is:
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Consequently, Γ
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Ultimately, using that at the first order:
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And a first order expansion yields:
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Coming back to Kα
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we have:
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This solution satisfies the condition KX̂ >> 1 only if
C(p̄)σ2
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√
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c

Dc >> 1: formula (301) thus shows that the

dependency of Kα
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of firms, without reducing the average capital per firm.

Case 4. Intermediate capital, ∞ > KX̂ > 1: We start with asymptotic form of (250):
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Up to a constant that can be absorbed in the definition of C (p̄), we have:
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and (302) can be rewritten as:
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Since we are in an intermediate range for the parameters, we can replace, in first approximation, ln
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and equation (303) rewrites:
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To solve (304) for KX̂ , we proceed in two steps.
We first introduce an intermediate variable W and rewrite (304) as an equation for KX̂ and W . We set:
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and rewrite equation (304) partly in terms of W :
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Note that, as seen from (305), W is a function of p and as such can be seen as a parameter depending
on the shape of the sectors space.
Equation (306) both depends on KX̂ andW , and in a second step, we use (305) to write KX̂ as a function

of W . To do so, we use that in the intermediate case ∞ > KX̂ > 1, we can assume that:
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and that:
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Moreover, we can approximate
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≃ D (309)

Our assumptions (307), (308) and (309) allow to rewrite the relation (305) between Kα
X̂
and W as:
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To solve this equation for Kα
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, we consider M as the dominant parameter and find an approximate

solution of (310). At the lowest order, we write:
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Considering corrections to this result, the solution to (310) is decomposed as:
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and using the following intermediate results:
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we are led to rewrite (310) as an equation for χ at first order:
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In a third step, we can use equation (312) to rewrite (306) in an approximate form. Actually, expression
(312) implies that in the intermediate case, where Kα

X̂
is of finite magnitude, we have W 2 ∼ σ2Xσ2K̂M

2 and:
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and that ultimately the left hand side of equation (306) writes at the first order:
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Equation (313) has the form:
xd exp (−ax) = c

with solution:
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where W0 is the Lambert W function with parameter 0. Applying this result to our case with:
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As stated in the text, this is an increasing function of B2 (X). Moreover, the corrections to this formula,

given in (312) show that Kα
X̂
is a decreasing function of

�
∇X̂R

�
X̂
��2

and ∇2
X̂
R
�
X̂
�
.

Case 5. Low capital, KX̂ << 1: When average physical capital per firm in sector X̂ is very low, we

can use our assumptions about g
�
X̂,Ψ, Ψ̂

�
and ∇X̂g

�
X̂,Ψ, Ψ̂

�
, equations (89) and (??), and assume that:
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and:
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For these conditions, the solution of (??) is locally stable.
Moreover, the conditions KX̂ << 1 and the defining equation (281) for f imply that f > 0, and that for
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Under these assumptions, equation (??) reduces to:
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This equation (315) can be approximated. Actually, using formula (??) for p yields:
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Consequently, when returns are large, i.e. f
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>> 1, equation (??) writes:
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37Given our hypotheses, D >> 1 , which implies that K
X̂
<< 1, as needed.
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Equation (316) shows that average capital KX̂ increases with M −
�
(g(X̂))

2

σ2
X̂

+∇X̂g
�
X̂,KX̂

��
: when

expected long-term returns increase, more capital is allocated to the sector. Equation (98) also shows that

average capital KX̂ is maximal when returns R
�
X̂
�
are at a local maximum, i.e. when

(g(X̂))
2

σ2
X̂

= 0 and

∇X̂g
�
X̂,KX̂

�
< 0.

Inversely, the same equations (316) and (98) show that average capital KX̂ is decreasing in f
�
X̂
�
. The

equilibrium is unstable. When average capital is very low, i.e. KX̂ << 1, which is the case studied here,
marginal returns are high. Any increase in capital above the threshold widely increases returns, which drives
capital towards the next stable equilibrium, with higher KX̂ . Recall that in this unstable equilibrium, KX̂

must be seen as a threshold. The rise in f
�
X̂
�
reduces the threshold KX̂ , which favours capital accumulation

and increases the average capital KX̂ .

This case is thus an exception: the dependency of KX̂ in R
�
X̂
�
is stable, but the dependency in f

�
X̂
�

is unstable. This saddle path type of instability may lead the sector, either towards a higher level of capital
(case 4 below) or towards 0. where the sector disappears.

A 3.3 Instability and modification of sectors’ space

Disappearance of Low average capital sectors

Average capital is unstable when B
�
X̂
�
< −1. A shock on average capital can either drive the equilibrium

to some stable value, or worsen the sector’s capital landscape.
In the latter case, investors tend to desert the sector, so that both the average capital and the density

of investors tend to 0: KX̂ → 0 and
���Ψ̂
�
X̂, K̂

����
2

→ 0. Producers remain in the sector but with a very low

capital on average. The very lack of capital prevents these firms to shift towards more attractive sectors in
the long run. Assuming physical capital returns are Cobb-Douglas, marginal productivity is mathematically

high for a very low capital. Thus, short-term returns are very large: f
�
X̂
�
→∞.

Note that this type of instability only applies to very low level of average capital, so that the total capital
involved is negligible, and this instability does not impact the system globally.

Very high level of average capital and modification of space

Average capital is also unstable when B
�
X̂
�
> 1. However, in this case investors are lured in the sector,

so that average capital in the sector increases quickly KX̂ → ∞, and short-term returns tend to be small:

f
�
X̂
�
→ c for some constant c << 1. Consequently, for KX̂ → ∞, ∂f(X̂,KX̂)

∂K
X̂

→ 0, which translates

decreasing marginal returns. Similarly, the expected long-term returns will be caped, and ∂p
∂K

X̂

→ 0, and

l
�
X̂,KX̂

�
→ 0.

The instability condition (106) turns out to be a lower bound for the sensitivity of firms density relative
to average capital:

∂ ln
���Ψ
�
X̂,KX̂

����
2

∂KX̂

> 1 (317)

This lower bound creates a herd effect: the number of firms in sector X̂ could grow indefinitely with capital:���Ψ
�
X̂,KX̂

����
2

→∞.
However, the fixed number of firms implies that this shift towards sector X̂ will necessarily reach a

maximum
���Ψ̂
�
X̂, K̂

����
2

max
>> 1. For this maximum density, the corresponding level of average capital at
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sector X̂ will be approximatively:

KX̂ ≃ Kmax =

ln

����Ψ̂
�
X̂, K̂

����
2

max

�

r

This concentration of capital in some sectors directly impacts the amount of disposable capital along with
the instability condition (106) for the rest of the system. This occurs in several steps.
First, the disposable average capital for the rest of the system reduces to hKi− Kmax

V , with V , the volume
of the sector space and hKi, the average physical capital in the whole space.

Second, this reduction of average capital negatively impacts the growth prospects R
�
X̂
�
, the stock prices

F1 (X), and consequently the short term returns f
�
X̂
�
.

In turn, this modifies the stability condition
���B
�
X̂
���� over the whole space. Consequently, some sectors

will move over the instability threshold B
�
X̂
�
> 1, while others will move below B

�
X̂
�
< −1. Some

sectors will experience a capital increase, others will disappear.
If a stable situation finally emerges, the resulting sectors’ space will be reduced: some sectors will have

disappeared, and only sectors with positive capital will have remained.

A.3.4 Global instability

This appendix completes the analysis of the solutions of (75) for average capital. We have studied the local
instability of solutions previously. However, a second source of instability of the system arises outside of the
equations for average capital per firm per sector, (75), and its differential version, (77). It stems from the
sectors’ space expected long-term returns. It is induced by the minimization equations (64) and (65), and is
a source of global instability for the background field.

A 3.4.1 Mechanism of global instability:

In these equations, the Lagrange multiplier λ̂ is the eigenvalue of a second-order differential equation. Because
there exist an infinite number of eigenvalues λ̂, there are an infinite number of local minimum background

fields Ψ
�
X̂,KX̂

�
. But the most likely minimum, given in (??), is obtained for λ̂ =M (see appendix 2).

Yet λ̂ is also the Lagrange multiplier that implements the constraint of a fixed number N of agents.
Since the number of investors is computed by:

Z ���Ψ
�
X̂,KX̂

����
2

d
�
X̂,KX̂

�

the constraint implemented by λ̂ is:

N̂ =

Z ���Ψ
�
X̂,KX̂

����
2

d
�
X̂,KX̂

�
(318)

since this constraint runs over the whole space, it is a global property of the system.

Yet equations (64) and (65), the minimization equations defining Ψ
�
X̂,KX̂

�
, may also be viewed as a set

of local minimization equations at each point X̂ of the sector space. Considered individually, each provide a
lower minimum that could be reached separately for each X̂. In other words, provided each sector’s number
of agents is fixed independently from the rest of the system, a stable background field could be reached at
every point.
However, our global constraint rules out this set of local minimizations. The solutions of (64) and (65)

are thus a local minimum for the sole points X̂ such that the lowest value of λ̂ is reached at X̂, i.e. points
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such that38 :
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For points X̂ that do not satisfy (319), the solutions Ψ
�
X̂,KX̂

�
and Ψ†

�
X̂,KX̂

�
of (64) and (65), with

λ̂ = −M are not global minima, but merely a local one. Any perturbation δΨ
�
X̂,KX̂

�
due to a change of

parameters destabilizes the whole system: the equilibrium is unstable.

The stability of both the background field and the potential equilibria are thus determined by A
�
X̂
�
, the

sector space’s overall shape of returns and expectations. An homogeneous shape, a space such that A
�
X̂
�
,

presents small deviations around M and is more background-stable than an heterogeneous space.
More importantly, the background fields and associated average capital must be understood as potential,

not actual long-run equilibria: the whole system is better described as a dynamical system, which is defined
in section 12, between potential backgrounds where time enters as a macro-variable. We consider the results
of the background field’s dynamical behavior in section 17.

Removing global instability As mentioned above, an homogeneous shape is a space such that the

parameter A
�
X̂
�
presents small deviations around M . In an heterogeneous shape, the space presents large

differences in A
�
X̂
�
. We find that homogeneous shapes are more background-stable than heterogeneous

ones. This partly results from the global constraint (318) imposed on the number of agents in the model,
which ensures that the number of financial agents in the system is fixed over the whole sector space.
Relaxing this constraint fully would render the number of agents in sectors independent. The associated

background field of each sector could, at each point, adjust to be minimum and stabilize the system.
To do so, we replace equation (64), the minimization equation, by a set of independent equations with

independent Lagrange multipliers λ̂X̂ for each sector X̂, so that for each X̂, the minimum configuration is
reached by setting:
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This is similar to the Lagrange multiplier of the minimization equation for the background field, stripped of
the maximum condition λ̂ = −M 39 . This X̂ dependency of the Lagrange multiplier implies that the average
capital equation (75) is replaced by40 :
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This equation is identical to (83) and has thus at least one locally stable solution. The solutions are computed
in (85) and (86).
Solutions to (320) do no longer directly depend on the relative characteristics of a particular sector,

but rather on the returns at point f
�
X̂
�
and on the number of firms in the sector,
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�
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2

. Yet this

dependency is only indirect, through the firms’ density at sector X̂,
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2

, and this quantity does not

vary much in the sector space.

38See definition (82) and section 8.2. for a study of such points.

39 see discussion following equation (69).
40Expression (268) is used to compute Γ̂

�
1

2

�
.
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An intermediate situation between (75) and (320) could also be considered: it would be to assume a
constant number of agents in some regions of the sector space.
Alternatively, limiting the number of investors per sector can be achieved through some public regulation

to maintain a constant flow of investment in the sector.

Appendix 4. Dynamics for KX̂

A4.1 Variation of the defining equation for KX̂

A4.1.1 Compact formulation

As claimed in the text, we consider the dynamics for KX̂ generated by modification of the parameters. To
do so, we compute the variation of equation (254). We need the variations of the functions involved in (254)
with respect to two dynamical variables KX̂ and R (X). Starting with (254):
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where:
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!

We first compute the variations of the right hand side and use that, in first approximation:
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and:
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so that:
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Assuming that C (p̄) is constant, (324) allows to rewrite the variation of of equation (321):
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and we deduce from this equation, that the dynamic version of equation (321) is:
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−
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�
L
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

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2
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
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A4.1.2 Expanded form of (325)

To find the dynamic equation for KX̂ we expand each side of (325).
The left hand side of (325) can be developed as:


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and (325) becomes:
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To compute the right hand side of (326). We use that:
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g
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+ σ2
X̂

�
∇X̂g

�
X̂,KX̂

��

σ2
X̂
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so that, the variation ∇θp is given by:
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∇θ
���f
�
X̂
����

���f
�
X̂
����

�
p+

3

2

�
−



2
g
�
X̂
�
∇θg

�
X̂
�

σ2
X̂

+∇θ∇X̂g
�
X̂
�




To compute ∇θp we must use the form of the functions defined in Appendix 2. We thus obtain:
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Ultimately, the right hand side of (326) is given by:
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so that the variational equation for KX̂ (326) writes:
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These term can be reordered and the general dynamic equation for KX̂ is ultimately written as:
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A4.1.3 Dynamic equation for particular forms of f
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We can put equation (329) in a specific form, by using the explicit formula for f
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given in appendix 2. We have:
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arising in (329), we use that in first approximation, for relatively large KX̂ :
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that can be considered int the sequel negligible at the first order.
Consequently, for the chosen forms of the parameter functions, the dynamics equation (329) becomes
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with:
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A4.2 Full dynamical system

To make the system self-consistent, we introduce also a dynamics for R.

We assume that R depends on KX̂ , X̂ and ∇θKX̂ , that leads to write: R
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��
θ, X̂

�
,
�
θ′, X̂ ′

��
∇2θ∇θKX̂

�

+...

where the crossed derivatives have been discarded for the sake of simplicity. We assumeG1

��
θ, X̂

�
,
�
θ, X̂

��
=

0 to avoid auto-interaction.
Performing the integrals yields:
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∇θR
�
θ, X̂

�
= a0

�
X̂
�
∇θKX̂ + a

�
X̂
�
∇X̂∇θKX̂ + b

�
X̂
�
∇2
X̂
∇θKX̂ (333)

+c
�
X̂
�
∇θ
�
∇θKX̂

�
+ d

�
X̂
�
∇2θ
�
∇θKX̂

�

+e
�
X̂
�
∇X̂

�
∇θR

�
θ, X̂

��
+ f

�
X̂
�
∇2
X̂

�
∇θR

�
θ, X̂

��

+g
�
X̂
�
∇θ
�
∇θR

�
θ, X̂

��
+ h

�
X̂
�
∇2θ
�
∇θR

�
θ, X̂

��

+u
�
X̂
�
∇X̂∇θ

�
∇θKX̂

�
+ v

�
X̂
�
∇X̂∇θ

�
∇θR

�
θ, X̂

��

We ssume that the coefficients are slowly varying, since their are obtained by averages.

Gathering the dynamics (330) and (333) for ∇θKX̂ and ∇θR
�
θ, X̂

�
leads to a matricial system:

0 =




k
K
X̂

l

R(X̂)

−a0
�
X̂
�

1




�
∇θKX̂

∇θR

�
(334)

−




0 2m

∇
X̂
R(X̂)

∇X̂
a
�
X̂
�
∇X̂ + c

�
X̂
�
∇θ e

�
X̂
�
∇X̂ + g

�
X̂
�
∇θ




�
∇θKX̂

∇θR

�

−




0 − n

∇2
X̂
R(X̂)

∇2
X̂

d
�
X̂
�
∇2θ + b

�
X̂
�
∇2
X̂
+ u

�
X̂
�
∇X̂∇θ e

�
X̂
�
∇2θ + f

�
X̂
�
∇2
X̂
+ v∇X̂∇θ




�
∇θKX̂

∇θR

�

A4.3 Oscillatory solutions

We look for a solution of (335) of the form:

 
∇θKX̂

∇θR
�
X̂
�
!

= exp
�
iΩ
�
X̂
�
θ + iG

�
X̂
�
X̂
�� ∇θK0

∇θR0

�

with G
�
X̂
�
and Ω

�
X̂
�
slowly varying. Consequently, the system (334) writes:






k
K
X̂

l

R(X̂)
− i 2m

∇
X̂
R(X̂)

G− n

∇2
X̂
R(X̂)

G2

−a0
�
X̂
�
− ia

�
X̂
�
G− ic

�
X̂
�
Ω

+dΩ2 + bG2 + uΩG

1− ie
�
X̂
�
G− ig

�
X̂
�
Ω+ eΩ2

+fG2 + uΩG






�
∇θKX̂

∇θR

�
= 0 (335)

By canceling the determinant of the system, we are led to the following relation between Ω
�
X̂
�
and G

�
X̂
�
:

0 =
k

KX̂

(1− ieG− igΩ) +



 l

R
�
X̂
� − i 2m

∇X̂R
�
X̂
�G



 (a0 + iaG+ icΩ)

− l

R
�
X̂
�
�
dΩ2 + bG2 + uΩG

�
+

k

KX̂

�
eΩ2 + fG2 + vΩG

�
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In the sequel, we restrict to the first order terms, which yields the expression for Ω:

Ω =
i�

lc

R(X̂)
− i 2mc

∇
X̂
R(X̂)

G

�
− kg

K
X̂



 k

KX̂

(1− ieG) +



 l

R
�
X̂
� − i 2m

∇X̂R
�
X̂
�G



 (a0 + iaG)





=

�
lc

R(X̂)
− kg

K
X̂

�
+ i 2mc

∇
X̂
R(X̂)

G

�
lc

R(X̂)
− kg

K
X̂

�2
+

�
2mc

∇
X̂
R(X̂)

G

�2

×







 ke

KX̂

+



 2ma0

∇X̂R
�
X̂
� − la

R
�
X̂
�







G+ i



 k

KX̂

+
a0l

R
�
X̂
� +

2ma

∇X̂R
�
X̂
�G2









Or equivalently:

Ω =

�
lc

R(X̂)
− kg

K
X̂

��
ke
K
X̂

+

�
2ma0

∇
X̂
R(X̂)

− la

R(X̂)

��
G− 2mc

∇
X̂
R(X̂)

G

�
k
K
X̂

+ a0l

R(X̂)
+ 2ma

∇
X̂
R(X̂)

G2
�

�
lc

R(X̂)
− kg

K
X̂

�2
+

�
2mc

∇
X̂
R(X̂)

G

�2

+i

�
lc

R(X̂)
− kg

K
X̂

��
k
K
X̂

+ a0l

R(X̂)
+ 2ma

∇
X̂
R(X̂)

G2
�
+ 2mc

∇
X̂
R(X̂)

�
ke
K
X̂

+

�
2ma0

∇
X̂
R(X̂)

− la

R(X̂)

��
G2

�
lc

R(X̂)
− kg

K
X̂

�2
+

�
2mc

∇
X̂
R(X̂)

G

�2

We focus on the influence of time variations of ∇θKX̂ on ∇θR, and we can assume g ≃ 0 so that there is
no self influence of ∇θR on itself: ∇θR depends on the variations of ∇θKX̂ as well as the neighboorhood
sectors variations of ∇θR. Moreover, the coefficients e and a, being obtained by integration or first order
expansion, can be considered as nul.
Consequently, the equation for Ω reduces to:

Ω =

lc

R(X̂)

�
2ma0

∇
X̂
R(X̂)

�
G− 2mc

∇
X̂
R(X̂)

G

�
k
K
X̂

+ a0l

R(X̂)

�

�
lc

R(X̂)

�2
+

�
2mc

∇
X̂
R(X̂)

G

�2 + i

lc

R(X̂)

�
k
K
X̂

+ a0l

R(X̂)

�
+ 2mc

∇
X̂
R(X̂)

�
2ma0

∇
X̂
R(X̂)

�
G2

�
lc

R(X̂)

�2
+

�
2mc

∇
X̂
R(X̂)

G

�2

A4.4 Stability

The system is stable and the dynamics is dampening if:

lc

R
�
X̂
�



 k

KX̂

+
a0l

R
�
X̂
�



+
4m2ca0

�
∇X̂R

�
X̂
��2G

2 > 0 (336)

To study the sign of (336) we need to estimate the coefficient k.

A4.4.1 Estimation of the coefficients k, l and m

We can estimate k and l by computing the factors Ci

�
p, X̂

�
, for i = 1, 2, 3.

This is done by estimating p+ 1
2 . We start with the asymptotic form of Γ̂

�
p+ 1

2

�
:

Γ̂

�
p+

1

2

�
≃
r

p+
1

2
exp




−

σ2X
�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3





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and rewriting the equation for KX̂ as:

KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
����





σ2X (f

′ (X))2

96
���f
�
X̂
����
3






1
4

= C (p̄)σ2
K̂
exp




−

σ2X
�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3






vuuuut

�
p+

1

2

�vuuut
σ2X (f

′ (X))2

96
���f
�
X̂
����
3

(337)
Then, using (328), we set:

�
p+

1

2

�vuuut
σ2X (f

′ (X))2

96
���f
�
X̂
����
3 =

r
C1

�
p, X̂

�
(338)

Equation (337) writes:

KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
����
�
σ2X(f

′(X))
2

96|f(X̂)|3
� 1

4

C (p̄)σ2
K̂

= exp
�
−C1

�
p, X̂

���
C1

�
p, X̂

�� 1
4

(339)

and the solution to (339) is:

C1

�
p, X̂

�
=

σ2X
�
p+ 1

2

�2
(f ′ (X))2

96
���f
�
X̂
����
3 (340)

= C0

�
X̂,KX̂

�
exp

�
−W

�
k,−4C0

�
X̂,KX̂

���

with:

C0

�
X̂,KX̂

�
=





KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
����

C (p̄)σ2
K̂






4

σ2X (f
′ (X))2

96
���f
�
X̂
����
3

and where W (k, x) is the Lambert W function. The parameter k = 0 for the stable case with low KX̂ and
k = −1 for the unstable case with KX̂ large.
We can deduce p+ 1

2 from (340):

p+
1

2
=

r
C1

�
p, X̂

�

r
σ2
X
(f ′(X))2

96|f(X̂)|3
(341)

and 2
C1(p,X̂)
p+ 1

2

:

2
C1

�
p, X̂

�

p+ 1
2

=

r
C1

�
p, X̂

�σ2X (f
′ (X))2

48
���f
�
X̂
����
3

From (341) and (??) we deduce:

C2

�
p, X̂

�
= ln

�
p+

1

2

�
−
2C1

�
p, X̂

�

p+ 1
2

(342)

=
1

2
ln
C1

�
p, X̂

�

σ2
X
(f ′(X))2

96|f(X̂)|3
−
r
C1

�
p, X̂

�σ2X (f
′ (X))2

48
���f
�
X̂
����
3 ≃

1

2
ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2
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We can also compute:

�
p+

3

2

�
ln

�
p+

1

2

�
≃

48
���f
�
X̂
����
3

C1

�
p, X̂

�

σ2X (f
′ (X))2

ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

=
1

2





KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
����

C (p̄)σ2
K̂






4

ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

× exp
�
−W

�
k,−4C0

�
X̂,KX̂

���

so that:

C3

�
p, X̂

�
= 1− C1

�
p, X̂

�
+

�
p+

3

2

�
C2

�
p, X̂

�
(343)

= 1− C1
�
p, X̂

�
+

�
p+

3

2

�

ln
�
p+

1

2

�
−
2C1

�
p, X̂

�

p+ 1
2





≃ 1 +





48
���f
�
X̂
����
3

σ2X (f
′ (X))2

ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

− 1




C1

�
p, X̂

�

≃ 1 +
1

2





KX̂




Ψ
�
X̂
�




2 ���f
�
X̂
����

C (p̄)σ2
K̂






4

exp
�
−W

�
k,−4C0

�
X̂,KX̂

���
ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

Given that our assumptions σ2X < 1 and in most cases
96|f(X̂)|3
σ2
X
(f ′(X))2

>> 1, then
96|f(X̂)|3
σ2
X
(f ′(X))2

>> 1 and

C3

�
p, X̂

�
>> 1.

These computations allow to estimate k and l. We start with k. Given that (see (331)):

k = 1− η



1−
γC3

�
p, X̂

�

���f
�
X̂
����




D −




Ψ
�
X̂
�




2




Ψ
�
X̂
�




2

+

α

�
2
g2(X̂)
σ2
X̂

+∇X̂g
�
X̂
��
C2

�
p, X̂

�
− (1− α)C3

�
p, X̂

�

���f
�
X̂
����

l =
ςF1

�
R
�
KX̂ , X̂

��
C3

�
p, X̂

�

f
�
X̂
�

m =



1−
γC3

�
p, X̂

�

f
�
X̂
�




D −




Ψ
�
X̂
�




2




Ψ
�
X̂
�




2

the sign of k and l depend on the magnitude of KX̂ .

A4.4.1.1 KX̂ >> 1 For KX̂ >> 1, using (??) and:




Ψ
�
X̂
�




2

= D −
�
∇XR

�
X̂
��2

Kα
X̂
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we have:

Kα
X̂
≃ D
�
∇X̂R

�
X̂
��2 −

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
��2(1− 1

α )
D

1
α c

and:

D −



Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 ≃ D1+ 1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

The constant c has been defined in appendix 3, and satisfies c << 1. As a consequence:

k ≃ η
γC3

�
p, X̂

�

���f
�
X̂
����

D −



Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 − (1− α)
C3

�
p, X̂

�

���f
�
X̂
����

≃






ηγD1+ 1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

− (1− α)





C3

�
p, X̂

�

���f
�
X̂
����

This may be negative or positive depending on the relative magnitude of ηγD1+ 1
α c

C(p̄)σ2
K̂

√
M−c
c (∇X̂

R(X̂))
2
α

and

(1− α). The first case correspond to the stable equilibrium with large KX̂ and the second case to the
stable case with large KX̂ studied in appendix 2.

Unstable case This case corresponds to:

D1+ 1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

>> 1

Moreover, using (343) and the following estimation, we have:

k ≃ η
γC3

�
p, X̂

�

���f
�
X̂
����

ηγD1+ 1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

>> 1 (344)

We can also estimate
��� k
K
X̂

���. In this case:

k

KX̂

≃ η
γC3

�
p, X̂

�

���f
�
X̂
����

ηγD
1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

>> 1 (345)

We can estimate l by the same token:

l =
ςF1

�
R
�
KX̂ , X̂

��
C3

�
p, X̂

�

f
�
X̂
� >> 1

and using (345) we have: ����
k

KX̂

���� >> l

The coefficient m is obtained by using that in this case:

m ≃



1−
γC3

�
p, X̂

�

f
�
X̂
�




D −




Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 ≃ −1
η
k
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Stable case For the stable case we have:

ηγD1+ 1
α c

C (p̄)σ2
K̂

q
M−c
c

�
∇X̂R

�
X̂
�� 2

α

− (1− α) < 0

and we write:

k ≃ − (1− α)
C3

�
p, X̂

�

���f
�
X̂
����

< 0

We have:
|k| >> 1

and moreover:
����
k

KX̂

���� ≃ (1− α)
C3

�
p, X̂

�

KX̂

���f
�
X̂
����
=

1− α
ςF1

�
R
�
KX̂ , X̂

��
KX̂

l << l (346)

The coefficient m is obtained by using that in the stable case:

m ≃ − γ

ςF1

�
R
�
KX̂ , X̂

�� l

A4.4.1.2 KX̂ << 1 On the other hand, for KX̂ 6 1, we have:

D −



Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 << 1 (347)

so that:

k ≃ 1 +
α

�
2
g2(X̂)
σ2
X̂

+∇X̂g
�
X̂
��
C2

�
p, X̂

�
− (1− α)C3

�
p, X̂

�

���f
�
X̂
����

Given (342) and (343), this yields:

k ≃ −
(1− α)C3

�
p, X̂

�

���f
�
X̂
����

< 0 (348)

and, as in the previous case:

|k| > > 1

l > > 1

Moreover, given that KX̂ << 1: ����
k

KX̂

���� >> 1 (349)

and: ����
k

KX̂

���� >> l (350)

Moreover, given (347):

|m| =

������
1−

γC3

�
p, X̂

�

f
�
X̂
�

������

D −



Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 <<

������

γC3

�
p, X̂

�

f
�
X̂
�

������

and:
|m| << l
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A4.4.1.3 Intermediate case In this case, we can consider that
D−kΨ(X̂)k2
kΨ(X̂)k2 is of order 1:

D −



Ψ
�
X̂
�




2




Ψ
�
X̂
�




2 = O (1) (351)

Assuming that γ << 1 we have:

k ≃ 1 +

α

�
2
g2(X̂)
σ2
X̂

+∇X̂g
�
X̂
��
C2

�
p, X̂

�
− (1− α)C3

�
p, X̂

�

���f
�
X̂
����

≃ 1 +

α
2

�
2
g2(X̂)
σ2
X̂

+∇X̂g
�
X̂
��

− 1−α
2

�
K
X̂kΨ(X̂)k2|f(X̂)|

C(p̄)σ2
K̂

�4
exp

�
−W

�
k,−4C0

�
X̂,KX̂

���

���f
�
X̂
����

ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

Given that the intermediate case is stable (see appendix 2), the relation between KX̂ and R
�
X̂
�
is positive,

we can assume that k < 0 and:

k ≃ 1 +

α

�
2
g2(X̂)
σ2
X̂

+∇X̂g
�
X̂
��

C2

�
p, X̂

�
− (1− α)C3

�
p, X̂

�

���f
�
X̂
����

≃ −
1−α
2

�
K
X̂kΨ(X̂)k2|f(X̂)|

C(p̄)σ2
K̂

�4
exp

�
−W

�
0,−4C0

�
X̂,KX̂

���

���f
�
X̂
����

ln
96
���f
�
X̂
����
3

σ2X (f
′ (X))2

and:

l =
ςF1

�
R
�
KX̂ , X̂

��
C3

�
p, X̂

�

f
�
X̂
� ≃ l

=

ςF1

�
R
�
KX̂ , X̂

���
K
X̂kΨ(X̂)k2|f(X̂)|
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�4
exp
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�
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���

f
�
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�
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����
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Note that in this case:

k ≃ − 1− α
ςF1

�
R
�
KX̂ , X̂

�� l

and, given (351):

m ≃ −γ
D −




Ψ
�
X̂
�




2




Ψ
�
X̂
�




2

ςF1

�
R
�
KX̂ , X̂

�� l

A4.4.2 Stability conditions

This appendix presents the computations leading to the stability conditions for the three ranges of capital
considered. Apart from the intermediate case, interpretations are detailed in the text.
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A4.4.2.1 Case KX̂ >> 1

Stable case As shown above, k < 0, |k| >> 1, l >> 1 and
��� k
K
X̂

��� << l. Coefficients l and m are of the

same order. Thus (336) becomes:

l2a0c
�
R
�
X̂
��2 +

4m2ca0
�
∇X̂R

�
X̂
��2G

2 > 0

That is, for c > 0 the oscillations are stable, whereas for c < 0 they are unstable.

Unstable case In this case, k > 0, |k| >> 1, l >> 1 and
��� k
K
X̂

��� >> l. We have also m ≃ − 1
ηk and

(336) writes:
cl

R
�
X̂
� k

KX̂

+
4k2ca0

η2
�
∇X̂R

�
X̂
��2G

2 > 0 (352)

That is, for c > 0 the oscillations are stable, whereas for c < 0 they are unstable.

A4.4.2.1.2 Case KX̂ << 1 Equations (348) and (349) show that k < 0, |k| >> 1, l >> 1, |m| << l and��� k
K
X̂

��� >> l. Equation (336) thus writes:
cl

R
�
X̂
� k

KX̂

> 0 (353)

That is, for c > 0 the oscillations are unstable, whereas for c < 0 they are stable.

A4.4.2.3 Intermediate case In this case, we have seen above that k < 0:

k ≃ − 1− α
ςF1

�
R
�
KX̂ , X̂

�� l

and:

m ≃ −γ
D −




Ψ
�
X̂
�




2




Ψ
�
X̂
�




2

ςF1

�
R
�
KX̂ , X̂

��

Consequently, equation (336) particularizes as:

l2c

R
�
X̂
�



 a0

R
�
X̂
� − 1− α

ςKX̂F1

�
R
�
KX̂ , X̂

��



+ 4ca0




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�
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�
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2
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�
R
�
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��


Ψ
�
X̂
�




2






2

G2 > 0

Given the definition of a0 and the stability of the intermediate case, we assume a0 > 0. Thus, 2 possibilities
arise.

Coefficient c > 0 In this case, the oscillations are stable if:

a0

R
�
X̂
� − 1− α

ςKX̂F1

�
R
�
KX̂ , X̂

�� > 0

or if:
a0

R
�
X̂
� − 1− α

ςKX̂F1

�
R
�
KX̂ , X̂

�� < 0
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and:
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Otherwise, the oscillations are unstable.
The constant ς is irrelevant here, although it arises in appendix 3 to estimate short-term returns. The

function F1, defined in (2), determines the stock’s prices evolution. The coefficient α is the Cobb-Douglas
power arising in the dividend part of short-term returns. The constant D, defined in (57), determines the
relation between number of firms and average capital at sector X̂.
We recover the large average capital case. A relatively high reactivity of expectations to fluctuations in

capital allows to maintain the capital at its equilibrium value. This stability is favoured for sectors with
large average capital when G is relatively large, i.e. when this sectors present large discrepancies in capital
with their neighbours.

Coefficient c < 0 The oscillations are stable if:

a0

R
�
X̂
� − 1− α

ςKX̂F1

�
R
�
KX̂ , X̂

�� < 0 (354)

and:
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l2
�
∇X̂R

�
X̂
��2

4a0R
�
X̂
�






ς

�
∇X̂R

�
X̂
�
F1

�
R
�
KX̂ , X̂

��


Ψ
�
X̂
�




2
�

γ

�
D −




Ψ
�
X̂
�




2
�






2 ������

a0

R
�
X̂
� − 1− α

ςF1

�
R
�
KX̂ , X̂
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(355)
Conditions (354) and (355) correspond to the case of relatively low capital for which a stability in the

oscillations may be reached when expectations are moderately reactive to variation in capital. The condition
(355) shows that the stability in oscillations is reached for moderate values of G, i.e. relatively small
discrepancy between neighbouring sectors.
We recover the large average capital case. A relatively high reactivity of expectations to fluctuations in

capital allows to maintain the capital at its equilibrium value. This stability is favoured for sectors with
large average capital when G is relatively large, i.e. when this sectors present large discrepancies in capital
with their neighbours.
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