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Université Paris-Saclay
Palaiseau, France

Thomas.Chevet@onera.fr

Thach Ngoc Dinh
Cedric-Laetitia

Conservatoire National des Arts et Métiers
Paris, France

ngoc-thach.dinh@lecnam.net

Julien Marzat
DTIS, ONERA
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Abstract—The state estimation of repetitive processes with
periodically repeated trajectories can be interpreted as the dual
task of iterative learning control design. While the latter has
been widely investigated over the last two decades, only few
approaches exist for the design of iterative learning observers.
However, the exploitation of the knowledge about periodically
repeated trajectories, which occur among others in pick and
place tasks in robotics as well as in charging and discharging
of batteries, offers the opportunity to enhance the estimation
accuracy from one execution of the control task to the next.
In this paper, we generalize a linear stochastic approach for
iterative learning state estimation, inspired by the Kalman filter
in terms of a minimization of the estimation error covariance,
to the class of models with bounded parameter uncertainty
and to nonlinear ones that can be represented by means of
quasi-linear discrete-time state-space representations. To solve
this task, a novel combination of set-valued ellipsoidal state
enclosure techniques with the aforementioned stochastic iterative
learning state estimator is presented and visualized for a quasi-
linear model of the charging/discharging dynamics of Lithium-
Ion batteries.

Index Terms—Iterative learning observers, Stochastic estima-
tion, Repetitive processes, Ellipsoidal calculus

I. INTRODUCTION

Two-dimensional (2D) systems are characterized by the
fact that their state evolves both in the time domain and
the iteration domain. Such system representations are widely
used for the derivation and stability proof of iterative learning
control (ILC) procedures [1]–[3]. In general, ILC aims at
effectively enhancing the control accuracy of repetitive tasks
when reference trajectories with a finite length are repeated
periodically in each successive execution of the same control
task. Moreover, it is typically also assumed in the frame of
ILC that a reset of the system state to (nearly) identical

initial conditions occurs at the beginning of each new iteration.
Examples for scenarios in which ILC can outperform classical
controllers by not only adjusting the control signal on the basis
of state information from the current execution (also called
iteration or trial), but also by accounting for tracking error
signals from at least one previous trial, are pick and place
operations in automated manufacturing processes, trajectory
tracking for welding robots, rehabilitation robotics, or the
control of wind power plants.

Iterative learning observer (ILO) synthesis [4] can be in-
terpreted as the corresponding dual task. However, it is yet
a quite novel direction of research, regardless of whether
deterministic state observers, set-based estimation approaches,
or stochastic filtering techniques are accounted for. As related
research, especially the work by Cao et al. [5] should be
mentioned, where a Kalman Filter (KF) [6] like ILO procedure
is derived to account for the system dynamics in both the time
and iteration domains. The drawback of this approach is its
suboptimality due to the fact that both the time and iteration
domains are treated independently. A first attempt to removing
this problem was published in [7], where a robust linear
matrix inequality (LMI) technique is presented that allows for
a joint parameterization of the ILO gains in both domains.
Although this ILO approach is robust against uncertain but
bounded, possibly time-varying parameters, it only provides
point-valued estimates for the system state. The structure of
this observer is motivated by the work of [8]. Examples, in
which nonlinear applications are taken into consideration by
data-driven learning observer approaches can be found in [9],
[10]. Recently, the authors have published a related work on
the interval observer design for 2D systems described in the
form of the Fornasini-Marchesini second model [11], where



the focus was on evaluating and verifying stability criteria in
the form of LMIs in combination with the optimization of
the peak-to-peak norm to reduce the effects of measurement
errors on the state estimates. In addition, a KF-like realization
of ILO was published in [12]. It aims at a minimization of the
estimation error covariance by jointly tuning the filter gains in
the time and iteration domains in a discrete-time setting. For
nonlinear processes, it proposes a linearization of state and
output equations in the most recent estimates for the expected
values of a Gaussian approximation of the state’s probability
density as it is classically also being done in the synthesis of
Extended Kalman Filters (EKFs).

To enhance the robustness of the KF-based ILO approach, a
novel combination with a set-valued ellipsoidal calculus tech-
nique [13], [14] is presented in this paper. It aims at bounding
the arising covariance matrices in both prediction and innova-
tion stages after the specification of desired confidence levels
for a quasi-linear state-space representation, i.e., for system
and output matrices that may explicitly depend on the state and
bounded parameters with unknown probability distributions.
In such a way, the use of the ellipsoidal enclosure technique
proposed in this paper can be seen as a generalization of
the work in [15], where pure parameter uncertainties were
accounted for in a time-domain (non-ILO) state estimation.

This paper is structured as follows. Sec. II summarizes
the fundamental steps of the ellipsoidal calculus approach
according to [13], [14] to form the basis for a novel technique
to bound predicted covariances for quasi-linear system models.
In Sec. III, we describe the problem formulation of ILO design
for discrete-time, quasi-linear system models. Sec. IV proposes
the generalization of the ILO design from [12] by the novel
combination with the ellipsoidal bounding technique of Sec. II.
The use of the ILO is demonstrated in simulations for a close-
to-life battery model in Sec. V. Finally, conclusions and an
outlook on future work can be found in Sec. VI.

II. COVARIANCE PREDICTION USING ELLIPSOIDAL
CALCULUS

For the derivation of the application of the ellipsoidal cal-
culus approach from [13], [14] to the prediction of covariance
matrix bounds, assume that the discrete-time state-space model

zk+1 = Φ (zk,p) · zk (1)

with the bounded parameter vector p ∈
[
p ; p

]
— for

which the elementwise defined relation p ≤ p holds — is
given. As discussed further in Secs. III and IV, the vector
zk ∈ Rñ consists of both system states and noise variables.
Furthermore, assume that an ellipsoidal domain

Ek

(
µk,Γ

′
k, r

)
:=

{
zk ∈ Rn

∣∣ (zk − µk)
T
Γ′
k
−T

Γ′
k
−1

(zk − µk) ≤ r2
}
(2)

is specified with the positive definite shape matrix Q′
k =

Γ′
kΓ

′
k
T ≻ 0 and the ellipsoid midpoint µk ∈ Rñ. The pa-

rameter r describes a magnification factor according to [16]

so that the ellipsoid (2) specifies the confidence bound of a
given percentage if the vector zk is normally distributed with
the covariance Q′

k. For the cases ñ = 4 and ñ = 8 (inspired
by the example in Sec. V), selected magnification factors r
are listed in Tab. I.

TABLE I: Magnification factors for selected confidence levels
for Gaussian distributions in different dimensions ñ [16].

confidence levels
dimension 80% 85% 90% 95%
ñ = 4 2.4472 2.5971 2.7892 3.0802
ñ = 8 3.3212 3.4680 3.6553 3.9379

In the following ellipsoidal covariance prediction step, we
use the definitions

Γk := r · Γ′
k and Qk := r2 ·Q′

k . (3)

The following procedure is based on the reference [14],
from which only the computation of outer ellipsoidal bounds
is taken into consideration.

For the compactness of notation, reformulate the system
model (1) into the form

zk+1 = Φ (zk,p) · žk + Φ̃ ·µk +
(
Φ (zk,p)− Φ̃

)
·µk (4)

with zk = žk + µk, where

zk ∈Ek =Ek

(
µk,Γ

′
k, r

)
. (5)

Here, Ek denotes the uncertainty on the non-origin centered
states zk,

žk ∈ Ěk = Ěk

(
0,Γ′

k, r
)

(6)

the uncertainty on žk after shifting the ellipsoid to the origin,
and

Φ̃ = Φ (µk,mid ([p])) (7)

is the midpoint approximation of the quasi-linear system
matrix with

mid ([p]) =
1

2
·
(
p+ p

)
. (8)

Let also □Ek denote an axis-aligned enclosure of Ek in the
form of an ñ-dimensional interval box. An alternative to the
definition (7) is given by

Φ̃ = mid (Φ (□Ek, [p])) , (9)

which is preferable if (7) and (9) strongly differ from each
other in the case of large uncertainty.

Then, a confidence bound of the predicted states zk+1 of
magnification r is given by the ellipsoidEk+1

(
µk+1,Γ

′
k+1, r

)
with the covariance Q′

k+1 = Γ′
k+1

(
Γ′
k+1

)T
for which the

parameters are computed in the following steps.
P1: Apply

žk+1 = Φ (zk,p) · žk (10)

to the ellipsoid Ěk in (6). The outer ellipsoid enclosure
of the image set is described by an ellipsoid with the
shape matrix

Q̌k+1 = α2
k+1 · Γk+1 · ΓT

k+1 , (11)



where αk+1 ≥ 0 is the smallest value for which the LMI

Mk+1 := Λ

[
−Q−1

k ΦT (zk,p) · Φ̃
−T

Φ̃
−1 ·Φ (zk,p) −α2

k+1Rk

]
Λ ⪯ 0

(12)
is satisfied for all zk ∈ □Ek and p ∈ [p] with

Rk := Γk · ΓT
k . (13)

In (12), the symbol ⪯ denotes the negative semi-
definiteness of the corresponding matrix expression and
Λ = blkdiag

(
βIñ×ñ, β

−1Iñ×ñ

)
is a preconditioning

matrix defined with the help of the identity matrix
Iñ×ñ ∈ Rñ×ñ and the square root β =

√
min{λi (Qk)}

of the smallest eigenvalue of Qk as described in [17].
P2: Compute interval bounds for the term

bk =
(
Φ (p)− Φ̃

)
· µk ∈ [bk] (14)

which accounts for a non-zero ellipsoid midpoint with
zk, Φ̃, and p defined according to (5), (7), and (8).
Inflate the ellipsoid bound described by the shape ma-
trix (11) according to

Qk+1 = (1 + ρO,k+1)
2 · Q̌k+1 , (15)

ρO,k+1 = sup
{∥∥α−1

k+1 · Γ
−1
k · [bk]

∥∥} . (16)

For a definition of the interval-valued generalization of
the Euclidean norm operator in (16), see [13].

P3: Compute the updated ellipsoid midpoint

µk+1 = Φ̃ · µk (17)

and its factorized shape matrix

Γ′
k+1 = αk+1 · (1 + ρO,k+1) · Φ̃ · Γ′

k . (18)

Remark: For states that vary much slower than the con-
sidered discretization step size or the measurement sampling
time, the scaling factors αk+1 and ρO,k+1 in (18) can be kept
constant for a heuristically chosen number of subsequent time
steps to reduce the cost related to the solution of (12). Note
that this simplification (although not strictly producing outer
ellipsoid bounds) is still more robust than a pure point-valued
forecast of the covariance matrix in the following sections.

III. PROBLEM FORMULATION: STOCHASTIC ILO FOR
QUASI-LINEAR STATE EQUATIONS

Consider the quasi-linear discrete-time state-space represen-
tation

xk+1 = A (xk,p) · xk +E (xk,p) ·wk

yk = C (xk,p) · xk + vk

(19)

with the state vector xk ∈ Rn, the measured output vector
yk ∈ Rm (m ≤ n), as well as the uncorrelated process
and measurement noise vectors wk ∈ Rnw and vk ∈ Rnv ,
respectively. These noise vectors are both assumed to be
normally distributed with the covariances Cw,k and Cv,k and
vanishing mean. In this paper, an ILO procedure is designed
to estimate the state vector xk as well as its uncertainty

(expressed by its covariance) by a KF-like procedure that does
not only operate along the time domain k but also enhances
the estimates from the trial i to the trial i + 1. To allow for
the identification of a systematic model mismatch, a lumped
correction term δk is added to the state equations (19) in the
form

xk+1 = A (xk,p) · xk +E (xk,p) ·wk + δk . (20)

In the following section, this estimation is implemented in
a learning-type framework, in which the trials ξ = i and ξ =
i+ 1 are accounted for. In such a way, the actually measured
data yξ

m,k = Cξ
k ·x

ξ
k+vξ

k correspond to the realizations of the
general outputs yk in (19) for both trials under investigation.
In addition, the estimate for the temporal evolution of δk is
updated before starting the next trial.

Remark: In the system model (19), control inputs are not
explicitly included. In this paper, the system inputs are as-
sumed to be perfectly known, so that they do not influence the
computation of covariance matrices in the following section
but only lead to additive offsets on the state’s expected values
during the prediction step.

IV. DESIGN OF THE STOCHASTIC ILO SCHEME

According to the previous section, process and measurement
noise are assumed to be uncorrelated and normally distributed
with zero mean. In the following, the superscript p denotes the
result of the prediction step, while the superscript e refers to
the estimation result as the outcome of the measurement-based
innovation step.

A. Prediction Step

For the generalization of the ILO presented in [12] toward
quasi-linear system models, we assume that the standard
detectability requirement (also known for the KF synthesis) is
satisfied. Moreover, we suppose that two gain matrices Hi+1

1,k

and Hi+1
2,k are included in the observer, where the first one

serves as a KF-like stabilization along the trial and the latter
allows for reducing estimation errors between two subsequent
trials. As a general index convention, the index i denotes
the old trial for which state estimates already exist from the
previous execution and i+1 denotes the current trial. To design
the gains for the trial i + 1, an augmented system model is
employed that comprises the state equations of the models for
both the i-th and (i+ 1)-st trials.

1) State- and Parameter-Dependent Disturbance Inputs
E (xk,p): Define an ellipsoid for the augmented state vector

zk =
[(
xi
k

)T (
xi+1
k

)T (
wi

k

)T (
wi+1

k

)T ]T (21)

corresponding to the result of the preceding innovation step,
augmented by the influence of the uncorrelated process noise
in both trials i and i+ 1 in the form

E
e,i|i+1
k




µe,i
k

µe,i+1
k

0
0

 ,Γe
k, r

 (22)



with

Γe
k =

 Γ
e,i|i+1
k 02n×2nw

02nw×2n

[
Cw,k 0
0 Cw,k

] 1
2

 (23)

containing the matrix square root Γ
e,i|i+1
k of the combined

state covariance matrix

C
e,i|i+1
k = Γ

e,i|i+1
k ·

(
Γ
e,i|i+1
k

)T

(24)

as well as of the iteration-independent noise covariance Cw,k,
and the magnification factor r ≥ 1 as a user-defined degree of
freedom.

Then, the application of the system model

Φ (zk,p) =


A

(
xi
k,p

)
0n×n E

(
xi
k,p

)
0n×nw

0n×n A
(
xi+1
k ,p

)
0n×nw E

(
xi+1
k ,p

)
0nw×n 0nw×n Inw×nw 0nw×nw

0nw×n 0nw×n 0nw×nw Inw×nw


(25)

to the ellipsoid (22) according to Sec. II yields the ellipsoid

E
p,i|i+1
k+1



µp,i

k+1

µp,i+1
k+1

0
0

 ,Γp
k+1, r

 (26)

in which the first 2n components of the midpoint represent the

predicted expected value vector
[(

µp,i
k+1

)T (
µp,i+1

k+1

)T
]T

and the covariance C
p,i|i+1
k+1 is obtained by extracting the upper

left (2n× 2n) block of the matrix product Γp
k+1 ·

(
Γp
k+1

)T
.

2) Constant (Parameter-Independent) Disturbance Inputs
E: For constant, i.e., state- and parameter independent dis-
turbance inputs (which may however be varying in each
discretization step), the following simplifications are possible
for the augmented state vector

zk =
[(
xi
k

)T (
xi+1
k

)T ]T
, (27)

the ellipsoid of prior knowledge

E
e,i|i+1
k

([
µe,i

k

µe,i+1
k

]
,Γ

e,i|i+1
k , r

)
, (28)

and the augmented system model (25)

Φ (zk,p) =

[
A

(
xi
k,p

)
0n×n

0n×n A
(
xi+1
k ,p

)] . (29)

Then, the prediction result is the ellipsoid

E
p,i|i+1
k+1

([
µp,i

k+1

µp,i+1
k+1

]
,Γp

k+1, r

)
(30)

from which the forecasted covariance is obtained as

C
p,i|i+1
k+1 = Γ

p,i|i+1
k+1 ·

(
Γ
p,i|i+1
k+1

)T

= Γp
k+1 ·

(
Γp
k+1

)T
+

[
Ei

k 0

0 Ei+1
k

]
·
[
Cw,k 0
0 Cw,k

]
·
[
Ei

k 0

0 Ei+1
k

]T
.

(31)

Remark: This prediction step becomes identical to the result
of [12, Eqs. (4),(5)] if the system matrix A is state-independent
and only depends on precisely known point-valued parame-
ters p. Hence, our previous research is included as a special
case in this more general formulation.

B. Innovation Step
The measurement-based innovation step makes use of the

deviations

∆yi
k = yi

m,k −Ci
k · µp,i

k and (32)

∆yi+1
k = yi+1

m,k −Ci+1
k · µp,i+1

k (33)

between the measured data in the trials i and i+1, respectively,
and the corresponding output forecasts based on the prediction
step of the previous subsection. Using these output deviations,
the expected values are updated according to [12] by[

µe,i
k

µe,i+1
k

]
=

[
µp,i

k

µp,i+1
k

]
+H̃k ·

[
yi
m,k

yi+1
m,k

]
−H̃kC̃k ·

[
µp,i

k

µp,i+1
k

]
, (34)

where the combined output matrix

C̃k :=

[
Ci

k 0

0 Ci+1
k

]
(35)

results from pointwise evaluations of the quasi-linear system’s
output matrix according to Ci

k := Ck

(
µp,i

k ,mid ([p])
)

and

Ci+1
k := Ck

(
µp,i+1

k ,mid ([p])
)

.
The corresponding estimation error covariance is given as

C
e,i|i+1
k = E

{[
xi
k − µe,i

k

xi+1
k − µe,i+1

k

]
·
[

xi
k − µe,i

k

xi+1
k − µe,i+1

k

]T}

= Cov

{[
xi
k − µe,i

k

xi+1
k − µe,i+1

k

]}
= MkC

p,i|i+1
k MT

k + H̃kC̃v,kH̃
T
k , (36)

where
Mk =

[
I 0
0 I

]
− H̃kC̃k and (37)

H̃k :=

[
Hi+1

1,k 0

Hi+1
2,k Hi+1

1,k −Hi+1
2,k

]
. (38)

As shown in [12], the estimation error covariance is mini-
mized by the filter gain matrices Hi+1

1,k and Hi+1
2,k specified in

the following Theorem 4.1 in which the predicted covariance
is partitioned in a blockwise manner according to

C
p,i|i+1
k =

[
Cp

A,k Cp
B,k

⋆ Cp
C,k

]
, (39)

where ⋆ denotes blocks that can be inferred from the symmetry
of the result. Moreover, the residual covariance is defined as

P · Γ̃e

k ·
(
Γ̃
e

k

)T

·PT + C̃v,k =

[
CA,k CB,k

⋆ CC,k

]
(40)

with the projection matrix P =
[
Im×m 0m×(n−m)

]
and the

trial-independent measurement noise covariance

C̃v,k :=

[
Cv,k 0
0 Cv,k

]
. (41)



As a novel feature of this paper, aiming at a robustification
of the innovation stage against nonlinearities, the matrix Γ̃

e

k

is obtained by the consideration of the quasi-linearity of the
output equation with the help of the ellipsoid

E
p,i|i+1
k

([
µp,i

k

µp,i+1
k

]
,Γ

p,i|i+1
k , r

)
(42)

as the one time step delayed version of (31) that is propagated
through a quasi-linear system model in the form (1) with the
associated system matrix (yi

m,k,y
i+1
m,k ∈ Rm)

Φ (zk,p) =
C
(
xi
k,p

)
0m×n

0m×n C
(
xi+1
k ,p

)
0(n−m)×m I(n−m)×(n−m) 0(n−m)×n

0(n−m)×n 0(n−m)×m I(n−m)×(n−m)

,

(43)

where Φ (zk,p) ∈ R2n×2n. The evaluation of this quasi-linear
model yields an ellipsoid

Ee
k

(
µ̃e

k, Γ̃
e

k, r
)

(44)

from which the associated shape matrix Γ̃
e

k ·
(
Γ̃
e

k

)T

is com-
puted in Eq. (40), followed by an extraction of the upper left
(2m × 2m) block that corresponds to the actually measured
output quantities. This subblock extraction is performed by
the multiplication with the projection matrix P in the first
summand of Eq. (40).

Remark: This procedure is based on the assumption that
cross-correlations between the trials i and i + 1 due to the
stochastic noise are negligible.

Theorem 4.1 (Optimal ILO gain computation): The optimal
ILO gains, in the sense of a minimization of the estimation
error covariance, jointly considering the trials i and i+ 1 are
given by[

Hi+1
1,k Hi+1

2,k

]
=

[(
Ci

kC
p
A,k +Ci+1

k Cp
C,k

)T (
Ci

kC
p
B,k −Ci+1

k Cp
C,k

)T
]

·

[
CA,k +CC,k ⋆

CB,k −CC,k CA,k −
(
CB,k +CT

B,k

)
+CC,k

]−1

.

(45)

For a proof of this expression for the ILO filter gain
matrices, see [12].

C. Summary of the ILO Procedure

As shown in the previous two subsections, an ellipsoidal
calculus can be used to implement the prediction and inno-
vation stages of the stochastic ILO procedure in the case of
quasi-linear system models. So far, the description was focused
on the update from trial i to trial i+ 1. During the very first
trial i = 0, the only required change is to remove the rows
and columns for the trial i + 1 from the expressions (25),
(29), and (43) so that pure along-the-trial dynamics are taken
into consideration in this phase. Moreover, it is necessary to

correct the state estimates from trial to trial by storing the
lumped correction term δik introduced in Eqs. (20) and (47),
see also Fig. 1.

V. BENCHMARK EXAMPLE

A. Modeling of the Charging/ Discharging Dynamics of
Lithium-Ion Batteries

Equivalent circuit models of Lithium-Ion batteries as shown
in Fig. 2 (cf. [18]–[20]) are widely used to approximate their
charging/discharging dynamics. For such models, the state
variables are chosen as the normalized state of charge (SOC)
σ(t) as well as the voltages across a finite number of RC
sub-networks. In this paper, we restrict ourselves to the case
of two RC sub-networks with the voltages vTL(t) and vTS(t)
to distinguish processes with short and large time constants
(TS and TL, respectively). They result from electro-chemical
polarization effects and concentration losses during charging
and discharging.

With the help of the state vector

x(t) =
[
σ(t) vTS(t) vTL(t) iT(t)

]T
, (48)

the quasi-linear, continuous-time battery model is given as

ẋ(t) = A (σ(t)) · x(t) + b · u(t)

=


0 0 0 −1

CBat

0 −1
CTS·RTS

0 1
CTS

0 0 −1
CTL·RTL

1
CTL

0 0 0 −1
TI

 · x(t) +


0

0

0
1
TI

 · u(t)

(49)

in which the terminal current results from a fast controller
with the linear first-order lag behavior (TI = 0.1 s)

TI ·
diT(t)

dt
+ iT(t) = id(t) . (50)

In (50), the set-point for this current controller represents the
system input u(t) := id(t).

In detail, the model according to Eq. (49) consists of the
integrating behavior

σ̇(t) = − iT(t)

CBat
(51)

between the terminal current and the normalized SOC σ(t) ∈
[0 ; 1]. Here, σ = 1 corresponds to the fully charged battery
with the capacitance CBat and σ = 0 represents the completely
discharged battery. Moreover, the differential equations [18],
[19]

v̇ι(t) =
−vι(t)

Cι(t) ·Rι(t)
+

iT(t)

Cι(t)
(52)

with the SOC-dependent parameters

Rι(t) = Rιa · eRιb·σ(t) +Rιc , (53)

Cι(t) = Cιa · eCιb·σ(t) + Cιc , ι ∈ {TS,TL} , (54)

as identified experimentally in [21], describe the battery dy-
namics in transient operating phases.



Set i = 0, k = 0

Define the magnification factor r for the desired confidence level
in the ellipsoidal calculus

While k < kmax

Evaluate the state and covariance prediction (µp,0
k+1, Cp,0

k+1)
with the help of the quasi-linear models (25) or (29) after
removing the entries for i+ 1

Compute the Kalman gain H0
1,k similar to a standard (E)KF

procedure, where the residual covariance is computed with the
help of (40), again after removing the iteration i+ 1

Evaluate the state update in the innovation step:
µe,0

k = µp,0
k +H0

1,k ·
(
y0
m,k −Ckµ

p,0
k

)
Evaluate the covariance update in the innovation step by the
standard (E)KF procedure

Set k := k + 1

Set δ0k = 0 for all k ∈ {0, . . . , kmax}

Store the measurement sequence y0
m,k

While i < imax

Set k = 0

While k < kmax

Evaluate the state prediction by adding the offset vector[
δik
δik

]
(46)

to the the quasi-linear models (25) or (29) and update the
covariance according to (26) and (31), resp.

Compute the optimal ILO gain acc. to Theorem 4.1

Evaluate the state and covariance update in the
innovation step acc. to Eqs. (34) and (36)

Set k := k + 1

Update

δi+1
k =

(
(i− 1) · δik +Hi+1

2,k ·
(
∆yi

k −∆yi+1
k

))
· 1
i

(47)

Increment the trial counter i := i+ 1

Store the measurement sequence yi
m,k

Fig. 1: Structure diagram of the complete stochastic ILO
algorithm using ellipsoidal calculus for the computation of
covariance matrices.

+

Fig. 2: Equivalent circuit model of a Lithium-Ion battery,
where the special case of the disturbance voltage z = 0 is
treated in this paper.

With the help of Kirchhoff’s voltage law

vT(t) = vOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t) , (55)

where
RS(t) = RSa · eRSb·σ(t) +RSc (56)

is the SOC-dependent series resistance, the battery’s terminal
voltage can be determined as the second measurable system
output besides the terminal current iT(t). In (55), the open-
circuit voltage of the battery is included in the form

vOC(σ(t)) = v0 · ev1·σ(t) +
3∑

i=0

vi+2 · σi(t) , (57)

where the parameters are again identified experimentally
in [21]. To turn Eq. (57) into a quasi-linear form, the state-
independent offset terms are subtracted from the expression
for the open-circuit voltage so that the expression

ṽOC(σ(t)) = ηOC (σ(t)) · σ(t) = vOC(σ(t))− v0 − v2

=

(
v0 ·

ev1·σ(t) − 1

σ(t)
+ v3 + v4 · σ(t) + v5 · σ2(t)

)
· σ(t)

(58)

is obtained. In combination with the current measurement, this
leads to the vector-valued output equation

y(t) =

[
iT(t)
ṽT(t)

]
=

[
iT(t)

ṽOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t)

]
(59)

with the associated quasi-linear representation

y(t) = C (σ(t)) · x(t)

=

[
0 0 0 1

ηOC (σ(t)) −1 −1 −RS(t)

]
· x(t) .

(60)

A temporally discretized version

xk+1 = A (xk,p) · xk + bkuk +wk (61)

following the formulation in (19) is obtained by the explicit
Euler discretization

A (xk,p) = I4×4 + T ·A (σ(tk)) , (62)

where xk := x(tk), with the sufficiently small step size T
(here: T = 10ms), E = I4×4, the input term

bkuk = T · b · u(tk) , (63)

and the normally distributed process noise vector wk.



For the output equation, the relation C (xk,p) = C (σ(tk))
holds in the quasi-linear system model (19). As described
in Fig. 1, an additive correction term δik is included in the
ILO procedure to account for estimates of a potential model
mismatch. During the following simulation-based validation of
the proposed ILO approach, the covariance matrices of process
and measurement noise are set to

Cw,k = 0.012 · I4×4 and Cv,k =

[
0.01 0
0 100

]
. (64)

In contrast to [12], where the resistances, capacitances, and
further coefficients in (50), (51), (53), (54), (56), and (57) were
assumed to be known in the ILO’s prediction and innovation
stages, the ellipsoidal calculus in Secs. IV-A and IV-B replaces
these quantities by tolerance bounds of ±2% around their
nominal values listed in [21] with additionally making sure
that the interval bounds for the SOC in the system and
output matrices are always limited to the maximum range
[0.01 ; 0.99] (to avoid an extrapolation of the SOC-dependent
characteristics into a physically meaningless area).

B. Simulation Results of the ILO Approach

To make the simulation results for the extended ILO algo-
rithm derived in this paper comparable with the fundamental
version published in [12], the same two cases of a model-
mismatch are considered:
C1: The true system, generating the measured data, has an

additive offset
[
−10−8 0 10−4 0

]T
in comparison

with the state Eqs. (49), representing errors in the mag-
nitude of 0.02% wrt. the charging efficiency and up to
300% in the variation rates of the voltage vTL.

C2: In addition to the error of C1, all non-zero elements of
the discretized system matrix in (62) are disturbed by
independent time-invariant factors 1+d for the generation
of the simulated measurements, where all d are uniformly
distributed random numbers from the interval [0 ; 0.1].

In all simulations shown in Figs. 3 and 4, the true initial state
(unknown to the ILO) is set to x(0) =

[
0.65 0 0 0

]T
with

the ILO initialization µe,0
0 =

[
0.78 0 0 0

]T
and u(t) =

2A sin(2πt · 3600s−1). For the evaluation of the ellipsoidal
covariance prediction, the magnification factors r in Tab. I
were chosen for the confidence level of 80% with ñ = 4 for
the iteration i = 0 and ñ = 8 for i ≥ 1.

Fig. 3 gives a comparison of the EKF-based implementa-
tion published in [12] with the novel ellipsoidal covariance
prediction approach for the Case C1. It can be seen clearly
that the new approach outperforms the original version by
producing much tighter uncertainty bounds by an enhanced
handling of the nonlinearities in the state and output equations
of the system model. Exemplarily, estimation errors for the
SOC σ and the voltage vTS are visualized in this figure. This
enhancement is already visible in the iteration i = 0 (the
classical state estimation without iterative learning behavior).

Note that the superior estimation performance of the new
implementation is confirmed also for the Case C2 in Fig. 4,
where the remaining two state variables are depicted. In all

cases under consideration, the proposed estimator produces
estimates for which (except for small values of time), the true
states are included in a ±1 standard deviation bound around
the computed expected values.

VI. CONCLUSIONS AND OUTLOOK ON FUTURE WORK

In this paper, a new combination of an ellipsoidal enclosure
approach with stochastic state estimation was presented for
the design of ILO approaches. Besides the visualized im-
proved efficiency and robustness of the new implementation,
in comparison with an EKF-like handling of nonlinearities, the
new approach can also handle bounded parameter uncertainty
without the need to include them as additional variables in
the state or noise vectors. Typically, process and measurement
noise covariances can be chosen smaller due to this property
than for a classical parameterization because state and bounded
parameter dependencies in the system and output matrices are
already accounted for by the ellipsoidal enclosure approach.

Future work will especially focus on extensions that also
allow for identifying the initial system states more accurately
if they are imprecisely known but can be assumed to have
the same value at the beginning of each subsequent trial.
Moreover, optimization approaches will be developed that
allow for not only taking into account the output errors (32)
and (33) for the state estimation but also larger windows of
measured data from one or multiple previous trials.
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