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Abstract

We treat a chain of oscillators with linear stiffness and internal and external cubic non-linearities. The method of
harmonic balance is used to determine the non-linear modes of the Hamiltonian system. For each equilibrium point,
a stability analysis is performed by means of the associated monodromy matrix. The numerical results shows that
branch points, limit points and Neimark-Sacker bifurcations exist in the system. The aim of the paper is to study
how they drive the energy in the system: branch points make energy transfer between non-linear modes possible,
while Neimark-Sacker bifurcations can lead to chaotic behaviour. As the number of oscillators increases, the energy
required to reach the first Neimark-Sacker bifurcation follows a remarkable regularity.
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1. Introduction

The literature on non-linear chains of oscillators comprises numerous contributions [1, 2]. Indeed, atypical and
interesting phenomena exist in such systems. For example, a wave can propagate in a non-linear medium without
scattering, which means that the energy can be localized [3, 4, 5]. Such a phenomenon is called a soliton in the case
of a propagating wave and of a breather for a stationary wave [6, 7]. Therefore, nonlinear chains appear as promising
candidates on which to build a vibratory or acoustic control [8, 9]. The vibratory energy can be localized in order to
be dissipated or on the contrary scattered to be transferred to another frequency domain.

In order to study such chains, several method exist: analytical methods, numerical methods or semi-anaytical
methods. Flach et al. [10] studied the energy threshold of the FPU problem with qualitative analyses based on the
normal form method. Verhulst [11] and Andrianov et al. [12] identified mode coupling and interactions between high
and low frequencies. The chain can be modelled as a discrete system with point masses or as a continuous material if
it is long enough. The transition from a discrete to a continuous system can be considered to simplify the modelling
[13].

In this paper, a chain with a large number of oscillators is considered. A semi-analytical method and a bifurcation
analysis are used to predict and explain its dynamic behaviour. Bifurcations not only permit monitoring changes in
the global dynamics of the system when its parameters are varied. [14, 15, 16, 17] but also control the exchange of
energy between the different non-linear modes. In order to clearly explain our approach, a system with few degrees
of freedom will first be considered. Then, the proposed method will be applied to a larger system. In the next section,
we describe the system and its linearisation. In Section 3 we first consider a chain with a few oscillators. We use
the harmonic balance method to compute the non-linear modes and the bifurcations. We compare the results with
direct time integration. In Section 4 we study the bifurcations of the system with a large number of masses. Finally,
conclusions are drawn in Section 5.
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Figure 1: Chain of N non-linear oscillators.

2. System

We consider a chain of N masses m linked with N + 1 linear springs with stiffness k as shown in Fig. 1 Both ends
of the chain are grounded. The non-linearity is introduced in two different ways:

• internal non-linearity: between two consecutive masses.

• external non-linearity: between each mass and the ground

A damping coefficient c is introduced. The dynamics of the system can be described by N equations:

mẍn + cẋn + k(−xn−1 + 2xn − xn+1) + gint(xn − xn−1) + gint(xn − xn+1) + gext(xn) = fn sin(ωt + θ), 1 ≤ n ≤ N (1)

where xn is the horizontal displacement of the mass n (we consider x0 = xN+1 = 0), fn, ω and θ are the amplitude,
the frequency and the phase of the external forcing respectively and gint and gext are nonlinear functions. In our study,
both non-linearities are purely cubic:

gint(x) = kintx3 (2)

gext(x) = kextx3 (3)

where kint and kext are constant coefficients. The system equations can be written in matrix form:

MẌ(t) + CẊ(t) + KX(t) + G ((X(t)) = F(t) (4)

where X(t), M, K, G(X) and F(t) are the displacement vector, mass matrix, linear stiffness matrix, non-linear forces
vector and external force vector, respectively. The mass matrix is a diagonal matrix M = mI where I is the unity
matrix. The linear stiffness matrix is a tridiagonal matrix:

K = k



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


(5)

If we consider the linearised undamped system (kint = kext = c = 0), we can calculate the linear undamped eigenmodes
φp and write X as:

X = ΦQ (6)

where Φ = (φ1, . . . , φN) is the matrix of the normal modes and Q = (qT
1 , . . . , q

T
N)T is the vector of generalized dis-

placement. The frequency of mode p is given by:

ωp = 2ω0 sin
( pπ
2N + 2

)
(7)

2



where ω0 =

√
k
m

. The matrix equation of the system with generalized coordinates read:

IQ̈ +
c
m

IQ̇ + Ω2Q + ΦᵀG(ΦQ) = ΦᵀF (8)

where
Ω = diag(ω1, ω2, · · · , ωN) (9)

or
d2qn

dτ2 + λ
dqn

dτ
+ r2

nqn + gn(q1, · · · , qN) = fqn, 1 ≤ n ≤ N (10)

with the dimensionless time τ = ω1t, λ =
c
m

, rn =
ωn

ω1
and gn the modal non-linear forces on mode n:

gn(q1, · · · , qN) =
∑

i, j,k∈[1,N]

ai jk qiq jqk (11)

The ratios rn are given in Fig. 2 for several values of N. For high values of N, the ratio rn is close to n for the first
eigenmodes:

rn =
ωn

ω1
=

sin
( nπ
2N + 2

)
sin

(
π

2N + 2

) = n + n
(
1 − n2

)
O

(
1
N

)
(12)

For N = 25, the frequency ratios of the first five eigenmodes are very close to integers (and internal resonances are
expected).
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Figure 2: Frequency ratios rn =
ωn

ω1
of the system for several values of N.
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3. Analysis of the system for N = 3

Firstly, in this section, we consider a chain with only three masses. The objective is to determine what phenomena
are present that can drive the energy distribution in the chain. For this, a modal approach seems relevant. In this
section, for all figures we take the following parameters:

m = 1, k = 1, kint = 0, kext = 1 (13)

3.1. Harmonic balance method

To analyze this non-linear system, the harmonic balance method (HBM) is used. The response of the system is
assumed to be a periodic function and can therefore be expressed as a truncated Fourier series:

qn(t) = cn +

H∑
h=1

anh cos(ωht) + bnh sin(ωht) (14)

where H is the number of harmonics retained in the response. Replacing the Eq. (14) in Eqs. (10), yields a system
of N equations with N(2H + 1) unknowns. To find solutions of this system, we use the ManLab software package
[18] which relies on the asymptotic numerical method (ANM). . In order to use the ANM, a quadratic recast of the
equations is mandatory. To this end, additional variables are introduced and the cubic terms are written as:

u3
n = unvn (15)

where vn = u2
n. If a solution for a given value of a system parameter is known, the solution for a closed value can be

found by continuation technique.

3.2. Hamiltonian system

Now we consider the system with no damping (λ = 0) and no forcing ( fqn = 0).

d2qn

dτ2 + r2
nqn + gn(q1, · · · , qN) = 0, n ∈ [1,N] (16)

The linear modes φn are solution of this Hamiltonian non-linear system for very low amplitude. Therefore, they are
used as initial solutions for the computation of the non-linear modes. The non-linear modes are calculated as periodic
solutions of (16) by increasing the amplitude with continuation. In Fig. 3 the non-linear normal modes of the system
are presented for N = 3. They are interesting because they represent the skeleton curves of the response of the system.

Their L2 norm is given by:

|qn|L2 =

√√√
c2

n +
1
2

H∑
h=1

(a2
hn + b2

hn) (17)

Its projections on the linear modes qi are plotted in Fig. 3a. For each non-linear mode, the contribution of several
linear modes can be observed. For instance, q1 and q3 participate in the non-linear modes 1 and 3, whereas only q2
contributes to the non-linear mode 2. This can be explained by the symmetry of the shape of the linear and non-linear
modes: the modes 1 and 3 are symmetric whereas the mode 2 is antisymmetric as shown in the next Section.

The contribution of significant harmonics is given in figures 3b, 3c and 3d.
Now we evaluate the accuracy of the solution. Since no energy is exchanged with the external systems, the

HamiltonianH of the system is constant:
H = K +U + S (18)
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(a) Hamiltonian system
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(d) Amplitude of harmonic 5

Figure 3: Non-linear normal modes and significant harmonics (1, 3 and 5) with H = 20.

where K is the kinetic energy,U the linear potential energy and S the potential energy of non-linear terms:

K =

N∑
n=1

m
2

x2
n (19)

U =

N−1∑
n=1

k
2

(xn+1 − xn)2 +
k
2

(
x2

1 + x2
N

)
(20)

S =

N−1∑
n=1

kint

4
(xn+1 − xn)4 +

kint

4

(
x4

1 + x4
N

)
+

N∑
n=1

kext

4
x4

n (21)

Their time evolution are plotted in Fig. 4a over one period for N = 3 and H = 3. The rate of variation ofH indicates
if the solution is acceptable or if we need to consider more harmonics, i.e., to increase H. We define the relative error
Er on the energy as :

Er =
max(H) −min(H)

1
T

∫ T
0 H(t)dt

(22)
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where T =
2π
ω

is the period. The Fig. 4b shows that the relative error Er decreases as the number of harmonics H

in the solution increases. For H = 20, the relative error is less than 1 × 10−12. We consider this error acceptable and
choose H = 20 for N = 3.
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Figure 4: Energy over one period for H = 3 (a) and relative error Er for several values of H for N = 3 (b).
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3.3. Shapes of solutions

It is interesting to follow a non-linear mode to see how its shape evolves with amplitude. In Fig. 5, the shapes of
the modes are shown for very low amplitude corresponding to linear modes and for high amplitude. We recall that the
linear mode p can be expressed with sine functions:

xi = sin
( ipπ

N + 1

)
(23)

The symmetry of the linear modes is preserved for non-linear modes. The shape of mode 2 does not change. Indeed,
only the linear mode 2 participates in the non-linear mode 2. For very high amplitude, the displacements of a mass
can take only three values: xi ∈ {−1, 0, 1}. Interestingly, for the non-linear mode 3, the energy is localized only on the
second mass.
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(a) Low amplitude (linear)
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Figure 5: Shape of the non-linear modes normalized with maximum value for very low amplitude and very high amplitude on each branches for
N = 3.

For N = 3, the equations of the system read:

mẍ1 + k(2x1 − x2) + kextx3
1 = 0 (24)

mẍ2 + k(2x2 − x1 − x3) + kextx3
2 = 0 (25)

mẍ3 + k(2x3 − x2) + kextx3
3 = 0 (26)

When x −→ ∞, the linear part can be neglected:

mẍ1 + kextx3
1 = 0 (27)

mẍ2 + kextx3
2 = 0 (28)

mẍ3 + kextx3
3 = 0 (29)

We note that when the amplitude of the displacements increase, the equations of the system tend to be decoupled.
This explain the localization of the energy in the nonlinear modes.

3.4. Stability of the solutions

In order to predict the behaviour of the system, it is necessary to find the stability of each solution. To do this, we

use the Newmark-beta time-integration method with γ =
1
2

and β =
1
4

to calculate the Monodromy matrix from which
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the Floquet multipliers µi are obtained [19, 20]. The solution is stable if all if all Floquet multipliers µi are such that
|µi| ≤ 1,∀i, and unstable otherwise. Figure 6 shows the evolution of the Floquet multipliers for the non-linear modes
1 and 2 in the complex plane and their modulus. A unstable zone exists for 1.356 <

ω

ω1
< 1.386 for the non-linear

mode 1 and for 2.07 <
ω

ω1
< 2.51 for the non-linear mode 2.
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(a) Floquet multipliers in complex plane for the first non-linear
mode.
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Figure 6: Floquet multipliers of the first two non-linear modes in the complex plane and their norm. Unstable zones appear in grey.

3.5. Forced system

Here, we consider the system (10) with damping λ and excited by modal forces fqn. Fig. 7 gives the response of
the system for different cases of force. We trace the L2 norm of the Fourier coefficients of each generalized coordinate
qi over frequency. It can be verified that the non-linear modes (dashed lines) computed in the previous section serve
as backbone curves for the response curves.

If only one mode is excited, the response curves are relatively simple but they become more complex when several
modes are excited due to non-linear interactions. We remark in Fig. 7d that the peaks of modes 1 and 2 are not on the
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skeleton curves. This difference comes from the coupling with other modes. For instance, at the peak of the response
curve of non-linear mode 1, a fraction of the energy is located on mode 2.

The stability of the non-linear modes gives a good idea of the stability of the response curve. As classically
observed in the case of non-linear resonance, the part of the response curve below the folded peak in Figs. 7a, 7b and
7c is unstable. In Figs. 7b and 7d, the unstable zone of the non-linear mode 2 for 2.07 <

ω

ω1
< 2.51 also exist in

the response of the system. However, in Fig 7a, the unstable zone of the non-linear mode 1 near
ω

ω1
= 1.4 does not

does not appear in the response. This can be explained by the damping existing in the forced system. In addition,
the unstable zones of the response curves in Fig. 7d are much more complex and cannot be simply inferred from the
stability of the non-linear modes.
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Figure 7: Response of the system (N = 3) with λ = 0.01 and an excitation on each eigenmode computed with HBM (H = 20).

3.6. Bifurcation analysis

A bifurcation is present when the modulus of a Floquet multiplier µb becomes higher than one. Its nature can be
determined with the value of the Floquet multiplier [16]:

• Im(µb) = 0 and Re(µb) ≥ 1: the bifurcation is a branch point or a limit point ;
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• Im(µb) , 0: the bifurcation is a Neimark-Sacker bifurcation ;

• Im(µb) = 0 and Re(µb) ≤ 1: the bifurcation is a doubling period bifurcation.

Figure 6 shows the Floquet multipliers of the first two non-linear modes in the complex plane and their modulus. For
the first non-linear mode, the Floquet multipliers cross the unit circle through the real axis, which leads to two branch
points.

For the second mode, tthe Floquet multipliers cross the unit circle with a non-zero imaginary part, which leads to
two Neimark-Sacker bifurcations. Two Neimark-Sacker bifurcation exists.

Fig. 8 shows so-called frequency-energy plots, i.e. energy H versus frequency, together with bifurcations and
stability for two cases:

• kext = 0, kint = 0.1

• kext = 0.1, kint = 0
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Figure 8: Frequency-energy plot for N = 3.
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It can be noticed that no bifurcations are present in the case with only local non-linearity kint (Fig8a). The type of
non-linearity has a great impact on the presence of bifurcations.

In the other case (Fig8b, two types of bifurcations exist, branch point and Neimark-Sacker bifurcations. These
bifurcations are interesting because they are responsible for energy exchanges between modes. In order to better
understand how these exchanges occur, we will analyse each type of bifurcation in more detail.

3.6.1. Branch point
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Figure 10: Phase diagram along the secondary branch between non-linear modes 1 and 3.

In Fig. 8a, several branch points are present on non-linear mode 1. From these points, additional branches connect
non-linear mode 1 to the subharmonic of non-linear mode 3 as shown in Fig. 9. A limit point splits each secondary
branch in a stable zone and an unstable zone. Similar phenomenon has been studied by Volvert et. al [21].

Fig. 10 gives the phase portrait while following the secondary branches. An evolution from mode 1 to mode 3 can
be observed. Mode 2 is represented by a straight line with null amplitude because it is not involved in this branch due
to the symmetry of the shape. This bifurcation permits an energy transfer from a mode to another one because at this
level of energy, the natural frequency of the non-linear mode 1 ω1 is close to one half of the natural frequency of the
non-linear mode 3 ω3:

ω1 ≈
ω3

2
(30)

Time responses of the Hamiltonian system initialized with solutions on mode 1 branch (see Fig. 9) for four different
energy levels are plotted in Fig. 11 with several initial energies on the mode 1. According to Fig. 9, the initial solution
corresponding to an energy level E = 8.5 is located in the stable zone of mode 1 but is very close to the branch point.
The three other initial conditions E = 9, 9.5, 9.7 are located in the unstable zone between the two branch points. It can
be observed that, when the initial solution is unstable, the amplitude of mode 3 increases and the system oscillates in
a quasi-periodic regime.

The Poincaré section defined by q1 = 0 and q̇1 > 0 corresponding to Fig. 11d is plotted in Fig. 12. The closed
loop obtained for q3 confirms the quasiperiodicity of the motion.

This type of energy exchange is interesting because it takes place between only two modes. Energy can be
transferred in a controlled way. However, as shown in Fig. 7a, this exchange may not take place if the damping is too
large.
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Figure 11: Time responses of the Hamiltonian system for several energy level in Fig. 9.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

4

5

q
1

q
2

q
3

Figure 12: Poincaré section for the time response in Fig. 11d.
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3.6.2. Neimark-Sacker bifurcation
In Fig. 8b, an unstable zone bounded by two Neimark-Sacker bifurcation points exists for mode 2. The co-

existence of a stable quasi-periodic regime is therefore expected in this zone. In order to verify this assumption,
numerical time integration is used to compute the response of the Hamiltonian system. This time integration is
performed with the ode45 algorithm of Matlab with the following tolerances: RelTol = 3 × 10−14 and AbsTol =

1 × 10−15. For an initial energy E = 10, all the energy stays on the mode 2. This can be explain by the anti-symmetry
of the mode 2 whereas the modes 1 and 3 are symmetric. However, for an initial energy E = 50, the numerical errors
are amplified by the instability of the mode. Thus, the energy of the mode 2 is transferred to all other modes.

A Poincaré section is traced in Fig. 14 in order to estimate the nature of the behavior of the system. The periods
are defined by the oscillations of the modal coordinate q1 as previously. The behaviour seems to be not quasi-periodic.
We evaluate the higher Lyapunov exponent in order to know if the response is chaotic. We compute the responses
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Figure 13: Response of the Hamiltonian system for several values of initial energy on mode 2.
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Figure 14: Section of Poincar between 2000 and 10 000 s of the Hamiltonian system for initial energy of 50 on mode 2.
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Figure 15: Difference between the modal coordinates of two responses with very close initial conditions.

of the system with two very close initial conditions [22, 23]: E1 = 50 and E2 = 50 + 1 × 10−14. The differences
between each modal coordinates of the responses δi are traced in Fig. 15 in a semi logarithmic scale. The difference
increases exponentially before to reach a plateau with the same order of magnitude as the response. This exponential
growth shows a chaotic behaviour because for very close initial conditions the response can be completely different
after some periods. The behaviour of the modal coordinate q2 before t = 280 s can be explained by the algorithm
precision and rounding error of Matlab. The Lyapunov exponents can be evaluate with a fitting of the curves of the
Fig. 15.

This time, the bifurcation does not allow energy to be transferred to a targeted mode. Instead, it is possible to
distribute the energy from one mode to all the others. Thus, a Neimark-Sacker bifurcation can be used to define an
energy threshold for which energy cannot be accumulated in the mode.

4. Increasing N

Now we increase N to see what kind of bifurcations are present in a longer chain and how they can generate
exchanges of energy between non-linear modes. We consider a long non-linear chain of total mass M, total linear
stiffness K and global damping coefficient C. The global internal and external non-linear coefficients are Kint and Kext,
respectively. To satisfy the global properties of the chain, the local coefficients are:

m =
mt

N
, c =

ct

N
, k = ktN, kint = ktintN3 and kext =

ktext

N
(31)

The frequency-energy plots are plotted for values of N = 5, 10, 25 in Fig. 16. We take the following values of
parameters:

mt = 1, ct = 0, kt = 1, ktint = 0, ktext = 1 (32)

We note that branch points and Neimark-Sacker bifurcations still exist. These bifurcations allow an exchange of
energy between the different modes.

Moreover, with the exception of the first and last modes, the first Neimark-Sacker bifurcations of each mode seems
to follow a smooth curve (represented with a dotted line in Fig. 16). On the last mode, a branch point appears before
a Neimark-Sacker bifurcation.
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Figure 16: Energy frequency diagrams of the system with non-linear modes and bifurcations for several values of N.
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Figure 17: Energy of the first bifurcation of each mode for several values of N in logarithmic scales.
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Figure 18: Energy of the first bifurcation of each mode for several values of N in logarithmic scale.

In Fig. 17, the energy of the first Neimark-Sacker bifurcation of each mode E f is represented as a function of its
frequency in a logarithmic scale for many values of N. We note that for each value of N the energy increases linearly
in logarithmic scale.

From these curves, it is found that the energy of the first bifurcation can be approximated by the following energy-
frequency relation:

E f (ω) = αNω
β (33)

where αN is a constant depending on the value of N and β a constant which can be evaluated by the least square
method β = 4.19.
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Then we plot in Fig. 18 the energy of the first bifurcation for each mode as a function of N in logarithmic scale.
A new approximation is given as function of ω and N.

E f (ω,N) = αNγ+Nδωβ (34)

This approximation is plotted in Fig. 18 with the following coefficients:

β = 4.19, γ = 1.53, δ = 0.02 (35)

This distribution of the first Neimark-Sacker bifurcations is interesting. Indeed, in the previous section, we saw
that these bifurcations correspond to an energy threshold beyond which the energy is distributed over all modes. Thus,
this energy threshold can be given approximately as a function of N and the frequency of the mode. By playing with
the parameters of the chain, it is possible to change the distribution of the energy thresholds.

5. Conclusion

We have proposed here to use the harmonic balance method to analyse a chain of oscillators with internal and
external non-linearities. This method makes it possible to determine the non-linear modes and their stability. When
considering a small system with only three masses, bifurcations can be identified: branching points lead to an energy
exchange between two modes, while Neimark-Sacker bifurcations can lead to a chaotic behaviour. The latter results
in an exchange of energy between all modes, but the manner of this exchange cannot be predicted. When considering
a larger system with numerous degrees of freedom, a distribution of Neimark-Sacker bifurcations on the non-linear
modes with increasing energy appears. This distribution can be used to define energy thresholds for which the energy
of one mode will be dispersed over all the others.
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[20] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J.-C. Golinval, Nonlinear normal modes, Part II: Toward a practical computation using
numerical continuation techniques, Mechanical Systems and Signal Processing 23 (1) (2009) 195–216. doi:10.1016/j.ymssp.2008.04.
003.

[21] M. Volvert, G. Kerschen, Phase resonance nonlinear modes of mechanical systems, Journal of Sound and Vibration 511 (2021) 116355.
doi:10.1016/j.jsv.2021.116355.

[22] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena
16 (3) (1985) 285–317. doi:10.1016/0167-2789(85)90011-9.

[23] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, second edition Edition,
Westview Press, 2015.

18

https://linkinghub.elsevier.com/retrieve/pii/S0167278917305286
https://linkinghub.elsevier.com/retrieve/pii/S0167278917305286
http://dx.doi.org/10.1016/j.physd.2018.03.001
http://link.springer.com/10.1007/978-1-4757-3978-7
http://dx.doi.org/10.1007/978-1-4757-3978-7
https://linkinghub.elsevier.com/retrieve/pii/S0045782515002297
https://linkinghub.elsevier.com/retrieve/pii/S0045782515002297
http://dx.doi.org/10.1016/j.cma.2015.07.017
https://linkinghub.elsevier.com/retrieve/pii/S0888327016303843
https://linkinghub.elsevier.com/retrieve/pii/S0888327016303843
http://dx.doi.org/10.1016/j.ymssp.2016.09.037
http://link.springer.com/10.1007/s11071-019-05245-6
http://link.springer.com/10.1007/s11071-019-05245-6
http://dx.doi.org/10.1007/s11071-019-05245-6
https://linkinghub.elsevier.com/retrieve/pii/S0022460X09001217
http://dx.doi.org/10.1016/j.jsv.2009.01.054
http://link.springer.com/10.1007/s11071-012-0744-0
http://link.springer.com/10.1007/s11071-012-0744-0
http://dx.doi.org/10.1007/s11071-012-0744-0
https://linkinghub.elsevier.com/retrieve/pii/S0888327008001027
https://linkinghub.elsevier.com/retrieve/pii/S0888327008001027
http://dx.doi.org/10.1016/j.ymssp.2008.04.003
http://dx.doi.org/10.1016/j.ymssp.2008.04.003
https://linkinghub.elsevier.com/retrieve/pii/S0022460X21004119
http://dx.doi.org/10.1016/j.jsv.2021.116355
https://linkinghub.elsevier.com/retrieve/pii/0167278985900119
http://dx.doi.org/10.1016/0167-2789(85)90011-9

	Introduction
	System
	Analysis of the system for N=3
	Harmonic balance method
	Hamiltonian system
	Shapes of solutions
	Stability of the solutions
	Forced system
	Bifurcation analysis
	Branch point
	Neimark-Sacker bifurcation


	Increasing N
	Conclusion

