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An electroencephalography 
connectome predictive model 
of major depressive disorder 
severity
Aya Kabbara1,2, Gabriel Robert3,4,5, Mohamad Khalil6,7, Marc Verin5,8, Pascal Benquet8 & 
Mahmoud Hassan2,9*

Emerging evidence showed that major depressive disorder (MDD) is associated with disruptions of 
brain structural and functional networks, rather than impairment of isolated brain region. Thus, 
connectome-based models capable of predicting the depression severity at the individual level can be 
clinically useful. Here, we applied a machine-learning approach to predict the severity of depression 
using resting-state networks derived from source-reconstructed Electroencephalography (EEG) 
signals. Using regression models and three independent EEG datasets (N = 328), we tested whether 
resting state functional connectivity could predict individual depression score. On the first dataset, 
results showed that individuals scores could be reasonably predicted (r = 0.6, p = 4 ×  10–18) using 
intrinsic functional connectivity in the EEG alpha band (8–13 Hz). In particular, the brain regions which 
contributed the most to the predictive network belong to the default mode network. We further 
tested the predictive potential of the established model by conducting two external validations on 
(N1 = 53, N2 = 154). Results showed statistically significant correlations between the predicted and 
the measured depression scale scores (r1 = 0.52, r2 = 0.44, p < 0.001). These findings lay the foundation 
for developing a generalizable and scientifically interpretable EEG network-based markers that can 
ultimately support clinicians in a biologically-based characterization of MDD.

Major Depressive Disorder (MDD) is one of the most common psychiatric disorders, mainly characterized by 
anhedonia and disturbed mood affecting the patient’s quality of life and psychological state and has implications 
for their social and economic  conditions1. Due to its increasing prevalence, chronicity, recurrence and degraded 
quality of life, MDD is now considered as a public health  problem2,3. Currently, there are no biological signa-
ture of MDD, most probably because of its heterogeneity, and therefore prognosis (including better treatment 
response) and even diagnostic can be, sometimes, challenging. Researchers in mental illness advocate for a more 
biologically based framework to diagnose and treat these disorders, including  depression4,5. At the cerebral level, 
most recent advances have moved from localized cerebral area disruptions to more network-based measures of 
mental  disorders6.

Emerging evidence across functional studies consistently points at disruptions of MDD brain networks both 
in resting  state7–19 and during task-based  connectivity20–22. Specifically, functional abnormalities in network 
 topology11,20,21,  modularity10,22, and  efficiency8,11,15,16,23 have been detected between MDD and healthy controls. 
are predominantly observed in the default-mode network (DMN) regions, including the posterior  cingulate23,24, 
 hippocampus7,8,23,25, parahippocampal  gyrus7,21,23,  precuneus23,26 superior parietal  lobule18,23,26, and the executive 
network (ECN) including dorsolateral prefrontal  cortex8,9,14,25 and the anterior cingulate  cortex8–10,13,15–18,20,21,25. 
Importantly, DMN abnormal connectivity patterns is thought to be related with the cognitive  vulnerability27,28 
and negative self-referential thoughts of MDD  patients29,30.
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While this previous work has enabled a step toward a better understanding of the underlying pathophysiology 
of MDD, their translational potential into clinical use is hampered by the cost-effectiveness and availability of 
MRI. Electroencephalography (EEG) combined with the use of easy-to-implement measures of the brain network 
have been used to both binary  classify31–33 and to predict treatment  outcomes34,35 in MDD.

However, binary classification does not answer the question of MDD heterogeneity nor testing the possible 
continuum between normal sadness and pathological major depression. Very recently, resting state global con-
nectivity measures predict both depressive and anxiety  symptoms36–38. However, machine-learning/multivariate 
based connectivity measures are of high dimension and therefore often hampered by overfitting  biases39. Proper 
analyses require large sample size and independent sample to validate the trained algorithm, which has not been 
the case in the field of EEG and affective disorders.

In this paper, we aim to establish a model that predicts depression severity based on resting-state EEG corti-
cal networks. To tackle the problem of generalizability, three independent large datasets (N = 328) were used. 
Based on the prior findings, we hypothesized that the key regions that might contribute to the predictive model 
comprised DMN and ECN regions, mainly the anterior cingulate cortex, the prefrontal cortex, and the parahip-
pocampal regions. We also expected that individual differences in MDD would be predicted by characteristics 
of alpha band as many studies suggest its relation to the pathologic characteristics of  MDD40–42. EEG signals 
collected from 121 subjects (76 healthy controls and 45 MDD patients) were used to derive predictive models 
for depression severity. Brain networks were reconstructed using EEG source connectivity  method43. Then, the 
Connectome-based Predictive Modeling (CPM)44 was applied in order to establish the relationship between 
functional brain networks and depression severity in support vector regression model. The external validation 
was performed using two other independent EEG datasets, where the first includes 24 MDD and 29 healthy 
controls, and the second (N = 154) -with no MDD patients- shows an ultimate perspective of predicting a pos-
sible continuum between normal sadness and pathological major depression.

Materials and methods
The full pipeline of this study is summarized in Fig. 1.

First dataset. Participants. Forty-five MDD patients and seventy-six healthy controls have participated 
in the current study. The EEG database is publicly available at http:// bit. ly/ 2rzY6 ZY and was used in a recent 
previous  study45. The study was approved by the ethical committee of Arizona University and experiments were 
in accordance with relevant ethical guidelines. Prior to acquisition, all participants provided written informed 
consent. Participants were recruited from introductory psychology classes based on mass survey scores of the 
Beck Depression Inventory (BDI). Recruitment criteria included: (1) age 18–25, (2) no history of head trauma 
or seizures, and (3) no current psychoactive medication use. Control participants (N = 76) have stable low BDI 
(< 7) between mass survey and preliminary assessment, no self-reported history of MDD, and no self-reported 
symptoms indicating the possibility of an Axis 1 disorder as indicated by computerized self-report completion 
of the Electronic Mini International Neuropsychological Interview (eMINI: Medical Outcome Systems, Jack-
sonville, FL, USA). Depressed participants have a stable high BDI (> 13). Participant demographics are reported 
in Table 1.

EEG acquisition and pre‑processing. Participants were asked to stay relaxed for five minutes while EEG signals 
were recorded. Signals were acquired using 64 Ag/AgCl EEG electrodes (Synamps system) positioned accord-
ing to the standard 10–20 system montage, two electro-oculogram electrodes (EOG) for horizontal and vertical 
movements. Signals were sampled at 500 Hz, bandpass filtered between 0.5 and 100 Hz. All electrodes’ imped-
ances were kept below 10 kΩ.

Because of contamination of the EEG signals by various types of artifacts, EEG (pre)processing was applied 
following the same steps proposed in several previous studies dealing with EEG resting-state  data46–48. These 
steps are summarized as follow: (1) identification of bad channels providing signals that are either completely flat 
or contaminated by movement artifacts. This was performed by visual inspection, complemented by the power 
spectral density, (2) interpolation of identified bad channels in Brainstorm by using neighboring electrodes 
within a 5-cm  radius49. (3) segmentation into 40-s length epochs and only epochs with voltage fluctuations 
between + 100 μV and − 100 μV were retained. For each participant, four artifact-free epochs of 40-s lengths 
were selected. This epoch length guarantees a good compromise between the needed temporal resolution and 
the results reproducibility as demonstrated  in48. Due to poor signal quality, EEGs from three HC subjects were 
excluded from the study.

Second dataset. Participants. A total of 24 subjects (30.88 ± 10.37  years, female = 11) diagnosed with 
major depressive disorder, and 29 healthy controls (31.45 ± 9.15 years, female = 9) were recruited for the study. 
Patients with MDD were recruited from Lanzhou University Second Hospital, Gansu, China, diagnosed and 
recommended by professional psychiatrists while healthy subjects were recruited by posters. The study was ap-
proved by the Ethics Committee of the Second Affiliated Hospital of Lanzhou University. All procedures per-
formed in the study were in accordance with the ethical guideline of the national research committee of Lanzhou 
University. Written informed consent was obtained from all subjects before the experiment began. All MDD 
patients received a structured MiniInternational Neuropsychiatric Interview (MINI) that meets the diagnostic 
criteria for major depression of Diagnostic and Statistical Manual of Mental Disorders (DSM) based on the 
DSM. The dataset is publicly available in. Depression symptoms were identified with Hamilton Depression Scale 
(HDRS).

http://bit.ly/2rzY6ZY
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EEG acquisition and pre‑processing. During experiment, participants were required to relax, stay awake and try 
avoiding movements while 5 min eye-closed resting state EEG were recorded in a sound-proof room. 128-chan-
nel HydroCel Geodesic Sensor Net (Electrical Geodesics Inc., Oregon Eugene, USA) was used and electrode 
signals were referenced to Cz. During acquisition, each electrode kept an impedance below 50 kΩ. EEG pre-
processing was performed in the same way dealt with the first dataset, leading to four artifact-free epochs of 40-s 
lengths for each participant.

Third dataset. Participants. 154 young healthy participants (N = 154, 25.1 ± 3.1 years, range 20–35 years, 
45 female) were provided by the Mind-Brain-Body  dataset50 publicly available in http://fcon_1000.projects.nitrc.
org/indi/retro/MPI_LEMON.html. The study was carried out in accordance with the Declaration of Helsinki 
and the study protocol was approved by the ethics committee at the medical faculty of the University of Leipzig 
(reference number 154/13-ff). All included participants provided written informed consent before any data ac-
quisition. The dataset originally included also 75 elderly subjects who were removed from the analysis to avoid 

Figure 1.  The full pipeline of our study. (A) EEG signals were acquired from three datasets: (1) N = 121 subjects 
(76 healthy controls and 45 MDD patients), (2) N = 53 subjects (29 healthy controls and 24 MDD patients) (3) 
N = 154 healthy subjects. (B) A template Magnetic Resonance Imaging (MRI) was segmented into 68 regions 
of interest (ROIs) by the means of Desikan Killiany atlas. Then, the regional time series of each subject were 
reconstructed using the weighted minimum norm estimate inverse solution (WMNE). (C) The inputs of the 
connectome-based predictive modeling (CPM) are the connectivity matrices and the depression score of 
each subject (BDI -i.e. dataset1-, Hamilton -i.e. dataset2, dataset 3-). The brain networks of each subject were 
obtained by computing the phase locking value between the regional time series. (b) The training step: across 
all subjects, each edge is correlated to the BDI score. Then, the algorithm selects the most important edges using 
significance testing (p < 0.01). Two matrices are thus resulted: the first corresponds to the network positively 
correlated with BDI and the second represents the network negatively correlated with BDI. (E) SVR predictive 
model is built to find the relationship between BDI and the sum of edge weights of the matrices obtained in the 
previous step. This model is then applied to predict the depression severity of subjects from the second and third 
dataset.
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the impact of age on the external validity of the model. Depression symptoms were identified with Hamilton 
Depression  Scale51.

EEG acquisition and pre‑processing. Participants were instructed to be awake with their eyes open and fixate 
on a low-contrast fixation cross on grey background. For each subject, 16-min resting state EEG was recorded 
with a ‘BrainAmp plus’ amplifier EEG using both 62-channel (61 scalp electrodes plus 1 electrode recording the 
VEOG below the right eye) and active ActiCAP electrodes (Brain Products GmbH, Gilching, Germany) posi-
tioned according to the international standard 10–20 extended localization system. Electrodes were referenced 
to FCz, the ground was located at the sternum and electrode impedance was kept below 5 KΩ. EEG were band-
pass filtered between 0.015 Hz and 1 kHz and sampled at 2500 Hz.

Data were provided pre-processed, after passing through a pipeline that removed artefactual segments, iden-
tified faulty recording channels, and regressed out artefacts which appear as independent components in an 
Independent Component Analysis (ICA) decomposition with clear artefactual temporal signatures (such as eye 
blinks or cardiac interference).

Brain networks construction. Brain networks were reconstructed using the “EEG source connectivity” 
method 43 following two main steps: (i) estimate the cortical sources and reconstruct their temporal dynamics 
by solving the inverse problem, and (ii) measure the functional connectivity between the reconstructed regional 
time-series.

Brain networks were reconstructed using the “EEG source connectivity”  method52 using two main steps: 
(i) estimate the cortical sources and reconstruct their temporal dynamics using the inverse solution, and (ii) 
measuring the functional connectivity between the reconstructed regional time-series.

In brief, after co-registering EEGs and MRI template (ICBM152), a realistic head model was built using 
the OpenMEEG  tool53. Then, the cortical surface was parcellated into 68 regions of interest by the means of 
Desikan-Killiany  atlas54. As an inverse solution, the weighted minimum norm estimate (wMNE) algorithm was 
used to estimate the regional time  series55. Afterwards, we filtered the reconstructed regional time series in the 
EEG frequency bands (delta: 1–4 Hz; theta: 4–8 Hz; alpha: 8–13 Hz; beta: 13–30 Hz and gamma: 30–45 Hz). 
In order to finally reconstruct the functional network, the Phase Locking Value (PLV) was assessed between 
the regional time series. This process applied yields an undirected and weighted connectivity matrix for each 
subject. We used the wMNE/PLV combination to reconstruct the dynamic networks, as it is widely used in the 
context of EEG source-space networks at  rest48,56 and it is supported by several model-based and real data-based 
comparative  studies57.

Connectome predictive modeling. In this study, we are more interested in quantifying MDD hetero-
geneity in terms of brain connectivity rather than classifying binary groups. The binary classification will be 
very limited to deal with the MDD heterogeneity or testing the possible continuum between normal sadness 
and pathological major depression. Thus, we used the BDI scores, that quantify MDD severity, to construct 
the predictive networks of depression using the first dataset. This was performed using the connectome-based 
predictive modeling (CPM). Using the established model, external validation will be conducted using datasets 2 
and 3. The  CPM44 is a recently developed method for identifying and modeling a brain network associated with 
a variable of interest, the depression severity in our case. CPM was previously employed in a number of studies 
to predict network alteration in several brain disorders such as anxiety related  illnesses58and sleep  disorders59 as 
well in some other conditions such as personality traits and  creativity60–62.

Data preparation. Before establishing the predictive model, we prepared the inputs required for the predic-
tion:

1- Preparation of the resting state functional connectivity matrices: For each subject, the connectivity matrices 
were averaged across time samples and epochs in order to obtain one representative matrix.

2- Preparation of the depression severity scores: Due to the difference in the measure used to assess the depres-
sion severity across datasets and their range of values (BDI scores (0–63) in Dataset 1 and HDRS in Datasets 2 

Table 1.  Demographics of the 121 participants. BDI_Anh anhedonia subscale of BDI, BDI_Mel Melancholia 
subscale of BDI, TAI trait anxiety inventory.

HC MDD p-value

Cases (N) 76 45 NaN

Gender (M/F) 36/40 12/33 0.02

Age (years) 18.9 ± 0.6 19 ± 0.55 0.15

Symptom scores

BDI 1.6 ± 0.75 22 ± 2.7 1E−20

BDI_Anh 0.16 ± 0.2 4 ± 0.8 1E−22

BDI_Mel 0.81 ± 0.4 6 ± 1 1E−17

TAI 30.87 ± 2.8 56 ± 4.6 1E−20
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and 3 (0–52)), it is recommended to use standardized measures in order to improve the interpretability of the 
 results63,64. More specifically, the standardized BDI  (BDIs) scores of dataset 1 were calculated by computing the 
difference between BDI and the distribution-mean divided by the standard deviation (Z-transformation). To 
ensure that the same scale was used across datasets, Z-transformation of the Hamilton scores corresponding 
to Datasets 2 and 3 was performed using the equivalent population-mean and standard deviation calculated 
on Dataset 1, yielding to standardized Hamilton scores  (HDRSs). More precisely, we have first calculated the 
mean and the standard deviation of the BDI scores of the training set. Then, we have computed the equivalent 
mean and standard deviation following the so-called rule of three mathematical rule based on the HDRS range 
(0–52). Hence, the mean and the variance used in the Z-transformation of HDRS scores are obtained such that:

where metric is either the mean or the standard deviation, Equivalent_metric_HDRS is the equivalent value of 
the considered metric used in the normalization of Hamilton scores, metric_BDI is the value of the considered 
metric as calculated based on BDI distribution. Finally,  HDRSs was calculating by subtracting the equivalent_
mean_HDRS and dividing by the equivalent_standard deviation_HDRS.

Internal validation: prediction analysis using cross-validation. We established the predictive model 
using the first EEG dataset. To quantitatively assess the ability of the model in predicting novel samples, an inter-
nal validation using dataset 1 was performed. Thus, a fivefold cross validation was used to evaluate the prediction 
performance. Particularly, it was reported that K-fold cross-validation procedure provides an accurate model 
evaluation compared to holdout method and leave-one-out  procedure65. Here, fivefold cross-validation method 
was performed by splitting the 121 subjects into 5 non-overlapping subsets of data (also known as folds). The 
assignment of subsets as training and testing data is repeated 5 times, where at each time, the subjects of 4 subsets 
are assigned as training data, with the remaining subset reserved as testing data. The training procedure includes 
the following steps:

1. Edge‑standardization The weight of each edge was standardized (mean-centered) across the training set. 
Specially, we first computed the mean and standard deviation on each edge across subjects in the training set. 
Then, for each subject, we performed a Z-transformation on each edge by calculating the difference between 
its weight and the mean divided by the standard deviation. This step was performed in many previous CPM 
 studies61,62,66).

2. Identification of the predictive edges Each edge in the connectivity matrix was correlated with the  BDIs scores 
for the training set using Pearson’s correlation. To calculate this correlation, the Z-transformed weight of the 
edge was used. Afterwards, only edges that show significant correlations with  BDIs (pFDR < 0.01) were retained. 
In particular, the false discovery rate (FDR) approach was used to account for the multiple comparison 
problem. The correlation values were separated into a positive tail (i.e. edges correlated positively with BDIs 
scores) and a negative tail (i.e. edges correlated negatively with BDIs scores). Therefore, this step will result 
in the reconstruction of two networks: high depressive network (including connections in the positive tail) 
and low depressive network (including connections in the positive tail).

3. Computation of the edge strength The edge strengths were calculated in both positive and negative tails in 
order to correlate it with BDIs, as proposed  by44. By combining both depressive networks, we also calculated 
the summed index. This latter is obtained by summing the Z-scores of all connections of the positive and 
subtracting those obtained from the negative tails.

4. Construction of Support Vector Regression model (SVR) SVR was employed to respectively relate positive and 
negative edge strengths to BDIs  scores67.

Once the trained model is established using the training subset, the model is tested using the training fold. 
The testing procedure includes the following steps:

1. Edge standardization We have first standardized the edges of the depressive networks using the same param-
eters (i.e. mean and standard deviation) acquired during the training procedure.

2. Testing the model The trained SVR model was used to predict the testing participant’s BDI scores.
3. Assessing the predictive performance of the model To evaluate the results of the prediction, we used several 

metrics: mean absolute error (MAE) which measures the difference between the predicted and the observed 
score, Pearson’s correlation (R) that measures the correlation between the predicted and the observed score, 
and the coefficient of determination, (R-squared) that reports the proportion of the variation in the depend-
ent variable (depressive score) that is predictable from the independent variable (edge strength).

The fivefold cross validation was repeated for 100 iterations, and the resulted performance presents the aver-
age performance across all iterations and folds.

Finally, in order to check if the obtained correlation is significantly better than expected by chance, we per-
formed a permutation test by permuting the BDI scores of all participants for 1000 times. In each permutation, we 
shuffled the BDIs scores in a random way and then we repeated the cross-validation procedure explained above 
including all the steps of the training and testing procedures. An averaged prediction error quantified by the mean 
absolute error (MAE) value across folds was obtained in each permutation. This yields in a null distribution of 
1000 correlation values. Then, p-value was estimated after dividing the number of times the shuffled value was 

Equivalent_metric_HDRS = metric_BDI×
52

63
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greater than the true MAE value by 1000 (the number of iterations). Furthermore, the prediction results were 
validated using a different cross‐validation scheme using K = 10, to see the consistency of results.

The predictive networks. Due to the difference in the predictive networks obtained across iterations dur-
ing the internal validation, the final generalized positive and negative predictive edges were defined as those that 
persist in all iterations. The derived common positive and negative networks will thus be used as the predictive 
networks for the external validation. The same procedure was applied in the previous connectome-based predic-
tive modeling  studies58,66.

External validation. The derived positive and negative predictive networks obtained using the first dataset 
were used as predictive networks for the second and third independent dataset. Before computing the edge 
strength within the high and low depressive networks, edge z-transformation was conducted using the stand-
ardization parameters obtained on Dataset 1. Then, the SVR trained models using the predictive edge strengths 
were used for testing. The predictive performance was assessed by calculating the mean absolute error (MAE), 
Pearson’s correlation (R), the coefficient of determination (R-squared)63,65 and bootstrapping p-value.

Confounder analysis. To explore potential confounding variables, we correlated age with the dependent 
variable (i.e. the depression severity) as well as with the independent variables that are the predictive selected 
features (i.e. the significant edges) using Pearson’s correlation. Similarly, Point-Biserial Correlation was used to 
correlate gender with the depression severity and the predictive edges. To avoid potential confounder effects of 
correlated variables, partial Pearson correlation analysis were conducted with the considered variable in edge 
selection as suggested  by58.

Results
Demographics data. In dataset 1, the mean BDI is 9.5207 with a standard deviation of 10.5064. These 
values were used to obtain  BDIs that were the target variables in the model training. The equivalent values of the 
same parameters based on the Hamilton range were used to calculate the standardized Hamilton scores  (HDRSs) 
that represent the target variables in external validation.  BDIs range from − 0.9 to 1.94 with a robust range (range 
between the 5th and 95th percentiles) of 1.73 (arbitrary units).  HDRSs in dataset 2 range from − 0.9062 to 4.5245 
with an interquartile of 3.707, while  HDRSs in dataset 3 range from − 0.9062 to 0.7082 with an interquartile of 
0.4613.

For dataset 1, no statistical difference in age (p = 0.15) was depicted between MDD and HC. Results show 
the existence of a statistical difference in gender (p = 0.02) as computed using chi-square test. MDD patients and 
HC differ in all the recorded psychiatric scores (p < 0.0001) as computed using the Wilcoxon ranksum test. For 
dataset 2, there were no significant between-group differences in age (p = 0.832), or gender (p = 0.269). Statistical 
differences in the self-reported PHQ-9, and the Generalized Anxiety Disorder-7 (GAD7), the Hamilton depres-
sive scores were obtained (p < 0.001).

Confounder control. Results showed that age was not significantly associated with BDIs nor the weights of 
any predictive edge derived in the training dataset (p > 0.2). Ultimately, age was not considered to be a confound-
ing variable in our predictive model. While gender was not significantly correlated with  BDIs (p > 0.05), its effect 
size is found to be considerable (r = 0.15, p = 0.09). Thus, gender was considered as a confounding variable in the 
model estimation.

Predictive networks. As mentioned in the materials section, the predictive networks were derived after 
applying the cross-validation procedure on dataset 1. Two main networks result: (1) The high depressive net-
work which denotes the network in which edges show positive significant correlations with  BDIs scores, and (2) 
the low depressive network which denotes the network in which edges show negative significant correlations 
with BDI scores. Gender was considered as a covariate in the model estimation. No significant networks were 
detected in delta, theta, beta and gamma bands. In alpha band, the numbers of edges that contributed to the 
prediction ranged from 75 to 189 across all iterations. Notably, 38 of these edges (33 high depressive edges, 5 
low depressive edges) appeared in every iteration and were defined as the depressive edges. The high depressive 
network exhibited dense functional connections in predominantly prefrontal, insula and limbic lobes (Fig. 2). 
More specifically, the implicated brain regions are: the caudal middle frontal gyrus (cMFG), insula (INS), para-
hippocampal (paraH), posterior cingulate (PCC), and rostral anterior cingulate (rACC). The low-depressive 
network showed edges within occipital, parietal and limbic lobes. Nodes are the lateral occipital gyrus (LOG), 
the superior parietal lobule (SPL) and the precunues (PCUN). Notably, the implicated regions in the predictive 
networks belong mainly to the default mode network (paraH, PCUN, PCC, SPL).

Internal validation using dataset 1: cross validation. As the predictive performance differs across 
folds/iterations, we reported here the average performance metrics along with a measure of variability across 
folds/iterations (i.e. the standard deviation). Results showed that the model designed based on the predictive 
edges of the low depressive network (showing negative correlation with BDIs) were able to predict BDIs scores 
in novel individuals (r = 0.61 ± 0.08; MAE = 0.68 ± 0.09, R-squared = 0.48 ± 0.08, p = 0.001). Figure S3 shows the 
corresponding histogram of the null MAE distribution. According the high depressive network, the predictions 
obtained from of the model achieved r = 0.42 ± 0.09, MAE = 0.94 ± 0.06, R-squared = 0.23 ± 0.05 with p = 0.003 
(see Fig. S2). Figure 3A,B illustrate an example of the internal validation obtained for the low and high depres-
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sive networks, respectively. The illustrated examples are picked up from a single representative iteration chosen 
randomly on condition that the corresponding MAE value resides in the interquartile of the MAE distribution 
across iterations.

We also evaluated the predictions of the model that combined both high and low depressive edges. Our find-
ings reveal a positive significant correlation of r = 0.59 ± 0.1, between the observed and the predicted  BDIs, with 
R-squared = 0.46 ± 0.07, MAE = 0.75 ± 0.091 with p = 0.001 (Fig. S1). An example is shown in Fig. 3C.

Results obtained using tenfold cross validation show consistent results (see Table 2).

External validation on datasets 2 and 3. Using the model developed based on the high depressive 
edges, the performance of the prediction achieved (r = 0.3965, MAE = 1.5984, R-squared = 0.1572, p = 0.002 
(Fig. S4, Fig. 4A). In addition, statistically significant prediction was obtained using the low depressive connec-
tions (r = 0.3198, MAE = 2.1268, R-squared = 0.1023, p = 0.02 (Fig. S5, Fig. 4B). Using both predictive networks, 
the prediction achieved r = 0.5164, MAE = 1.4230, R-squared = 0.2666 with p = 0.001 (Fig. S6, Fig. 4C).

Our findings reveal that the SVR model was able to predict the depression scores for the high-depressive 
network (r = 0.4391; MAE = 0.4700, R-squared = 0.1928, p = 0.03; Fig. 4D, Fig. S7), but not for the low-depressive 
network (r = 0.0881, MAE = 1.2980, R-squared = 0.0078, p = 0.45; Fig. S8, Fig. 4E).

Discussion
The objective of this study is to establish a connectome-based model capable of predicting depression score at the 
individual level. Using three independent resting state EEG datasets, our findings proved that depression could 
be predicted using intrinsic functional connectivity. More specifically, the majority of the nodes that contributed 
the most to the predictive network belong to the DMN obtained in the alpha frequency band. Interestingly, 

Figure 2.  Depictions of the high- and low-depressive networks. Circle plots (A), glass brains—top view (B), 
glass brain- right view were obtained by keeping the significant edges (p < 0.01, FDR corrected). Colors within 
the circle plots correspond to lobes of the brain.
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generalizability of the model to predict novel and independent samples was demonstrated across different datasets 
as well as across different psychometric tests (BDI, HDRS).

The model predicts a considerable amount of the variance in individual depression symptom severity (48% 
with internal validation and 37%–19% with external validation). The obtained MAE obtained in internal and 
external validations suggest a good generalizability of the results. Results are discussed hereafter.

Brain regions implicated in predictive network. Alterations in the paraH connectivity were previ-
ously  reported7,21,23. As this region plays a major role in memory retrieval, it is supposed that such alteration is 
associated with the recall or the imagination of negative memories and events in MDD  patients68. Consistent 

Figure 3.  A typical example (chosen from a random iteration) showing the relationship between the observed 
and the predicted scores using (A) low depressive edges, (B) high depressive edges, (C) combined depressive 
edges.

Table 2.  Results of the internal validation using fivefold and tenfold cross validations. r denotes the Pearson’s 
correlation between observed and predicted scores. MAE denotes the mean absolute error of the prediction. 
R-squared presents the coefficient of determination.

Fivefold cross validation Tenfold cross validation

High depressive edges Low depressive edges High depressive edges Low depressive edges

r 0.42 ± 0.09 0.61 ± 0.08 0.47 ± 0.13 0.65 ± 0.11

MAE 0.95 ± 0.06 0.48 ± 0.09 0.91 ± 0.1 0.42 ± 0.09

Permutation-based p 0.009 ± 0.006 0.005 ± 0.003 0.006 ± 0.009 0.004 ± 0.006

R-squared 0.23 ± 0.05 0.48 ± 0.08 0.21 ± 0.05 0.43 ± 0.05
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with our findings, previous studies have reported higher activation of paraH in depressed subjects compared to 
healthy group during rumination (moments)69.

In addition, increased blood flow in left and right PCC regions were associated with  MDD70. Using EEG 
source connectivity combined with graph theory, a recent EEG study shows that MDD brain network is character-
ized by increased efficiency in  PCC23. Importantly, PCC is a key region in the limbic system and the DMN, and 
has a major role in regulating emotions and motivational  thoughts71. Similarly, ACC which has been associated 
with MDD in multiple  studies8–10,13,15–18,20,21,25, has been most frequently linked to the experience of pain, and 
specially in monitoring painful social situations such as exclusion or  rejection72. This may explain the implication 
of PCC and ACC in the high depressive network. Furthermore, the prefrontal and limbic cortical regions are 
directly modulated by the subcortical structures that are involved in the negative emotional circuits. For instance, 
the canonical amygdala, hippocampal structures, and the lateral habenula (LHb) has been found to represent 
key brain regions in the pathophysiology of  depression73. Clinical and preclinical evidence implicates hyper-
excitability of the lateral habenula (LHb) in the development of psychiatric disorders  including74.Hyperactive 
LHb strongly inhibit the dopaminergic motivational, cognitive and reward  system75 and produces depressive- 
and anxiety-like behaviors, anhedonia and aversion. Dopaminergic and anxiety circuits strongly modulate the 
limbic cortex, including the orbitofrontal cortex and the anterior cingulate cortex. The medial prefrontal cortex 
in rodent, the homologue of the anterior cingulate cortex of human are strongly involved in the expression of 
anxiety and are involved in  MDD76. Because these internal emotional circuits strongly modulate the prefrontal, 
insula and limbic lobes, it is not surprising that in the high depressive network we found a dense functional 
connection between these areas.

According to the low depressive network, the regions implicated are SPL, LOG and PCUN. In fact, SPL, 
LOG and PCUN connectivity were found to be different between MDD patients and healthy controls in many 
 studies18,23,26. SPL is principally involved in attention and visuomotor  integration77, whilst LOG plays a major role 
in the visual perception. In addition, visuospatial processing, reflections upon self, and aspects of consciousness 
are associated with PCUN. This may explain the implication of these regions in low depressive subjects where 
attentional and visual performances are more efficient.

Figure 4.  (A) Correlation between the predicted and observed Hamilton scaling score of the second dataset 
using high-depressive network, (B) the prediction results of the second dataset using low-depressive network, 
(C) the prediction results of the second dataset using both high and low depressive network. (D) The prediction 
results of the third dataset using high depressive network. (E) The prediction results of the third dataset using 
low depressive network.
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EEG frequency bands in depression. In this study, differences between MDD and healthy groups were 
only depicted in alpha band, and no significant results were obtained in other EEG frequency bands. Interest-
ingly, using the same frequency band, the model has demonstrated its performance in predicting novel and 
independent samples. This finding is in line with a number of resting state EEG studies that continuously report 
MDD alterations in alpha frequency patterns. Particularly, alpha-asymmetry was suggested to be a potential 
marker for  depression26,40,78,79 whereas alterations in other frequency band such as delta, beta and gamma power 
were  inconsistent40. More importantly, a connectivity-based EEG analysis suggests an increase in alpha-band 
connectivity between the anterior cingulate cortex and both the prefrontal  cortex80. It has also been proposed 
that reduced alpha desynchronization in a network involving bilateral frontal and right-lateralized parietal 
regions may provide a specific measure of deficits in approach-related motivation in  depression81. Using graph 
theoretical methods, another study shows that disrupted global and local network indices in MDD patients 
were revealed in alpha  band11. In addition, features derived from alpha band have been revealed to be highly 
discriminating when distinguishing between MDD patients and healthy controls using binary  classifiers32,34,37,82. 
These observations may be explained by the fact that alpha rhythm is thought to functionally inhibit cortical 
responses to unattended components of sensory  input83 and monitor important roles in both cognitive, social 
and emotion  processing84,85 that are closely altered in MDD. In contrast, a recent study show that resting state 
connectivity disruptions emerged mainly in beta frequency band (12.5–21 Hz), supporting the hypothesis that 
beta-band synchronization corresponds to a cognitive idling rhythm present in  MDD21. In addition, a large 
study including 1344 participants showed increases in source EEG theta power across frontal regions of the 
 brain86. This inconsistency in the results might be due to the difference in the subjects/patients characteristics as 
well the difference in methodological issues such as number of subjects, data pre-processing and data analysis 
(power spectra vs. connectivity for instance). Moreover, neural connectivity networks likely involve coordinated 
synchronizations across frequencies. Thus, extending the analysis to establish a model based on cross-frequency 
couplings for instance may be of interest.

Limitations and methodological considerations. First, the model was established using the first data-
set composed of two groups (healthy and MDD) where the severity of depressive symptoms was assessed using 
BDI score. Although the BDI is a self-report questionnaire, as compared to the HDRS, was reported that BDI 
revealed high reliability and good correlation with measures of depression and  anxiety87. However, like any self-
report measure, BDI suffers from intrinsic limitations. Specifically, the score can be exaggerated or minimized 
based on the clinical  environment88,  fatigue89, and compromised cognitive  functioning87.

Second, we are aware that subcortical regions are not easily accessible using scalp EEG, namely due to anatom-
ical considerations. Unlike the layered cortex, a subcortical region would not have the necessary organization of 
pyramidal cells to give rise to localizable scalp-recorded EEG. Conversely, exploring subcortical regions may con-
tribute to the modeling of depressive networks as many studies linked MDD with disruptions in  amygdala7,18,90, 
a region centrally implicated in emotional and physiologic responses.

Third, a limitation of the current study is that one of the datasets included only healthy subjects and that some 
subjects experiencing mild depressive symptoms. We also believe that the correlation between observed and 
predicted HDRS scores needs to be validated in a larger sample (including MDD patients). In addition, longi-
tudinal data (EEG data recorded from healthy subjects and MDD patients at several time points) is mandatory 
to validate and ultimately generalize the potential neuromarker.

Fourth, while the low-depressive network showed significant correlation between observed and predicted 
BDI scores in the Dataset 2, the external validation didn’t reveal significant correlations between observed 
and predicted HDRS scores in Dataset 3. This observation suggests that the high-depressive network showed 
consistent prediction of depression severity across both datasets while the low-depressive network is less rel-
evant to the prediction performance for Dataset 3. It is worth noting, however, that the Dataset 2 provided two 
separated group of subjects (healthy and MDD patients), while Dataset 3 didn’t show a wide distribution of the 
HDRS score. More precisely, this latter mainly presents healthy subjects (with Hamilton scores spanning from 
0 to 10) and some subjects experiencing mild depressive symptoms (Hamilton scores spanning from 10 to 14). 
This may explain the disability of the low-depressive network to discriminate between these subjects as it is 
expected to show similar low-network strength. Another explanatory possibility would be that normal sadness 
and pathological depression share the same continuum where major depression is defined based on the func-
tional consequences of the symptoms (i.e. described as the pragmatic  approach91,92. The continuum hypothesis 
between normal sadness and pathological major depression has also been supported at the  symptom93 and the 
cerebral  levels94 using data-driven latent analysis.

Additionally, we believe that a reliable interpretation of the predictive regression model is essential for clinical 
impact. One important issue that should be addressed is whether the significant correlation obtained between 
the predicted and the observed scores in Dataset 1 and 2 is biased by the two groups (HC and MDD) showing 
separated depression scores (see histograms in Figs. 3 and 4). To target this question, we have first assessed the 
predictive performance of the models not only using the correlation metric, but also using MAE and R-squared 
that are deemed to be more rigorous and sensitive to the scale of the prediction error. In addition, to quantify 
how much the prediction performances obtained are above/below chance, we employed a baseline regressor (also 
known as dummy regressor) that uses the average score of the training set as prediction. For the first dataset, 
results show that the established models (using high, low and both depressive networks as features) achieved 
MAE better than the error obtained by the dummy model, with no overlap between dummy MAE distribu-
tions (MAE = 1.18 ± 0.067) and MAE obtained by the model (MAE = 0.94 ± 0.06 using high depressive edges, 
MAE = 0.68 ± 0.09 using low depressive edges, MAE = 0.75 ± 0.091 when combining high and low depressive 
edges). For the second dataset, all but the model established using low depressive edges performed better than 
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the dummy revealing MAE = 1.73. To better assess if the correlations obtained are biased by the bimodal distribu-
tions, we performed a group-wise evaluation separately for MDD and HC. The correlation results (mean ± std 
across folds) of Dataset 1 are reported in Table S1. For this dataset, results show that the group-wise correlations 
between the observed and predicted scores are considerable (> 0.35) when both high and low depressive edges 
are used as predictive features. However, the use of high depressive edges solely results in acceptable correla-
tions for the HC group but not for the MDD group. In contrast, the low depressive edges revealed considerable 
correlations in MDD group but not in HC group. A possible explanation is that the high (low) depressive edges 
are more related to the HC (MDD) group as their weights are positively (negatively) correlated with BDI scores. 
This issue highlights the importance of combining both high and low depressive networks as predictive features, 
especially in the bimodal case, as each predictive network (high/low) better describes a particular group. For 
dataset 2, results revealed that the predictive performance of the model separately for MDD is weak using each 
predictive network solely (Table S2). As in Dataset 1, the combination of both predictive edges (i.e. high and low) 
underlies a better performance of the model for both HC and MDD groups. This observation may be related 
to the difference in the data distribution between dataset 1 (showing HC subjects remarkably more than MDD 
patients) and dataset 2.

We should also note that the prediction error obtained in Dataset 3 (MAE = 0.47) is not sufficiently small 
taking into account the min–max range (1.6) and the interquartile (0.46) of the dataset. However, the permuted 
based p-value shows that the predictive performance is significant (p < 0.05). In addition, the dummy mean model 
(returning the average of the training set as predicted score) resulted in MAE of 0.64, which suggests that the 
model performs better than expected by chance. On the other side, we are aware that the clinical needs require 
more robust predictions in terms of MAE, and R-squared.

Furthermore, internal validation was here assessed using a k-fold (fivefold and tenfold) cross validation 
 procedure63,65. Although leave-one-out is the most popular cross validation method, it has been demonstrated 
that the k-fold cross validation provides more accurate prediction error. However, the choice of the number of 
folds (K) is critical and one should be prudent in K selection to ensure a good compromise between model bias 
and  variance95–97. Referred  to65, it is recommended to use 10 to 20% of data for the testing sample size. Thus, 
fivefold cross validation was used for the internal validation using the first dataset of 121 subjects so that 20% of 
data was used as testing sample in each iteration. Results of the internal validation using fivefold cross validation 
were also consistent with those obtained using a tenfold cross validation, suggesting that the main observations 
remain intact.

Previous studies showed that depression symptom severity strongly differ between elderly and young 
 populations98. In the current study, we established the predictive model using resting-state functional con-
nectivity acquired exclusively from young adults (< 40 years). To better ensure that age is not correlated with 
the depression severity scores, we controlled for its confounding effects. It is noteworthy to mention that other 
demographic information (such as education background, years and drugs) should be, when available, collected 
and controlled in future studies.

In conclusion, our findings demonstrate the feasibility of resting-state EEG whole-brain connectome in pre-
dicting individual differences in depression severity, suggesting that it might serve as direct and non-invasive 
neuromarker that can ultimately support clinicians in a biologically-based characterization of MDD, which 
eventually will improve MDD prognostic and therapeutic decision.
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