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Abstract

Nonlinear ultrasonic nondestructive testing methods have largely improved early
crack detection in solid materials. However, the nonlinear signature of the crack
can be difficult to measure. In this paper, to overcome this drawback, we present
a parametric optimization to automatically find the best driving frequency which
maximizes the nonlinear signature. The optimization process is carried out in
two steps to maximize a cost function corresponding to the nonlinear-linear ra-
tio (NLR). From the signal received, NLR assesses the energy of the second
harmonic over the energy of the fundamental component. This optimization
is achieved by the hybridization of two algorithms: the genetic algorithm and
the Nelder-Mead algorithm. The method is applied experimentally on a duralu-
minium sample including a crack. The optimal frequency is obtained after less
than 14 iterations only. Moreover, the gain of the nonlinear-linear ratio reaches
up to 12 dB in comparison with that obtained by the usual frequency setting.

Keywords: Driving frequency, Nondestructive evaluation, Hybrid
optimization, Nonlinearity, Crack signature enhancement
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Highlights

• The driving frequency is automatically set to enhance nonlinear signatures
of cracks.

• The optimal driving frequency is found using hybrid optimization.

• The optimization is applied experimentally on a duraluminium sample.

• The gain of the nonlinear-linear ratio reaches up to 12 dB.
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1. Introduction

In industrial applications, ultrasonic nondestructive testing (NDT) is widely
used to assess the integrity of materials by detecting defects such as fatigue,
cracks, fractures, delamination, corrosion, thermal aging, and hardening [1].
The conventional ultrasonic NDT principle is based on sending an ultrasonic
wave packet at a driving frequency f0 and then receiving the propagated waves
at the same frequency f0. On the one hand, linear NDT methods can detect the
defects by means of their impedance mismatch with the surrounding medium.
On the other hand, they can extract the local mechanical properties. Never-
theless, conventional techniques are unable to detect microstructural changes,
such as internal microcracks and microvoids. These changes may limit the ap-
plicability and resolution of conventional techniques, especially in complex and
heterogeneous materials [2].

To overcome this limitation, NDT based on nonlinear acoustic phenomena
have emerged. These techniques began to gain popularity over the last decades
due to their practical advantage in detecting micro-damage where conventional
linear techniques remain blind [3, 4]. They are based on the assumed, much
larger, nonlinear response of cracks, imperfect interfaces, or more generally,
internal solid contacts, compared to undamaged homogeneous parts of the ma-
terial. Thus, local nonlinear wave interaction effects occur preferentially at de-
fects. Monitoring their signatures provides a selective means of characterization
of a sample. Moreover, the possible nonlinear interaction effects are various,
which leads to various methods being proposed. Among these methods, we
can cite the study of nonlinear amplitude dependence on measured parameters
(attenuation, velocity, etc.) [5] and the amplitude-dependent shift of resonance
frequencies (Nonlinear Resonance Ultrasound Spectroscopy or NRUS) [6]. How-
ever, these techniques may require several measurements to provide a diagnosis
of the material, which can be considered as a drawback. The harmonic genera-
tion technique overcomes this problem by sending an ultrasonic wave at a driving
frequency f0 and by receiving the nonlinear response generated by the crack at
the harmonic frequencies 2f0, 3f0 [7]. This principle was extended to the cases
of sub and ultra harmonic generation [8]. In order to overcome the nonlinearity
of the measurement system (e.g. nonlinearity of electronic devices), other tech-
niques are used such as Nonlinear Wave Modulation Spectroscopy (NWMS) [9].
With this method, a sample is excited simultaneously by two waves; a low and
a high frequency wave. By the presence of nonlinear phenomena (i.e. a crack
in a sample), the high frequency will be modulated by a low frequency wave.
This wave intermodulation thus generates sideband components located at the
sum and difference of the two driven frequencies [10].

Furthermore, signal post-processing tools are important to distinguish non-
linear effects coming from the crack in the sample. Usually, the nonlinear com-
ponents are extracted with digital filters. Some other techniques are based on
several discrete encoding signals with multiple transmissions such as the pulse
inversion method [11] and the scaling subtraction method [12]. Others are based
on nonlinear signal processing models, such as the Hammerstein model [13] and
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Volterra model [14].
Nevertheless, due to experimental particularities, inherent to the sample

and instrumentation (e.g. electronics and transducers), signal post-processing
techniques are not sufficient and nonlinear effects can be hidden and cannot then
be discriminated. Firstly, in the ultrasound domain, the transfer function of the
transducer is quite limited due to its bandwidth [15]. Thus, to measure harmonic
components, a transducer with a large bandwidth should be used. However, a
simpler solution can be used by adding another transducer in reception with a
central frequency equal to double the driving frequency. Secondly, nonlinear
signatures are highly dependent on the driving wave. For example, with a low
drive amplitude, the nonlinear effect can be annihilated. In contrast, a high
drive amplitude will lead to an acoustic saturation and unjustified results [16].
Another example is the local defect resonance [17] which facilitates the defect
recognition. But it remains hard to control [18]. Therefore, it is clear that the
transmitted signal has an influence on the quality of the received signal [19].

Based on this information, a signal pre-processing step should be neces-
sary. Usually, an empirical choice of driving signal parameters is carried out
in material inspection, such as the driving frequency [20] or the drive ampli-
tude [21]. For example, the choice of driving frequency can be based only on
the bandwidth of the reception transducer to measure the second harmonic, for
example the driving frequency is set to 2/3 of the center frequency of the receiv-
ing transducer in medical imaging [22]. To find the best driving signal, some
authors have suggested continuously sweeping the driving frequency by a chirp
[23]. However, the problem remains complex, since it is necessary to define the
chirp coefficients, by taking into account information about the medium and
the instrumentation [24]. This drawback has been overcome by automatically
selecting the best driving parameters without a priori information of the sys-
tem. Lately, the optimal frequency command principle has been implemented
for medical ultrasound imaging within driving frequency optimization [25]. It
has been expanded to a waveform optimization of the driving signal [26, 27].
Moreover, an optimal frequency selection has been applied in NDT for metal
inspection using the vibro-acoustic modulation (VAM) method [28]. However,
the optimal frequency command has not already been applied on solid materi-
als, if it is not possible to apply a pump frequency (the low-frequency excitation
in VAM method). This paper is an extension of the optimal frequency com-
mand application to solid materials inspection. Its main goal is to improve the
nonlinear NDT performance to crack detection by the enhancement of the non-
linear crack signature. Since the optimal command can be used for all nonlinear
NDT methods, we are focusing this study on the second harmonic enhancement
technique [29, 30]. A feasibility study for optimizing the driving frequency has
already been presented in simulation [31]. The present work is dedicated to the
experimental validation of driving frequency optimization. The optimal com-
mand is applied for both cracked and healthy samples. In order to quantify the
nonlinear crack signature, a cost function called Nonlinear Linear Ratio NLR
made from [32] has been considered. Moreover, to be more robust than in pre-
vious studies and to find the global maximum, the optimization of NLR as a
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function of the driving frequency has been implemented by a hybridization of
two optimization algorithms: the genetic and Nelder-Mead algorithms.

The paper starts with a description of the optimal frequency command in
NDT. Then, the experimental validation takes place. The results obtained with
the optimal frequency command are compared with those obtained with the
empirical frequency sweep. The paper ends with a discussion and a conclusion.

2. Optimal Frequency Command for nonlinear NDT

Optimal command is based on finding the optimal driving frequency fopt
by adding a closed loop optimization. It can enhance the nonlinear signature
of the crack. The optimal frequency is classically identified by the following
expression:

fopt = argmax
fk

[NLR(fk)] , (1)

where fopt is the optimal driving frequency which provides the best value of
the cost function NLR. Note that we define NLR in the subsection 2.2 from
the generated second harmonic by taking into account the limited transducer
bandwidth in the reception. The iterative approach is implemented to solve the
Equation 1, as shown in the block diagram in Fig. 1.

Figure 1: Block diagram of the closed loop optimization method for optimal frequency assess-
ment. NM: Nelder–Mead algorithm. GA: genetic algorithm.

Following the iterative optimization, a driving signal xk(n) is transmitted
to the medium at the driving frequency fk, for the iteration k (where n is the
discrete time). The received signal rk(n) is recorded. It is then filtered by ad-
justed digital bandpass filters to extract the desired nonlinear information. The
cost function NLRk is thus calculated. Finally, feedback is added to maximize
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NLR by selecting a new driving signal xk+1(n) at a new driving frequency fk+1

for the next iteration k + 1. These steps are then repeated until the optimal
frequency fopt is reached.

Moreover, in order to find the global maximum, the optimization process
combines two optimization algorithms. In a first step (switch position 1 in Fig.
1), a genetic algorithm (GA) is used to find the region of the global maximum.
Later, after a fixed number of iterations, the switch is moved to position 2 in
Fig. 1. A Nelder-Mead algorithm (NM algorithm) is then initialized with the
last iteration of GA. Note that the purpose of this second step is to refine the
results of the GA [33].

2.1. Driving Signal and Driving Frequency

At iteration k, a driving signal xk is transmitted with a fixed driving fre-
quency fk. The waveform is a Gaussian modulated sinusoidal pulse with a
relative fractional bandwidth of 40% as follows:

xk(n) = A · exp

−

(
n
Fs

− L
2·Fs

)2

( L
2·Fs

)2

 · sin
(
2π · fk · n

Fs

)
(2)

where Fs is the sampling frequency, n the discrete time, A the drive voltage
amplitude, fk the driving frequency at iteration k, L the duration of the driving
signal and L

2·Fs
the central time of the Gaussian pulse. Note that the relative

fractional bandwidth is limited to 40%, based on our experience, in order to
generate harmonics, while limiting the duration of the driving signal L.

Moreover, in the present method, the driving signal is generated with a con-
stant drive power. This constraint guarantees constant drive power at various
driving frequencies. The constant drive power is made by adjusting the mag-
nitude of the driving signal amplitude for each driving frequency as follows:

A = Aref ·
Pref

Pfk

. (3)

where Aref is the reference drive amplitude, Pref the reference drive power of a
Gaussian pulse (Equation 2) at frequency fref , Pfk the drive power at driving
frequency fk computed by:

Pfk =
1

L

L∑
n

x2
k(n). (4)

For instance, this reference driving frequency fref could be the central frequency
of the transmission transducer.

2.2. Cost Function NLR

The received signal rk(n) is measured. Filtering is carried out by the two
adjusted Butterworth band-pass filters, in order to separate fundamental and
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second harmonic components. Thus, the first and second filters are respectively
centered at fc and 2fc. The central frequencies fc of both filters are adjusted
by taking into account the slight shift of the observed central frequency, mainly
due to the instrumentation bandwidth. Furthermore, the bandwidth of each
filter is m · fc/10 for -3 dB with m = {1, 2} to extract the fundamental and
second harmonic components respectively.

The received energies of fundamental and second harmonic components are,
thus, calculated in the time domain as:

Em =

N−1∑
n=0

(rk(n) ∗ hm(n))
2
, (5)

where rk(n) is the discrete received signal, N the number of received samples,
hm(n) the infinite impulse response of the Butterworth bandpass filter and ∗
the convolution symbol.

Finally, in our case, the cost function is the ratio of the second harmonic
energy over the fundamental harmonic energy. We call it Nonlinear-Linear Ratio
(NLR) and it is defined as:

NLR = 10 · log10
(
E2

E1

)
. (6)

The maximization of this cost function means that the second harmonic energy
is increased while the fundamental energy is decreased.

2.3. Hybrid Optimization

In the present study, the hybrid approach aims to increase the optimization
robustness with more precision [34], by combining two algorithms : a global
optimization with the genetic algorithm (GA) and a local optimization with
the Nelder Mead algorithm (NMA). This hybridization must guarantee the con-
vergence to the global maximum with precision, regardless of the convergence
speed. If the cost function NLR is convex, hybridization using GA is useless
and the NMA is sufficient. However, in practise, it can be difficult to know if
the cost function NLR is convex.

In the first step of the hybrid algorithm, the global maximum of NLR is
found by implementing GA, which is a type of metaheuristic algorithm. It
is run by the principle of natural selection by relying on biologically inspired
operators such as mutation, crossover and selection [35, 36]:

1. for the first generation k = 1, the initial population of 12 frequencies is
selected randomly from a uniform distribution from fmin to fmax. The
choice of these values is directly related to the bandwidth of the trans-
ducer and the amplifier. It restricts the frequency interval to the system
bandwidth in order to avoid unnecessary measurements and processing;

2. then, for the same generation, the GA evaluates the cost function NLR
for the 12 frequencies of the population. The 12 cost function values are
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sorted in descending order with the corresponding driving frequencies. GA
returns the best frequency value which maximizes the cost function NLR.
Note that the frequency at the first generation is thus the best solution
among the 12 frequencies of the initial population;

3. for next generations (i.e. k+1), the population is built from the previous
generation k. The first six best driving frequencies (i.e. 50% of the popu-
lation) are kept and become parents. The crossover operator enables the
creation of new driving frequencies called offspring. Therefore, new fre-
quencies are generated by mating between frequencies of each generation.
This mating is described with the following equation:

fchild = fm ± β[fm − fd], (7)

where fchild is the new proposed frequency, fm and fd are respectively the
mother and father frequencies, β a random coefficient between 0 and 1.
Then, the mutation is applied at the rate of 40%. Note that these three
settings have been proposed in [36] and confirmed by our experience.

4. Finally, if the stopping criterion is not reached, the next iteration starts
again from step 2. Based on our experience, after 8 iterations, the GA
was stopped to limit the experiment’s duration. Throughout these eight
generations, the driving frequency converges to the region of the global
maximum. Note that the number of generations is limited to reduce the
number of measurements.

It is appropriate to emphasize that the exploited GA is used to remedy the
inability of the NMA to find the global maximum [36], by initializing it in the
right frequency range. If the cost function NLR is not convex, the NMA can
be stuck on local maxima. Fortunately, the region of the global maximum can
be found using metaheuristics (GA). Therefore, the two algorithms are comple-
mentary. On the one hand, the GA does not need any special initialization. On
the other hand, the NMA is more efficient at converging to the accurate solution
in a few iterations. But it needs to be correctly initialized.

Thereafter, the Nelder–Mead method [37] is initialized with the best driv-
ing frequency finit obtained by GA. It maximizes the cost function NLR with
precision and without any derivative information (explicit or implicit). It is
based on the concept of simplex, which generalizes the triangle. The principle
of the algorithm is to frame the maximum. At each iteration, the cost func-
tion is evaluated for each vertex of the simplex. Then, the algorithm computes
the centroid of the simplex and the reflection point of the centroid. Then, the
NMA expands, contracts and shrinks the simplex to get closer to the function
maximum. Note that a flow chart of the NMA has been shown in [37].

3. Experimental setup

The experimental setup follows the steps described in Fig. 2 as explained in
section 2.
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Figure 2: Functional diagram of the experiment. xk(n) is discrete driving signal; rk(n) discrete
received signal

The driving signal xk(n) at the driving frequency fk is generated digitally by
Matlab (Matlab R2018b, The Mathworks, Inc., Natick, Massachusetts, USA).
It is then transmitted to a computer-controlled arbitrary waveform generator
(Agilent 33225A, Santa Clara, CA, USA). Next, the driving signal xk(n) is
adjusted taking into account the reference drive amplitude Aref of 3 V and
the reference frequency fref of 1 MHz. It is then amplified by a 200 W power
amplifier (Model AAP-200-1-10, Adece, Veigné, France) with a gain of 50 dB.
Note that the power amplifier is linear in the bandwidth between 1 and 10 MHz.
A transmit angle beam transducer AT014 (Valpey Fisher, Albuquerque, NM,
USA) with the diameter of 0.5 inches (12.5 mm) transmits the amplified signal
to the inspected medium (as Tx in Fig. 3). Impedance matching is provided by
water-soluble ultrasound transmission gel.

The sample studied is a simple duraluminium bloc with a dimension of 8.9×
9.3 × 1.2 cm (Fig. 3). The material has a 6 cm notch extended by a crack
obtained after a fatigue test. The crack width varies by a few tenths of a
micrometer to a few millimeters. The transducers are placed on both sides of
the crack.

The output ultrasonic signal is measured with a transducer (AT022, Valpey
Fisher, Albuquerque, NM, USA) centered at 2.25 MHz. This transducer with a
0.25 inch diameter is placed at a distance of 5 cm from the transmit transducer
(as Rx in Fig. 3), according to a template. Moreover, it is on a wedge at an angle
of 45◦ to the sample surface to directly receive echoes coming from the crack.
The output signal is acquired by a digital converter (Pico 5000, PicoTech, St
Neots, UK) and triggered by the arbitrary waveform generator. The acquisition
is made with the memory depth N of 8192 points at a sampling rate Fs of 62.5
MHz. Moreover, in order to improve the signal-to-noise ratio, an average of
64 successive acquisitions is carried out. This output averaged signal is finally
recorded as rk(n).
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Figure 3: Cracked sample. Transmitter on the left, receptor on the right.

Before extracting harmonic components to compute the cost function NLRk,
prefiltering is done. It must ensure that the linear mode of the power amplifier is
maintained as in its specification between 1 and 10 MHz. Thus rk(n) is filtered
between 1 and 10 MHz (the bandwidth of the power amplifier) and between 2
and 20 MHz to extract the fundamental and the second harmonic, respectively.
Note that if the power amplifier is linear on a higher bandwidth, prefiltering
can be removed.

Finally, a single cost function NLRk is calculated from E1 and E2 (equation
6). However, to guarantee better robustness, the final cost function NLRk

is assessed from the median of 10 single cost function measurements. This
repetition could be higher to decrease measurement uncertainty.

As a comparison, the material studied can be changed. In this study, an
intact material is used. It has similar properties to the cracked sample (except
the crack). The transducers are rigorously placed on the intact sample surface,
according to the same template used for the crack material.

4. Results

In this section, the results are presented in the following three steps. Firstly,
empirical scanning is proposed to assess the cost-function NLR for both intact
and cracked materials. Secondly, closed loop optimization by GA is performed
to reach the region of the maximum of NLR. Finally, the GA optimization
results are refined by the NMA.
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4.1. Empirical scanning

Empirical scanning for both intact and cracked materials is presented in
Fig. 4. Empirical scanning was done in the frequency range from 0.8 to 2.5
MHz with a step of 50 kHz. This scan range was chosen to ensure good signal
reception according to the bandwidth of the transducer in reception. For each
frequency, the cost function NLR is assessed 20 times. The assessment median
is represented by solid lines. The variations between different assessments are
represented by bars as are the variations between the 4th and 6th deciles.

Figure 4: Empirical scan of the cost function NLR versus driving frequency (solid line). Auto-
matic optimization by the GA and the NA algorithm (dashed lines). fc(Tx): central frequency
of the transmission transducer, fc(Rx): central frequency of the reception transducer.

The global maximum of NLR is located at a frequency of 1.35 MHz for the
cracked material and reaches 1.81 dB, i.e. the second harmonic energy is higher
than the fundamental energy. As for comparison, the global maximum of NLR
is located at 1.25 MHz for the intact material and remains low (-9.16 dB), i.e.
the second harmonic energy is very low compared to the fundamental energy.

Another observation is that NLR shows several local maxima and global
optimization with the GA is thus required for automatic optimization. However,
because of the sweeping, the best frequency is known with a precision of 50 kHz.

Furthermore, NLR for the cracked material is globally higher compared to
NLR for the intact material. Near to the global maximum, there is no overlap
between the two curves for cracked and intact materials. For each of the driving
frequencies, the variations between the 20 repetitions are small, between 1 and
3 dB. However, this is not the case for higher driving frequency values, as of
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1.8 MHz, where NLR is low whatever the material. This means that the second
harmonic energy is very low compared to the fundamental energy. It is impor-
tant to notice that nonlinearities could come from sources other than a crack,
such as, for example, transducer contact or an electronic device. However, in
this case, the same behaviour in cracked and intact material would be expected.
This increase can therefore be explained by the presence of the crack.

Finally, the gain can reach 12 dB in comparison to the usual case where
the driving frequency is at the central frequency of the transmission transducer
(fc(Tx) = 1 MHz) defined as the usual setting.

Figure 5: Received signals spectra at the frequencies with the maxima NLR after empirical
scanning for the intact material (b) and the cracked material (d) with the corresponding
spectra of the driving signals at 1.2 MHz and 1.35 MHz transmitted to intact (a) and cracked
(c) materials. h1, h2 transfer functions of filters; 1h, 2h filtered received signals at fundamental
and second harmonics.

Fig. 5a and Fig. 5c illustrate the spectra of driving signals for which the
NLR is maximal in empirical scanning for the intact and the cracked material
respectively. Fig. 5b and Fig. 5d represent the spectra of the received signals
respectively. Their filtered components at the frequencies of the fundamental
(written 1h) and second (written 2h) harmonics are also added. In Fig. 5b,
the magnitude at the second harmonic is 13 dB lower than the fundamental
harmonic. In comparison, for Fig. 5d the magnitude at the second harmonic
is on the same level as at the fundamental one. These results are consistent
with the same measurements of the cost function calculated from the energies
of both components. Consequently, the energy is proportional to the area under
the curve. In both Fig. 5b and 5d, the filter transfer functions are represented
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as hm described in the Equation 5.

4.2. Optimization by Algorithms

Hybrid optimization between GA and NMA algorithms is presented in Fig.
6 and Fig. 7 for cracked and intact materials respectively.

Fig. 6a and Fig. 7a show the driving frequency settings through iterations
of the GA and the NMA.

The first eight driving frequencies were computed iteratively by GA. The
optimal driving frequency reached by the GA is respectively 1.35 MHz and 1.31
MHz for the cracked and intact material. Note that the initial population is
included in a frequency range from fmin = 0.9 MHz to fmax = 2.5 MHz. As
previously explained, the choice of the initial frequency range is directly related
to the bandwidth of the transducer and the amplifier. We could have chosen a
larger frequency range. But we have restricted the frequency interval to the sys-
tem bandwidth in order to avoid unnecessary measurements and, consequently,
to speed up the algorithm convergence.

Then, the NMA was initialized from the result obtained by GA (finit). The
following driving frequencies were computed by the NMA. The NMAs reach the
NLR convergence and find the optimal driving frequency at fopt,crack = 1.33
MHz for the cracked material and at fopt,int = 1.24 MHz for the intact material.

In order to check the measurement robustness by correct initialization of
NMA, the NMA was repeated 10 times from the GA result. Variation bars
were added to show the frequency variation between repetitions of ten NMA
optimizations (the median is represented by lines and variations between the
4th and 6th deciles are represented by bars). In the case of cracked material,
driving frequency variations, during iterations, did not exceed 7 kHz. However,
they reached 30 kHz for intact material because of the low NLR levels. Note
that no variation bars are shown during GA, because this step aims to find the
region of global maximum only (without precision).

Fig. 6b and Fig. 7b show the cost function NLR variations through iterations
for the driving frequencies shown respectively in Fig. 6a and Fig. 7a.

The GA converged in the region to the global maximum, after 3 generations
for the cracked material and 7 iterations for the intact material. The global
maxima were at −0.15 dB and at −12.3 dB for cracked and intact material
respectively.

During the GA step, each single measurement of NLR was repeated 10 times
(i.e. for each frequency of each generation of the GA) to increase the robustness
of the instrumentation. Variations bars were added to show the NLR variation
between the ten measurements during GA optimization (median is represented
by the lines and variations between the 4th and 6th deciles are represented with
the bars). NLR variations during generations stayed low, less than 0.5 dB.

Then NMA was launched from the last GA result. It converged after 4
iterations and refined the global maximum to reach 3.15 dB for the cracked
material and −8 dB for the intact material. Fourteen iterations (8 for GA and 6
for NMA) were sufficient to reach the global maximum with hybrid optimization.
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Figure 6: Results of combined hybrid optimization by algorithms (Genetic, Nelder-Mead) for
the cracked material. (a) Driving frequency vs. iterations. (b) cost function vs. iterations.

Moreover, as explained previously for the frequency settings, the whole op-
timization process from NMA was also repeated ten times. NLR variations
during iterations are only 0.5 dB for cracked material and between 0.5 and 3
dB for the intact sample.

These results are in agreement with those obtained by empirical scanning.
As an illustration, we have added the optimization for both materials (cracked
and intact) in Fig. 4. Indeed, small differences can be noted between empirical
scanning and automatic optimization. This can be explained by (i) the varia-
tions between repetitions and (ii) the limited knowledge of NRL after empirical
scanning (only computed for a few frequencies).

Finally, to summarize, the NLR maximum was higher for the cracked ma-
terial. Therefore, the difference between optimal values of the NLR for cracked
and intact materials was 11.2 dB, i.e. a ratio 13 times greater. This optimal
performance result should lead to more sensitive and reliable possible crack
detection at optimal frequency.

5. Discussion and Conclusions

In the present work, nonlinear crack signature enhancement is performed
by adding feedback to an open-loop conventional ultrasound system. The main
idea consists of finding the input driving frequency by optimizing the cost func-
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Figure 7: Combined hybrid optimization by algorithms (Genetic, Nelder-Mead) for the intact
material. (a) Driving frequency vs. iterations. (b) cost function vs. iterations.

tion NRL, i.e. maximizing the second harmonic energy while minimizing the
fundamental energy. The optimal driving frequency has been adjusted auto-
matically by the hybridization of two optimization algorithms by following two
steps: (i) select the region of the global maximum, by GA and (ii) refine global
maximum result by NMA. Therefore, the method experimentally turns the em-
pirical scanning into optimal scanning to find the optimal frequency in just a
few measurements. Unlike empirical sweeping with a given frequency resolu-
tion, this optimization focused the measurements as close as possible to the
NLR maximum.

This optimization allows us to reach a gain of up to 12 dB in comparison
with the fixed central frequency of the transmission transducer. The main rea-
son of this increase is a better ability to receive the second harmonic by the
reception transducer. This property is taken into account in the cost function
NLR. Indeed, the latter includes implicit information about medium properties,
crack properties and electronic devices. Thus, the optimization process does not
require a priori information.

Our method deals with media including cracks with nonlinear behavior.
Therefore, the electronic devices have to be linear, at least over the studied
frequency range. In the opposite case, a constraint could be added from the
received signal, like, for example, with complementary filtering.

To conclude, as nonlinear cracks can have a small signature, it is crucial to
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achieve optimal settings of the experimental setup. The added closed loop could
help to make these adjustments, applied here to the driving frequency. Thus,
the optimal frequency command should be useful to improve crack detection. It
may lead to a further step of classification between cracked and intact materials.
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