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Switched affine systems with hysteresis-based switching control: application to power converters

Many power electronic converters can be modeled using the theoretical framework of switched affine systems, which considers the instantaneous dynamics of the converter instead of its averaged model. In this class of systems, a certain number of subsystems is present and a control law is designed to orchestrate the switching among them. When the switching law is state-dependent, the closed-loop system is stabilized at the desired equilibrium through sliding mode dynamics, leading to infinite-rate switching. In this paper, a control strategy is proposed using constant-width hysteresis as a way of bounding the switching frequency at a finite value when two subsystems are present. In addition, an upper bound on the hysteresis width is provided so that the system is not stabilized at the equilibrium of a subsystem. Finally, simulation results illustrating the application of the proposed method to power electronic converters are presented. The relation between the switching law parameters and the current ripple is discussed for a dc-dc Boost converter and a Buck converter.

I. INTRODUCTION

In the past decades, there has been a surge in the interest in the field of switched affine systems, which are characterized by a finite number of different possible modes (or subsystems), and at each time instant one of these dynamics is selected by a suitably designed control law [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF], [START_REF] Kader | Control and observation of switched affine systems[END_REF], [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF]. Moreover, the dynamics of each subsystem are given by an affine function of the state. One motivation for their study is that they are able to adequately model systems in a wide range of applications, including power electronic converters [START_REF] Albea-Sanchez | Robust hybrid control law for a boost inverter[END_REF], [START_REF] Deaecto | Switched affine systems control design with application to dc-dc converters[END_REF]. Indeed, by using the controlled switches present in a power converter, it is possible at each time instant to choose a different dynamical evolution dictated by the other elements of the circuit. This allows to bypass the need for a PWM module between the control signal and the switches.

However, the analysis of switched affine systems and their control remain challenging topics, due especially to the fact that each subsystem has its own equilibrium point, and the goal is to stabilize the system at a point that is not the equilibrium of any individual subsystem. Moreover, when the switching law is state-dependent, the closed-loop switched system is a discontinuous system that may present sliding modes [START_REF] Cortes | Discontinuous dynamical systems[END_REF].

In [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF], a state-dependent switching control law that globally stabilizes switched affine systems has been presented. The control law is based on a quadratic Lyapunov function and is obtained by solving a linear matrix inequality (LMI), for which efficient numerical methods are available. In general, the desired equilibrium point can only be reached by infinitely switching between different modes. This phenomenon is known as sliding motion and it is undesirable from a practical viewpoint since it leads to component wear and possibly even its destruction. In order to overcome this first drawback, this approach has been improved using different tools. In [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF], a variable-width hysteresis, which bounds the switching frequency both during transient behavior and in steady state has been used. In [START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF], a sampled-data statedependent switching law has been proposed. Nevertheless, to the best of our knowledge, when applied to power converters the existing results do not provide an explicit relation between the controller parameters and the current and voltage ripples.

In the present paper, the switching strategy developed in [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] is applied to the control of power converters modeled as switched affine systems having two modes. Here, the issue of infinite-rate switching is overcome by means of a constant-width hysteresis. In addition, an upper bound on the hysteresis parameter is presented in order to avoid stabilization at the equilibrium point of a subsystem. The main advantage of the proposed technique is that the switching frequency in steady state can be easily chosen by the designer in order to respect constraints on the switching device or limit current and voltage ripples. This method presents an alternative to the ones proposed in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF] for the case with two modes. Indeed, in [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF], the switching frequency can be large during transient behavior. Moreover, the choice of the switching frequency in steady state (which determines the current ripple) is not obvious. The method proposed in the current paper provides a way of addressing these shortcomings in applications where they may be undesirable. Another contribution of this paper regards the evolution of the switching frequency during transient behavior. Indeed, in some cases the frequency remains practically constant over the whole trajectory, which is desirable in practice since electromagnetic disturbances may be avoided this way.

This paper is organized as follows. In Section II, some preliminary notions are presented and the problem to be tackled is stated. In Section III, the ideal sliding dynamics associated with the method in [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] are briefly discussed. Then, in Section IV, the proposed hysteresis-based strategy is developed. Simulation results illustrating the technique are shown in Section V. Then, concluding remarks are presented in Section VI.

Notation: If v is a vector, v (j) denotes its j-th component. If M is a matrix, then M T denotes its transpose, and M ≺ 0 (resp. M 0) means that M is negative-definite (resp. positive-definite). The set formed of the real parts of the eigenvalues of M is denoted as Re (λ(M )). Given α ∈ [0, 1] and matrices M i , i = 1, 2, the convex combination of these matrices defined by α is denoted as M (α) := αM 1 + (1α)M 2 . Set R + is defined as R + := [0, ∞). The gradient of function s(x) is denoted as ∇s(x).

II. PRELIMINARIES

Consider switched affine systems expressed in the following form:

ż(t) = A σ(z(t)) z(t) + B σ(z(t)) , (1) 
where z(t) ∈ R n denotes the system state at instant t, and σ : R n → {1, 2} is the state-dependent switching law, which selects at each time instant the active mode among the two available ones. Matrices A j ∈ R n×n and B j ∈ R n , j = 1, 2, with B 1 = B 2 , are the system parameters. The goal is to stabilize (1) at an admissible equilibrium point z ∈ R n (see, e.g. [START_REF] Albea-Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF]). It is convenient to define a coordinate shift given by x = z -z , so that stabilization can be analyzed with respect to the origin in x-coordinates. Using these new coordinates, the system is written as:

ẋ(t) = A σ(x(t)) x(t) + b σ(x(t)) , (2) 
where b j := A j z + B j , j = 1, 2, and σ(x) := σ(z) is the switching function in x-coordinates. Since, by definition, the origin is an equilibrium point of (2), then, according to [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], there exists α ∈ (0, 1) such that:

b(α ) = α b 1 + (1 -α )b 2 = 0. (3) 
Consider the following assumption. Assumption 1: There exists P = P T 0 such that:

A(α ) T P + P A(α ) ≺ 0. (4) 
It has been shown in [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] that, under Assumption 1, the switching law σ(x) ∈ arg min j∈{1,2}

x T P (A j x + b j )

(5) globally exponentially stabilizes system (2) to the origin.

A. Application to power converters

The switched system under study is composed of two modes. This is often the case of converters that have one controlled switch and operate in continuous current mode.

The focus in this paper is on DC/DC converters where the input voltage remains constant and the load is described by a constant resistance. These conditions, which are verified in a large number of applications, allow the converters addressed here to be modeled as switched affine systems. The dynamics of each mode are given by differential equations obtained by applying Kirchhoff's laws to the circuit according to whether the switch is closed or open.

The equilibrium point is chosen according to the desired operating point of the converter. This choice can be made, for instance, to impose a certain output voltage.

Remark 1: Equation ( 3) can be viewed as the dynamical equation of the state-averaged model (see [START_REF] Erickson | Fundamentals of power electronics[END_REF]) evaluated in steady state. By adopting the convention that mode 1 is the one where the switch is closed, then α directly provides the duty cycle in equilibrium.

With the desired equilibrium z and its correspondent value of α , matrix P is obtained by solving the LMI (4).

B. Problem statement

The downside of control law [START_REF] Albea-Sanchez | Robust hybrid control law for a boost inverter[END_REF] is that it only stabilizes the desired equilibrium point by switching infinitely fast between both modes. In this paper, the goal is to answer the following questions: how can the switching law (5) be adapted to control a power converter modeled with (1) while bounding the switching frequency at a finite value by using an hysteresis-based strategy? And how to do so in a way that makes it easy for the designer to specify the switching frequency in steady state (and hence the acceptable current ripple)?

The use of constant-width hysteresis may stabilize the system at the equilibrium of an individual mode, instead of the desired equilibrium z . This behavior is undesirable for two reasons: (i) a static error occurs; and (ii) switching does not occur as the system stabilizes at one particular mode, which may be a practical problem since converters are not designed to work under this condition. An additional question that the paper aims to answer is then: how can stabilization at the wrong equilibrium point be avoided?

III. CHARACTERIZATION OF THE SLIDING MOTION

Before tackling the problems at hand, the ideal dynamics of system (2) in sliding behavior are briefly discussed in this section.

According to [START_REF] Albea-Sanchez | Robust hybrid control law for a boost inverter[END_REF], switching only occurs when x T P (A 1 x+ b 1 ) = x T P (A 2 x + b 2 ). As a result, the state space is divided in two regions: one where mode 1 is active (R 1 ) and one where mode 2 is active (R 2 ). The surface separating both regions is switching surface R 1,2 := {x ∈ R n : s(x) = 0}, where:

s(x) := g(x) T P x, (6) 
with g(x

) := (A 1 -A 2 )x + b 1 -b 2 . It is easy to see that R 1 = {x ∈ R n : s(x) < 0} and R 2 = {x ∈ R n : s(x) > 0}. If, for some t ≥ 0, x(t) ∈ R j , j ∈ {1, 2}
, then mode j is selected and the system evolves according to the dynamics of mode j. When the trajectory reaches R 1,2 , it may simply switch to the other mode and cross to the other side of R 1,2 . Alternatively, the trajectory may switch infinitely fast between both modes and slide on R 1,2 . The conditions for this to happen are discussed in the sequel. First, according to [START_REF] Hetel | Local stabilization of switched affine systems[END_REF], system (2) can be rewritten as:

ẋ = A(α )x + g(x)u σ(x) , (7) 
where u 1 := 1 -α and u 2 := -α . Details on how these values were obtained can be found in [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]. When the trajectory slides on R 1,2 , the dynamics in sliding mode are given by:

ẋ = A(α )x + g(x)ū(x), (8) 
where ū(x) ∈ (u 2 , u 1 ) is the equivalent control signal [START_REF] Utkin | Sliding modes in control and optimization[END_REF] responsible for driving the trajectory along R 1,2 . When a sliding mode occurs on R 1,2 , the condition ṡ(x) = ∇s(x) T ẋ = 0 holds, with ẋ given by [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF]. Thus:

∇s(x) T ẋ = ∇s(x) T (A(α )x + g(x)ū(x)) = 0. (9)
The expression for ū(x) is then determined as:

ū(x) = - ∇s(x) T A(α )x ∇s(x) T g(x) , (10) 
for every x ∈ R n such that ∇s(x) T g(x) = 0.

When a sliding motion occurs on x ∈ R 1,2 , then ū(x) calculated in [START_REF] Erickson | Fundamentals of power electronics[END_REF] lies inside the interval (u 2 , u 1 ). Therefore, the set S ⊂ R 1,2 , where sliding dynamics are actually possible, is given by:

S = {x ∈ R n : s(x) = 0, ū(x) ∈ (u 2 , u 1 )}. (11) 

IV. CONSTANT-WIDTH HYSTERESIS

In order to prevent infinite-rate switching from arising as a consequence of sliding behavior, control law ( 5) is adapted in the sequel. Instead of switching as soon as s(x) = 0, switching is stopped until |s(x)| reaches a certain value h > 0, called the hysteresis parameter. Thus, the hysteresis-based switching law σ h : R n → {1, 2} is recursively defined as follows. Initially, at time t = 0, σ h (x(0)) = σ(x(0)) and, for all t > 0:

σ h (x(t)) = σ(x(t)), if |s(x(t))| ≥ h, lim τ →t -σ h (x(τ )), otherwise. , (12) 
where σ(x) is given by [START_REF] Albea-Sanchez | Robust hybrid control law for a boost inverter[END_REF]. Since h > 0, the trajectory takes a non-zero time between any two successive switching instants, thus bounding the switching frequency at a finite value. The solution with hysteresis x(t) is obtained by replacing the switching law σ(x) with σ h (x) in the closedloop system [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF]. Note that the hysteresis width 2h is constant with respect to s(x), and not the state itself. As a consequence of hysteresis, the trajectory bounces between the surfaces s(x) = h and s(x) = -h around S. The hysteresis band H is then defined as

H := {x ∈ R n : |s(x)| ≤ h, ū(x) ∈ (u 2 , u 1 )}.
The following assumption is made.

Assumption 2: The hysteresis parameter is sufficiently small so that, if x ∈ H, then x belongs to a neighborhood of some y ∈ S where the linear approximation of s(y) by y is valid.

The main consequence of Assumption 2 is that the trajectory does not stray too far from S while in the hysteresis band. A sufficiently small value for h means that the resulting switching frequency is sufficiently high to consider that the dynamics of each mode is a constant vector while the mode is active when the trajectory is inside H.

Remark 2: Assumption 2 is analogous to the traditional claim made in power electronics that the switching frequency is much higher than the bandwidth of the system. This assumption is then commonly verified in practice, specially considering that the current ripples are chosen to be kept at a small level by the designer in practical applications. In light of Assumption 2, the time behavior of s(x) is approximated by a sequence of line segments, as shown in Fig. 1. The times spent in each mode change for each y ∈ S around which the trajectory x(t) evolves while in the hysteresis band. In Fig. 1, t j (y) denotes the time where mode j is active, j = 1, 2 , while the trajectory x(t) evolves in the vicinity of y ∈ S. By convention, ṡ(x) > 0 (resp. < 0) when mode 1 (resp. 2) is active.

Definition 1: Function f sw : S → R + associates with each y ∈ S the switching frequency as the trajectory x(t) evolves around y while x(t) ∈ H, i.e., f sw (y) = 1/(t 1 (y) + t 2 (y)).

Theorem 1: The switching frequency f sw (y) associated with y ∈ S is bounded and is given by the following expression:

f sw (y) = - 1 2h (A 1 y + b 1 ) T ∇s(y)∇s(y) T (A 2 y + b 2 ) ∇s(y) T g(y) . (13) 
Proof: Under Assumption 2, if x ∈ H, there is a y ∈ S such that x ≈ y and thus s(x) ≈ s(y). From Fig. 1, the time derivative of s(y) can be written as follows:

ṡ(y) = 2h t1(y) , if mode 1 is active, -2h t2(y) , otherwise. , y ∈ S. (14) 
From (2), ṡ(y) = ∇s(y) T (A j y + b j ) while mode j is active. Using (14), the following expressions are obtained:

t 1 (y) = 2h ∇s(y) T (A 1 y + b 1 ) , ( 15 
) and t 2 (y) = - 2h ∇s(y) T (A 2 y + b 2 ) , (16) 
for y ∈ S. As a consequence of the adopted convention for ṡ(x), t 1 (y) and t 2 (y) are always positive, implying that f sw (y) is also positive. From [START_REF] Deaecto | Switched affine systems control design with application to dc-dc converters[END_REF], the gradient of s(y) can be calculated as:

∇s(y) = [(A 1 -A 2 ) T P +P (A 1 -A 2 )]y +P (b 1 -b 2 ). ( 17 
)
According to Definition 1, f sw (y) = 1/(t 1 (y) + t 2 (y)). Then, (13) is obtained from (15), ( 16) and (17). Note in [START_REF] Utkin | Sliding modes in control and optimization[END_REF] that S only contains points where ū(y) is defined, implying that ∇s(y) T g(y) = 0, ∀y ∈ S. Since, in addition, h > 0, f sw (y) is bounded. Equation (13) provides a way of estimating the switching frequency f sw (y) as the trajectory switches around a point y ∈ S. This means that it is possible to determine the possible values for the switching frequency during the transient behavior of the system. It is interesting to remark that the switching frequency is inversely proportional to the hysteresis parameter. As h → 0 (no hysteresis), the frequency tends to infinity, as expected.

Corollary 1: In steady state, the switching frequency in steady state f ss is given by:

f ss = 1 2h b T 1 P (b 1 -b 2 )(b 1 -b 2 ) T P b 2 (b 1 -b 2 ) T P (b 2 -b 1 ) . ( 18 
)
Proof: As a consequence of Assumption 1, system (2) is asymptotically stabilized at the origin through infinite switching if hysteresis is not present. Because of Assumption 2, the solution with hysteresis evolves (in steady state) in a neighborhood of the origin y = 0 where the linear approximation is valid. Using Theorem 1, the expression for the steady-state frequency f ss is then obtained by setting f ss = f sw (0) in (13).

Using (18), it is possible to determine the parameter h for a desired switching frequency in steady state. Alternatively, h can be determined to ensure a certain ripple for currents or voltages in this regime. Indeed, around the origin, dynamics (2) can be approximated by ẋ = b j while mode j is active (due to Assumption 2). Integrating this expression while mode 1 is active yields:

X q = |b 1(q) |t 1 (0), ( 19 
)
where X q is the steady-state peak-to-peak amplitude of the ripple in the switching frequency of the q-th state component, q = 1, . . . , n, which is usually an inductor current or a capacitor voltage. The absolute value of b 1(q) is taken in (19) so that the resulting amplitude is positive. The same result could be obtained by carrying out the integration while mode 2 is active: in this case, X q = |b 2(q) |t 2 (0). It can be shown using ( 3), ( 15) and ( 18), that t 1 (0) = α /f ss , reflecting the statement made in Remark 1 that α is the duty cycle in equilibrium. Equation ( 19) is then rewritten as:

X q = |b 1(q) |α f ss . ( 20 
)
It is important to keep in mind that each individual mode j ∈ {1, 2} has its own equilibrium point x j , which is the solution of A j x j + b j = 0. If A j is Hurwitz, then x j attracts the system trajectory. By using switching law (5) in the ideal case without hysteresis, this is not a problem, because the trajectory always reaches S and then slides along S before ever stabilizing at the equilibrium point of any mode. In the case with hysteresis, if h is too high, then there is a risk that the trajectory will cross R 1,2 and stabilize at some x j before switching occurs again. Fig. 2 shows how this situation may arise in the case where n = 2.

In order to avoid the situation depicted in Fig. 2, the value of h must be constrained to be less than an upper bound

x (1) x (2) 0 s(x) = h s(x) = 0 s(x) = -h x j
Fig. 2. Example of a trajectory that is stabilized at x j , for some j ∈ {1, 2}, instead of the desired equilibrium x = 0.

denoted as h. To find h, note that x j must lie outside H for all j ∈ {1, 2} such that mode j is asymptotically stable. If mode j is not stable, then the system cannot stabilize at x j . Let J H denote the set of stable modes, i.e., J H := {j ∈ {1, 2} : max Re (λ(A j )) < 0}. Therefore, it must be ensured that |s(x j )| > h for all j ∈ J H . Or equivalently, the minimum value of |s(x j )| considering all j ∈ J H must be greater than h. If J H = ∅, then h must be chosen so that:

h < h = min j∈J H |s(x j )|. (21) 
If, on the other hand, J H = ∅, then h does not need to be constrained with respect to the problem illustrated in Fig. 2. Usually, in practice, both modes are stable due at least to the parasitic resistances in the circuit. Thus, it may be considered that in general J H = {1, 2}.

It is important to recall here that h must be small anyway so that Assumption 2 holds. Nonetheless, (21) imposes an additional constraint which is specially useful when the duty cycle α is close to 0 or 1, since in this case the desired switching equilibrium is close to the equilibrium point of one of the modes.

V. SIMULATION RESULTS

In this section, the proposed constant hysteresis-based switching method is illustrated by simulations on MATLAB of two classical converter configurations: the Buck and the Boost converters.

A. Buck converter

The circuit corresponding to the Buck converter is shown in Fig. 3. Consider that the state vector z(t) is formed by the inductor current i(t) and the capacitor voltage v(t). Then, z(t) = [i(t) v(t)] T . Matrices A j and B j in (1), j = 1, 2, are given as follows:

A 1 = -R/L -1/L 1/C -1/(R o C) , B 1 = E/L 0 , (22) 
A 2 = A 1 =: A, B 2 = 0. (23) 
Matrices b 1 and b 2 in (2) are given by b 1 = (1-α )B 1 and b 2 = -α B 1 . The possible equilibrium points z = [i v ] are determined using (3). Thus, α = (Ri + v )/E and v = R o i . This implies that v can be written as: The steady-state current ripple is given by X 1 . Using (20), the following expression is obtained:

v = R o R + R o α E. ( 24 
) - + E R L i(t) R o C + - v(t)
∆I := X 1 = α (1 -α )E Lf ss . ( 25 
)
Suppose that the current ripple in steady state is allowed to be ∆I = 1A. From (25), the steady-state frequency is calculated as f ss = 49.9kHz. By using (18), the value of h is determined as h = 70212. From (21), h = 7.4 × 10 6 , meaning that indeed h < h.

Fig. 4 shows the trajectory in the simulation in zcoordinates, wherein the initial condition has been considered to be z(0) = [5 20] T . In Fig. 5, which shows current in steady-state operation, the ripple amplitude ∆I indeed equals 1A.

It is interesting to note that (13) provides a way of estimating the switching frequency along the line s(y) = 0. By writing y (1) as a function of y (2) using equation s(y) = 0, it is possible to write (13) only as a function of y [START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF] . It can be written just as easily in z-coordinates, which is how Fig. is plotted. This figure should be interpreted as follows: if the state trajectory is passing around point y ∈ S while switching inside H with a voltage equal to z (2) , then Fig. 6 provides the estimation for the switching frequency at that point. In this particular case, it can be seen that the frequency remains practically constant along the switching line, showing how the constant hysteresis-based strategy can be advantageous in this example.

B. Boost converter

The circuit of the Boost converter, whose parameter values are the same as in Section V-A, is shown in Fig. 7. Matrices A j and B j , j = 1, 2, in this case, are given by:

A 1 = -R/L 0 0 -1/(R o C) , B 1 = E/L 0 , (26) 
A 2 = -R/L -1/L 1/C -1/(R o C) , B 2 = B 1 . (27) 
Vectors b 1 and b 2 in (2) are given by b

1 = [(E - Ri )/L -v /(R o C)] T and b 2 = [(E -v -Ri )/L (i - v /R o )/C] T .
Suppose that the converter is to be stabilized at v = 120V. Then, i = 3.1A and α = 0.22. It can be shown that these values are in accordance with (3). Matrix P has been 

- + E R L i(t) R o C + - v(t)
∆I = α (E -Ri ) Lf ss , (28) 
from which f ss = 40.9kHz. The corresponding value of h is h = 73748, which has been verified to be less than h = 4.3 × 10 6 . A simulation has been run with initial condition z(0) = [5 60] T . Fig. 8 shows that, in steady state, the current ripple is indeed equal to ∆I = 1A. In Fig. 9, the state trajectory is plotted. It can be seen that the system stabilizes at the desired equilibrium point z . Initially, x(0) ∈ R 1 and mode 1 is activated. Then, the trajectory reaches R 1,2 and, once s(x(t)) = h, mode 2 is activated but the trajectory does not start switching around R 1,2 . Instead, it ventures further into R 2 . This happens because x(t) has not reached H yet, since ū(x(t)) / ∈ (u 2 , u 1 ) at this point. It can be seen in Fig. 9 that the trajectory only enters H around z (2) = 70V, at which point switching between both modes around S starts. Fig. 10 shows the switching frequency along S. Even though it is not constant over S as in the case of the Buck converter, the method still provides an upper bound to the frequency during transient behavior: 67kHz, which occurs when the trajectory is switching in H and z (2) = 88V.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a strategy to limit the switching frequency while using a state-dependent switching law for switched affine systems has been introduced. This strategy is based on a constant-width hysteresis band and it has been shown that the proposed method can be attractive from a design viewpoint with respect to its application to power converters. In fact, with the approach presented in this paper, one can determine the equilibrium point from the desired output voltage and then use the proposed expressions for calculating the hysteresis parameter from the desired switching frequency or current ripple in steady state. In addition, it is possible to determine all possible switching frequencies during transient behavior in the hysteresis band.

A future line of research is how to extend the results presented in this paper to more complex converter configurations, where more than one switch is present in the circuit. An adaptation of the method to the case where the load may change over time is also envisaged.
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