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a b s t r a c t

In real-world machine learning applications, unlabeled training data are readily available, but labeled
data are expensive and hard to obtain. Therefore, semi-supervised learning algorithms have gathered
much attention. Previous studies in this area mainly focused on a semi-supervised classification
problem, whereas semi-supervised regression has received less attention. In this paper, we proposed
a novel semi-supervised regression algorithm using heat diffusion with a boundary-condition that
guarantees a closed-form solution. Experiments from artificial and real datasets from business,
biomedical, physical, and social domain show that the boundary-based heat diffusion method can
effectively outperform the top state of the art methods.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There are large amounts of unlabeled data available in real-
orld machine learning applications. The labeling data is often

aborious, or expensive, as it requires the effort of human experts
or annotation. A typical example is in speech recognition, it costs
lmost nothing to record huge amounts of speech, but labeling
t requires humans to listen and transcribe. This process is bur-
ensome and time-consuming. In such a case, ‘‘semi-supervised
earning (SSL)’’ becomes handy to tackle the few labeled data
nd large unlabeled data. In the supervised learning framework,
set of l independently identically distributed (iid) examples

1, . . . , xl ∈ X with corresponding labels y1, . . . , yl ∈ Y are given.
Furthermore, u unlabeled data xl+1, . . . , xl+u ∈ X are provided.
SSL tackles this combined information to improve classification
performance. The few prominent SSL methods that have been
effectively used in various fields with notable results are Self-
training [1], Co-training [2], Tri-training [3] and Transductive
SVM (Support Vector Machines) [4]. These methods exploit as
unlabeled data as possible and have produced quality results.

Semi-Supervised Classification (SSC) is famous due to its abil-
ity to solve pattern recognition problems [5–7]. Most studies
deal with the application of SSC techniques in many real-world
problems in contrast to Semi-Supervised Regression (SSR) [8],
which is a more common but slightly explored case. In the SSC,
the independent variable Yi is constrained to have only a finite
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number of possible values, whereas, in the SSR, the Yi is assumed
to be continuous. Hence, SSC algorithms designed for graph min-
cut [9] do not apply to the more general SSR problem. Other
algorithms, such as Gaussian Fields [10], apply to both SSR and
SSC by using graphs.

The above discussion commonly justifies the development of
SSR using a graph-based propagation method. Each graph-based
diffusion has a different method of representation. For instance,
PageRank uses a geometrically weighted sum of random walks;
Heat diffusion uses an exponentially weighted sum of random
walks [11]. This kind of diffusion expression affect in the perfor-
mances. Yang et al. [12] showed that heat style diffusion is robust
to web spamming in comparison to PageRank style diffusion.
Another important observation is that many graph-based label
propagation algorithms suffer from the problem of continuous
diffusion. It means the label density is infinitely propagated in
the network until the convergence is guaranteed [13–15]. While
performing a random walk with continuous diffusion, algorithm
explores more of the network by walking deeply. If the under-
lying network is of poor quality, this behavior eventually tends
to produce meaningless diffusion values, leading to a large pre-
diction error. Therefore, we need a diffusion function which can
control the propagation depth so that we can effectively and
efficiently predict the value for nodes in a network.

Main idea: In this paper, we propose graph-based SSR al-
orithm. This algorithm is very intuitive and natural based on
he physical heat diffusion system with boundary conditions. The
eat flow between points in the network is captured by mea-
uring the amount of heat added or removed from the system.
he points represent nodes in a graph, and heat flow between
he points is the edges. The injection and extraction points of the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eat are the boundary of the system, which controls the heat
low. The final temperature distribution of the nodes after the
eat diffusion process makes this technique ideal for a regression
roblem.
Contributions. Our contributions of heat diffusion with

oundary condition are summarized as follows:

1. Accuracy: Our algorithm achieves relatively good predic-
tion accuracy on different label propagation in regression
datasets.

2. Closed-Form: The heat diffusion with boundary condition
has closed-form solutions on any graph structures.

3. Parameter estimation: Heat diffusion with boundary con-
dition has just one parameter with a default value of 1. It
means there is no need for parameter tuning.

Moreover, we performed the extensive experiments using
even different regression datasets from different domains: (i)
ales prediction using TV advertisement (ii) Boston housing price
rediction, (iii) White wine alcohol volume prediction, (iv) Red
ine alcohol volume prediction, (v) Parkinson’s patient sound

evel prediction (vi) Airfoil self noise prediction and (vii) Bike-
haring rental count prediction. The results demonstrated that
ur algorithm often outperforms state of the art label propagation
lgorithm in terms of prediction accuracy.
Our algorithm is a novel label propagation method which is

otivated from physics inspired boundary-based heat diffusion
o handle the graph-based regression problem relying only on
he graph structure. To the best of our knowledge, our algorithm
s the first solution to handle transductive graph-based semi
upervised regression without any parameters to tune.
Outline. The rest of the paper is organized as: related work,

problem definition, method description, experimental analysis,
and conclusion.

2. Related work

The label propagation (LP) technique has various names, in-
luding graph-based semi-supervised and transductive learning.
P methods use diffusion mechanisms to propagate labels from a
mall set of nodes with known class labels to the remaining nodes
f the graph.1 The label propagation algorithms learn the labels of
nlabeled nodes by diffusing information about local label density
hrough the network. This behavior makes these algorithms faster
nd scales to large networks.
In transductive learning, Graph-based Laplacian Regularization

GLR) is a widely used [16]. GLR is based on the manifold assump-
ion, which states that if two points are on the same manifold,
heir corresponding values are similar. This idea is one of the vital
ssumptions in graph-based SSL. Belkin et al. [17] demonstrated
wo types of SSL algorithms based on graph regularization show-
ng that the exploitation of unlabeled data enhances the predic-
ive performance. Similarly, Laplacian Regularized Least Square
egression (LapRLSR) method concerning the SSR framework reg-
larized with a graph Laplacian prior has also been extended
o build an efficient regressor is called Temporal Laplacian Reg-
larized LS Regression (TLapRLSR) algorithm [18] in an image
equences application problem. Doquire and Verleysen [19] pro-
osed a variant of the Laplacian method for feature selection
lgorithm named SSLS (Semi-Supervised Laplacian Score), which
lends both supervised and unsupervised Laplacian Score meth-
ds for regression problems. Zhao et al. [20] combined the LapRLS
ith SSL Discriminant Analysis methods (SDA) and creating an
SL dimensionality reduction in a regression setting. On a similar

1 Note that the words ‘‘graph’’ and ‘‘network’’ are interchangeably used in
he paper.
2

note, the study by Sheng and Zhu [21] applied a regularized re-
gressor integrated with quadratic loss inside a LapRLS framework,
studying the correlation of the convergence rate.

There are several algorithms proposed that can solve the node
classification problem from the LP perspective. Zhu et al. [15]
proposed LP, which is one of the most well-known graph-based
SSL algorithms in the Artificial Intelligence (AI) community. Zhou
et al. [22] proposed another popular algorithm called Local and
Global Consistency (LGC). Local means nearby points are likely
to have the same label. Global means the points on the same
structure are likely to have the same label. Most of graph-based
methods are believed to work better on low-dimensional feature
data in comparison to high dimensional data [23]. It is due to the
fact that the graph is affected by the influence of noisy features of
high-dimensional samples. Yu et al. [23] propose semi-supervised
ensemble based approach to tackle that problem in subspaces.

Adsorption [24] and Modified Adsorption [25] search for the
fixed point state where many connected nodes have the same
class labels. These algorithms work best on the homophily (similar
nodes may be more likely to attach than different ones) labeled
network. Heat diffusion [12,26–29] style propagation has also
been used in the SSC task due to its intuitive interpretations
in terms of random walks, electrical circuits, and other aspects
of spectral graph theory [13]. Chen et al. [30] demonstrated
the weighting samples of labeled and unlabeled data to im-
prove the graph-based semi-supervised classification. Label noise
is also one of the critical issues in SSC to degrade classification
accuracy [31,32]. Similarly, Wang et al. [33] proposed the dis-
criminative graph with constrained k-means approach to avoid
misclassifying boundary samples of different classes.

The label smoothness and locally estimated label penalties
assumption used in graph-based SSC are also used neural network
based regression model [34]. The graph construction from a fea-
ture data is itself another important problem in SSC for accurate
label prediction [35]. Currently, Graph Convolutional Networks
(GCN) [36,37] have shown impressive results in SSC, due to its
ability that nicely integrates graph and feature information in
each layer. The progress of GCN has motivated many influential
works [38,39] on graph. Although these neural-network-based
models tend to have stronger modeling capabilities than the
classical graph-based approach, they typically require an am-
ple amount of labeled data for training and validation due to
high model complexity, hence may not be label efficient [40].
The major caveats of GCN is that it requires many additional
labeled data for validation and suffers from the localized nature
of the convolutions filter [38]. However, from the computational
perspective, heat diffusion methods are promising because they
are fast to compute in the sparse graphs [41,42] and robust in
memory usage [43].

Yamaguchi et al. [44] proposed OMNI-Prop that applies to both
homophily and heterophily (different nodes may be more likely to
attach than similar ones) labeled network. All the models above
have been proven useful on a node classification problem; only a
few of them applied in regression problems.

The study byWasserman and Lafferty [47]; El Alaoui et al. [48];
Mai and Couillet [49] showed the graph-oriented SSL algorithms
and establish prediction properties of semi-supervised estimators
from the number of features in the data. Cohen [50] demon-
strated SSL in a directed graphs based on distance diffusion.
As they consider distances from unlabeled to labeled nodes,
each instance is computationally intensive and requires an ap-
proximation scheme. The major concern in these models is the
computational complexity because they are slow to converge and
unstable [51,52]. To overcome this problem, Rosenfeld et al. [53]
proposed SSL with competitive infection models that consider
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able 1
ualitative comparison between different label propagation algorithms.

Mincut
Blum et al. [45]

HMN
Zhu et al. [14]

LGC
Zhou et al. [22]

BP
Gatterbauer et al. [46]

OMNI
Yamaguchi et al. [44]

HD
Yang et al. [12]

BHD

Closed form solution ✓ ✓ ✓ × ✓ ✓ ✓
Convergence ✓ ✓ ✓ ? ✓ ✓ ✓
No parameter tuning ✓ ✓ × × ✓ ✓ ✓
Regression × ✓ ✓ × × × ✓
T
S

distances from labeled to unlabeled nodes, which can be com-
puted efficiently. Most of the SSL methods use spectral diffu-
sions [54]. These methods include label propagation [15] and
label propagation using the normalized graph Laplacian [22].
They scale well into repeated averaging over neighboring nodes
and are used on massive graphs with billions of edges [55]. Recent
work by Budninskiy et al. [56] showed the discrete differential
geometry approach in a graph-based SSL problem where label
diffusion uses a Laplacian operator learned from the geometry of
the input data. They used the biconvex loss function in terms of
graph edge weights and inferred labels. The function minimiza-
tion is achieved through alternating rounds of optimization of
the Laplacian and diffusion-based inference of labels. Thus the
optimized results of the Laplacian diffusion directionally adapt
to the intrinsic geometric structure of the data and give high
accuracy in classifying labels. However, it is unsure that the same
principle can be applied to the regression problem.

In the context of practical application, SSR showed the use-
ulness for instance predicting the final grade of undergraduate
tudents in a distance online course by using a small number of
tudents data from previous years [57]. The co-training style algo-
ithm developed by Zhou and Li [58] demonstrated useful in SSR
sing graphs. Similarly, Wang et al. [59] proposed an algorithm,
hich is about the kernel regression framework exploiting both

abeled and unlabeled examples. These algorithms are essential in
he regression problem. However, they are not applicable without
arameter tuning.
Belief propagation (BP) [60] is the propagation algorithm for

erforming inference on graphical models. This algorithm has
een implemented to deal with various problems related to
raphs such as a random walk with restart and label propaga-
ion. Papaspiliopoulos and Zanella [61] showed the usability of
ampling multilevel regression models using belief propagation.
lthough BP is beneficial; its recursive calculation does not have
ny guarantee to converge on arbitrary graphs [44].
Table 1 shows the qualitative comparison between our algo-

ithm and the major state of the art graph-based methods. Our
lgorithm is parameter-free, provides closed-form solutions, and
uarantees convergence.

. Problem formulation

This section details some terms and also introduces the graph
egression problem. Suppose N is the list of nodes and E is the
umber of edges. For undirected graph G = (N , E), we have

E ⊆ N × N also Ni ⊆ N . The set of nodes is composed of two
types of components N = N L

∪ NU where N L
= {n1, . . . , nL}

is a set of L labeled nodes and NU
= {nL+1, . . . , nL+U } is the

list of unlabeled nodes. Let Y be the set of possible labels and
YL = {y1, . . . , yL} are the labels assigned to the nodes in N L. Thus,
the graph regression problem is expressed as follows:

Problem (Graph regression)

• Available: A partially labeled graph.
• Score: Find the score Si,j which corresponds to the value of
the unlabeled node i through labeled node j.

3

able 2
ymbols and Definitions.
Symbols Definitions

W Adjacency matrix
N,E # of nodes, # of edges
L # of labeled nodes
U #of unlabeled nodes
t time
D Degree matrix
fu Temperature distribution of the unlabeled node
fl Temperature distribution of the labeled node

• Estimates: The function estimates of the response variable:

Ŝ = MS

where Ŝ are the new estimates, S are the observations and
M is a matrix which may be constructed based on the data.

4. Methodology

We are given an undirected graph constructed from data fea-
tures by applying a distance similarity metric. We follow the same
smoothness assumption made by Zhu et al. [15] that nodes close
to each other have similar values. This idea also applies to the
regression problem [62]. Table 2 shows the list of symbols we
used in the paper.

4.1. Graph construction

There are different methods to construct the graphs. We took
a generic method to construct the graph.

• Fully connected graph: In the fully connected graph, where
every pair of vertices xi, xj is connected by an edge. An edge
between two vertices xi, xj represents the similarity of the
two instances. One popular weight wij function used in a
semi-supervised machine learning task is given by:

wij = exp

(
−
∥xi − xj∥2

2σ 2

)
(1)

This function is also called a Gaussian kernel or a Radial
Basis Function (RBF) kernel [10]. The edge weight decreases
as the Euclidean distance ∥xi − xj∥ increases, σ is known
as the bandwidth parameter and chosen as 1

n and n is the
number of features. The weight wij = 1 when xi = xj,
and 0 when xi − xj approaches to ∞. The advantage of
a fully connected graph is in edge weight learning, with
a differentiable weight function, one can easily take the
derivatives of the graph with respect to weight hyperparam-
eters [10]. However, it has a disadvantage in computational
cost. For huge graphs, this matrix will be dense, thus using
such graphs for label propagation will entail a high time
complexity. To store all nonzero elements in this matrix
(i.e., fully connected graph), we require huge memory space.
As a means of avoiding this problem, sparse graphs can be
constructed via k nearest neighbors (k-NN).
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• k-NN graph: One can create k-NN graphs where each node
connects to only a few nodes. Optimal K can be chosen using
cross-validation in training data and such sparse graphs are
computationally cheaper and faster. In a k-NN graph the
vertices xi, xj are connected by an edge if xi is in xj’s k-
nearest-neighborhood or vice versa. The edge weight wij
be either the constant 1, in the case when the graph is
unweighted, or a function of a distance as in Eq. (1). k is
a hyper-parameter that controls the density of the graph. If
k is chosen very small then it may result into a disconnected
graphs.

The above described graph construction approaches are very
eneric technique. The better graphs can be constructed if one has
nowledge of the problem domain, and can define better distance
unctions, connectivity, and edge weights.

.2. Heat diffusion

Heat is an energy which propagates from a body with a high
emperature to a low temperature. This energy propagation idea
ave been successfully used in various domains such as web
pamming in web graph analysis [12], recommender systems
63] and disease gene prioritization [64]. For a known graph
tructure, the heat flow with initial conditions can be defined by
he following second order differential equation:

∂ f (x, t)
∂t

−∆f (x, t) = 0 (2)

where f(x, t) is the heat at location x at time t, and ∆ f is the
Laplace–Beltrami operator on a function f . The heat diffusion
kernel Kt (x, y) is a special solution to the heat equation with an
initial condition having a unit heat source at position y and no
heat in another end. Heat kernel [13] have been proven to be
useful because of the physical interpretation of the optimization
in label propagation in a semi-supervised machine learning [15].
The solution to the heat diffusion equation on a graph is [12,26]:

f (t) = e−αtH f (0) (3)

The value f (t) illustrates the heat at node v at time t , begin-
ning from an initial distribution of heat given by f (0) at time zero
nd H is the graph Laplacian, and α is the diffusion coefficient.

.3. Heat diffusion in a boundary condition in graph (BHD)

In the context of our work, we are considering diffusion in
boundary condition. By boundary condition we mean that we
ave some information about the solution at the endpoints.
Let us suppose that there are l labeled and u unlabeled nodes

nd N = l+u be the total nodes in the multiplex graph. Then L =
1, 2, . . . , l

}
corresponds to labeled nodes with labels f1, . . . , fl,

nd nodes U =
{
l + 1, l + 2, . . . , l + u

}
refers to the unlabeled

oints. Our job here is to assign the labels for the nodes U . The
dge of the graphs is a n × n weight matrix W also known as
djacency matrix.
Now to formulate our model, let us assume that, at time t ,

ach node i ∈ U , receives a certain amount of heat M(i, j, t, ∆t)
rom its neighbor j during a period of ∆t . The heat M(i, j, t, ∆t)
s proportional to the time ∆t and the heat difference fj(t) - fi(t).
ue to this, the heat difference at node i between time t+∆t and
ime t will be equal to the sum of the heat that it receives from
ll of its neighbors. This is expressed as:

i(t +∆t)− fi(t) =
n∑

(fj(t)− fi(t))Wij∆t (4)

j=1 t

4

Dividing Eq. (4) by ∆t into both sides, and let ∆t → 0, we
have
dfi
dt
= Wi,:f − difi (5)

In terms of matrix operations, we split the weight matrix W
into 4 blocks after the Lth row and column:

W =
[
WLL WLU
WUL WUU

]
(6)

Note that WU,:f = [WUL WUU ]
[

fL
fU

]
, and ∆UU = DUU −WUU .

Here ∆ is the combinatorial Laplacian which is given in the
matrix form as ∆ = D − W where D = diag(di). The diag(di)
is the diagonal matrix with entries di =

∑
j wij and W = [wij] is

the weight matrix.
We have a matrix form:

dfU
dt
= WU,:f − DUU fU

= WULfL +WUU fU − DUU fU
= WULfL −∆UU fU

(7)

Solving this linear differential equation which is the form of
dy/dx+ Py = Q to find the closed form solution we have:

U = ∆−1UUWULfL + e−t∆UU C (8)

This is the temperature distribution on the unlabeled nodes
at time t , given the boundary condition fL. This function is used
to predict the labels for the unlabeled node. Given the initial
condition fU |t=0 = fU (0), C = fU (0)−∆−1UUWULfL. Note that, in the
imit t →∞, fU = ∆−1UUWULfL, which is the harmonic function.

In order to intuitively interpret Eq. (8) and the heat diffu-
ion with the boundary condition, we simulated the regression
atasets with 1000 data points in two different data shapes
ne linear (standard deviation (σ )= 40) and another spiral. Both
atasets contain two features and one target variable. The pattern
f data is shown in Figs. 1(a), 1(c). We labeled two data points: a
ed triangle and orange star, and the rest of the data is unlabeled,
hich is in black. We employed the Gaussian RBF Kernel wij =

xp
(
−
∥xi−xj∥2

2σ2

)
to construct the graph between these points and

applied the closed-form equations for heat diffusion, harmonic
function and boundary heat diffusion. Figs. 1(b), 1(d) show the
performance of these algorithms. The y-axis is the Root Mean
Square Error (RMSE), and the x-axis is the time. The harmonic
function does not have the time component(t) in its equation in
contrast to HD and BHD. We can learn from the curve that when
t equals to 10−4, both HD and BHD algorithms have the highest
RMSE (see Figs. 1(b), 1(d)).

In the case of linear-shaped data, as time increases, HD and
BHD both started to have a low RMSE. At time equals to 10−1, HD
tarted to converge (see Fig. 1(b)). There is no further reduction
f the RMSE, whereas the BHD kept decreasing until the range
0−1 to 100. Beyond that interval, RMSE started to increase, and
rom 102, the BHD has a similar RMSE to harmonic function.

In the case of spiral-shaped data, RMSE for BHD rapidly de-
reases when time equals 100 after that RMSE of BHD is similar to
harmonic function. HD does not change much in RMSE in these
atasets and converges faster. In this dataset, we also observe for
higher value of time; the BHD will be the same as harmonic

unction favoring continuous or long-range propagation. Thus,
HD never looses with harmonic function because, in the infinite

ime stamp, BHD will ultimately become harmonic function.
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Fig. 1. The error curves demonstrating the performance of different label propagation algorithm.
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.4. Computational complexity

In the solution provided by Eq. (8) we have two parts: (i) the
armonic part and (ii) the exponential part. When the graph is
arge, their computation will be time-consuming because both
f them have a O(n3) complexity. To solve this, we took an
terative approach to compute the harmonic part provided by
hu et al. [65], which is the same as a Random Walk with
estart (RWR) [66]. For the exponential part, we took the discrete
pproximations by Yang et al. [12]:

(t) =
(
I −

t
M

∆UU

)M
f (0) (9)

where I and M are the identity matrix and the number of itera-
ions, respectively. The latter was set to 30 in conformity to [12].
is the time. f (0) is the initial temperature and f (t) is the temper-
ture at timestamp t . Specifically, after the discrete formalization
f the complexity of exponential kernel in our model is given by
(M|E|n) where M is the number of iterations, n is the number
odes and |E| is the number of edges in the graph.
To demonstrate the time performance of our discrete approx-

mation, we chose two different graphs (i) fully connected graph
sing the Gaussian kernel and (ii) sparse graph using the k-NN
ethod. These graphs are constructed using simulated regression
ata with standard deviation (σ )= 100 and by varying input data
 g

5

Fig. 2. Time performance in a fully connected graph.

oints from 100 to 1000. We applied all the algorithms by using
nly 10% labeled data. The k in the k-NN graph is estimated by
ross-validation in training sets. The performance of the BHD al-
orithm using 100 dedicated realizations along with other states
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Fig. 3. Time performance in a k-NN graph.

f the art methods in one core machine is shown in Figs. 2 and
. The x-axis is the number of nodes, the y-axis is the runtime,
nd the error bar is the standard deviation from 100 dedicated
ealizations.

In Fig. 2, we observe that by using a fully connected graph for
HD shown by a blue line, the computational cost goes rapidly
igh with the increase in the data points. It also holds for the
ther graph-based label propagation methods like HD, HMN,
GC. The non-graph-based method SVR also increases with the
ncrease of the data points. In a fully connected graph, the matrix
s dense and eventually leading the cubic time complexity O(n3),
hich is a worst-case even though we apply discrete approxima-
ion in a graph-based method. Thus a fully connected approach
an be very time consuming for large graphs.
However, if we replace the fully connected graph by k-NN

raphs where each node connects to only a few nodes, we can
educe the complexity of discrete approximation. The label prop-
gation in such sparse graphs is computationally cheaper and
aster. The time complexity, in this case, depends on k being
hosen. If the chosen k is the same as the number of data points
, then it will also have the worst case. The optimum k can
e chosen by using the cross-validation in training sets or by
omain knowledge of the data. For small k, the graph will be
parse, which ultimately speeds up the computation time. In
ig. 3, we can see that using sparse graphs with discrete approx-
mation; the computation overload can be reduced. We also see
hat all graph-based methods have very fast computation times
ith sparse graph implementations in comparison to non-graph-
ethods (SVR).

.5. Space complexity

For a fully connected graph using Gaussian Kernel we need
o store |E| number of edges and n is the length of vectors for
nitial temperatures that means the space complexity (S) is: S =
(|E|)+ O(n) = O(n2)+ O(n).
In a real-world case scenario, when we have a large graph,

hen using a Gaussian Kernel is not efficient in terms of space.
o we can replace the Gaussian Kernel by the k-NN approach. If
is chosen small then we can reduce the space complexity from
(n2)+ O(n) to O(kn)+ O(n).

.6. Temperature setting for initial conditions:

In order to propagate heat, we need to set the initial temper-
ture. The initial temperature of a node is its labeled real value.
hese labeled nodes are then the training nodes.
6

Initial Temperature Setting in test set: If the quality of the
network is poor, the ideal way to make inferences about the
prediction of the node label values in the test set is to use the
sample mean. It can be assumed that the nodes without any links
are from a population with a mean µ. We can then make an
inference of µ by a sample mean [67], which is used to set the
initial temperature for an unlabeled node in a test set.

If the network contains valuable information for making the
prediction, this initial estimation should be combined with dif-
fusion along the edges in the network. Our method supports
this property, as shown in Eq. (8), while the harmonic function
ignores this initial estimation because of the continuous or global
diffusion. Additionally, if the network is of poor quality, our
boundary heat diffusion model has the freedom of choosing a
small value of t .

5. Algorithm

The BHD has two parts harmonic and heat diffusion. For the
harmonic part, we took the iterative approach provided by Zhu
et al. [65]. This algorithm requires n× n transition matrix, n× 1
label vector, n × n Laplacian matrix and M is the number of
iterations. Once harmonic scores are determined, we need to
calculate the constant C according to Eq. (8). C is obtained by
subtracting an initial label score from a harmonic score. The initial
label score has an initial temperature for each node. We imputed
the values for the unlabeled nodes as the means of the labeled
nodes. This C is the initial condition of the state vector (n×1) for
heat diffusion with boundary condition. Formally, the process is
described in Algorithm 1.
Algorithm 1: Heat Diffusion with Boundary Condition for
Regression Problem.

Input : The transition matrix T of size n× n; initial label
vector Y of size n× 1; Laplacian matrix L; M is the
number of iteration chosen as 30; I is the identity
matrix of size n× n

Output: State vector of size n× 1
1 Initialize U = Y
2 repeat
3 Y k+1

← TY k

4 Y k+1
← Y k+1

+ U
5 Y k

= Y k+1

6 k = k+ 1
7 until error between Y k+1 and Y k becomes sufficiently small
8 Initial_Temperature: Impute mean value for unlabeled
nodes using labeled value

9 C = Initial_temperature - Y K

0 State_Vector = C
1 t is a parameter in (0,1);
2 for b = 1 to M do
3 State_Vector = Y k

+

(
I − t

M L
)
State_Vector

4 end
5 return State_Vector

6. Experiments

All the codes are written in Python and the datasets used in the
experiment are available in the web.2 From this experiment, we
answer the following questions using real and synthetic datasets:

• Q1: Parameter: Does the parameter t affect the prediction
performance of heat diffusion with boundary condition?

2 https://github.com/timilsinamohan/SSR

https://github.com/timilsinamohan/SSR
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egression Datasets.
Datasets Domain Number of

Features
Number of
Data Points

Advertisement Business 1 200
Boston Housing Business 13 506
Parkinson’s Telemonitoring Biomedical 16 5875
White Wine Quality Business 10 1599
Red Wine Quality Business 10 4898
Airfoil Self-Noise Physical 5 1503
Bike Sharing Social 16 17,389
3D Road Network Engineering 4 434,874
Million Song Dataset Business 90 515,345
Online Retail Dataset Business 8 1,067,371

• Q2: Accuracy: How accurate BHD is in comparison to the
state of the art label propagation algorithm?
• Q3: Non-Label Propagation: How well BHD performs in com-

parison to the state of the art non-label propagation algo-
rithm?
• Q4: Proportion: How is the accuracy impacted to all the state

of the art algorithms due to change of lab proportion in the
graph?
• Q5: Speed: How fast is BHD in comparison to the state of the

art algorithm?
• Q6: Features Does changing the features in the datasets

affect the performance of BHD?
• Q7: Performance Does BHD has similar performance if we

change the graph construction?

Real Datasets: We used ten regression datasets from dif-
erent domains in our experiments. The datasets used in the
xperiments are shown in Table 3.
All the datasets used in the experiments are publicly available.

ut of 7 datasets, 8 of the datasets [Parkinson, White wine, Red
ine, Airfoil self-noise, Bike-sharing, 3D Road Network, Million
ong Dataset and Online Retail Dataset] are from a UCI ma-
hine learning data repository.3 The Boston housing data is from
ython open source scikit data repository.4 Advertisement data
s collected from the data repository5 of the book ‘‘Elements of
tatistical Learning’’ [68].
Brief descriptions of the datasets are as follows:

1. Advertisement: This data contains the advertising data
sales (in thousands of units) for a particular product adver-
tising budgets (in thousands of dollars) for TV, radio, and
newspaper media. We use TV budgets to predict advertis-
ing sales.

2. Boston Housing: This data contains information collected
by the U.S Census Service concerning housing in the area
of Boston Mass [69]. This data has been used extensively
throughout the literature to benchmark algorithms. We
used this data to predict the price of the house.

3. Parkinson Telemonitoring: This data is composed of a
range of biomedical voice measurements from 42 peo-
ple with early-stage Parkinson’s disease [70]. From this
data, we predicted the UPDRS (Unified Parkinson’s Disease
Rating Scale) score of each patient.

4. Red and White Wine Quality: This data is composed of
two different wines, i.e., red and white. These two datasets
are related to red and white variants of the Portuguese
‘‘Vinho Verde’’ wine [71]. From this data, we predicted the
alcohol level in the wine.

3 https://archive.ics.uci.edu/ml/index.php
4 https://scikit-learn.org/stable/datasets/index.html
5 https://web.stanford.edu/~hastie/ElemStatLearn/data.html
7

5. Airfoil Self-Noise: This data is from NASA,6 which com-
prises of different size airfoils at various wind tunnel speeds
and angles of attack. From this data, we predicted the
scaled sound pressure level [72].

6. Bike Sharing: Bike-sharing [73] is an automated bike rental
system. A user can rent a bike from a particular location
and return to another location by using these systems.
These systems are getting popular due to their impact on
traffic, health, and environmental issues. The bike-sharing
systems generate data that make these systems attrac-
tive for artificial intelligence (AI) based research. The bike-
sharing systems records, the duration of travel, departure,
and arrival position. This property turns the bike-sharing
system into a virtual sensor network. The data collected
from these sensors are useful for identifying mobility in the
city. From this data, we predicted the count of total rental
bikes.

7. 3D Road Network: This dataset is constructed by adding
elevation information to a 2D road network in North Jut-
land, Denmark [74]. This dataset can be used by any ap-
plications which require to know very specific elevation
information of a road network to perform task such as eco-
routing, cyclist routes etc. From this data, we predicted the
elevation of the road.

8. Million Song Datasets: The Million Song Dataset7 is a
freely-available collection of audio features and metadata
for a million contemporary popular music tracks [75]. From
this data, we predicted the year of the song released.

9. Online Retail Datasets: The Online Retail Dataset con-
tains all the transactions occurring for a UK-based and
registered, non-store online retail between 01/12/2009 and
09/12/2011 [76]. From this data, we predicted the product
price of the item.

Artificial Datasets: We use six different simulated datasets
in the study. Each of the datasets has 1000 data points. These
datasets can be generated by Python api.8 Brief description of the
atasets are as follows:

1. Simulated Regression Data: This is generated from the
random regression problem with input samples and the
output values using standard deviation (σ )= (100).

2. Spiral Data: This data has a spiral shape. It is generated
from the input samples with features and output values.
The output values are the univariate position of the data
points to the major dimension of the points in the mani-
fold.

3. Swiss Roll Data: This data is generated using an algorithm
provided by Marsland [77]. The algorithm generates the
input samples with features and output values. The output
values are the univariate position of the data points to the
major dimension of the points in the manifold.

4. Sparse Uncorrelated Data: This data is generated by an
algorithm provided by [78]. The algorithm generates a ran-
dom regression problem with sparse uncorrelated design
which has the input samples and the output values.

5. Friedman Regression Data: The data Friedman1 and Fried-
man2 are generated by an algorithm provided by [79,80].
The algorithm generates the input samples and the output
values.

Metric: We chose the root mean square error (RMSE) to evalu-
te the performance of the algorithm. RMSE is a quadratic scoring

6 https://www.nasa.gov/
7 http://millionsongdataset.com/
8 https://scikit-learn.org/stable/modules/classes.html

https://archive.ics.uci.edu/ml/index.php
https://scikit-learn.org/stable/datasets/index.html
https://web.stanford.edu/~hastie/ElemStatLearn/data.html
https://www.nasa.gov/
http://millionsongdataset.com/
https://scikit-learn.org/stable/modules/classes.html
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Advertisement Boston Housing Parkinson White Wine Red Wine Airfoil Self
Noise

Bike Sharing 3D Road
Network

Million Song
Datasets

Online Retail
Datasets

HMN Zhu
et al. [15]

12.78 ± 0.39 22.94 ± 0.38 10.68 ± 0.05 2.64 ± 0.01 2.50 ± 0.17 66.84 ± 2.64 200.48 ± 2.78 29.25 ± 0.05 103.09 ± 3.84 145.59 ± 8.90

LGC Zhou
et al.[22]

14.03 ± 0.17 23.64 ± 0.20 28.30 ± 0.08 9.62 ± 0.01 9.55 ± 0.01 114.29 ± 0.12 246.40 ± 1.42 27.5 ± 0.03 73.09 ± 0.01 141.99 ± 11.52

HD Yang
et al. [12]

14.41 ± 0.1 23.50 ± 0.23 29.21 ± 0.06 9.96 ± 0.01 9.86 ± 0.01 118.22 ± 0.09 251.04 ± 1.28 27.16 ± 0.03 72.02 ± 0.01 138.89 ± 12.14

SVR
Drucker
et al. [81]

5.32 ± 2.14 10.96 ± 3.22 10.85 ± 0.08 1.64 ± 0.58 1.64 ± 0.58 139.69 ± 0.51 185.68 ± 1.61 28.86 ± 0.06 13.42 ± 3.08 143.87 ± 9.05

BHD 5.42 ± 0.18 11.12 ± 0.33 10.61 ± 0.03 1.23 ± 0.01 1.11 ± 0.01 11.33 ± 0.1 179.98 ± 0.95 26.31 ± 0.51 70.87 ± 0.11 140.45 ± 12.32
rule that measures the average magnitude of the error. It is
the square root of the average of squared differences between
predictions and actual observations. The RMSE score is then given
by:

RMSE =

√
1
n
ΣN

i=1(yi − ŷi)2 (10)

here yi is the observed value and ŷi is the predicted value and
n is the number of observations.
Q1: Parameter In this experiment, we assessed the prediction
ability of our approach by varying the parameter t . The parameter
t is varied from 0.0001 to 1. We report results for all regression
data used in our experiments.

We applied the RBF kernel in the data points to construct the
graph from these data. We varied the labeled nodes from 10% to
90%. We run the experiments and record the RMSE averaged over
100 trials for each labeled percentage for all the datasets.

From Fig. 4, we observed that when the percentage of the
labeled node increases, the RMSE score decreases in all the values
for the parameter t . It is because a majority of the nodes were
already labeled so less heat required to label the remaining nodes.
We observed that at t = 1, the RMSE score is minimum in
comparison to other parameters, as shown by the light-green
curve. It means we need maximum heat to perform diffusion in
this kind of network, which in this case, is t = 1. This observation
also means that we do not need to tune the parameter when
using this algorithm. Hence, we use this default value t = 1 for
all experiments.
Q2: Accuracy We compared our approach with state of the
art label propagation algorithms namely: (i) harmonic function
(HMN) [65], (ii) local and global consistency method (LGC) [22],
and (iii) heat diffusion (HD) [26]. We also compared the accuracy
with Support Vector Regression (SVR) using linear kernel which
is a non-label propagation algorithm. It is because SVR has been
chosen as a baseline to compare with the regression based label
propagation method by the previous studies [14,82].

We split data with 10% for training, 90% testing, and apply
the algorithms in 10 Folds cross-validation setting to record the
average RMSE score.

From Table 4, we observe that the boundary-based heat diffu-
sion has performed either at least equaling or exceeding the four
state of the art methods. BHD has performed significantly better
than the HMN, LGC, and HD in predicting the outcome values
for Advertisement, Boston housing, White wine, Red wine, Airfoil
Self Noise, Bike Sharing and 3D network datasets. However, in
Parkinson’s data, BHD has a marginal improvement over HMN.
One of the reasons for this might be the nature of diffusion.
In HMN diffusion, the information propagates infinitely favoring
long-range interactions, and BHD also has a similar property. For a
long-range diffusion, HMN equals to BHD, which is one of the vital
property of BHD. In Advertisement and Boston Housing datasets,
the/our SVR method performed marginally better than BHD. As
8

Table 5
P-values of the t-test at significance level α = 0.05. The bold figures indicate
significant p-value.

HMN HD LGC SVR

BHD (Advertisement) 2.347e−12 2.56e−16 7.438e−16 1.213e−05
BHD (Boston Housing) 4.883e−14 <2.2e−16 3.319e−16 0.6139
BHD (Parkinson) 0.0002416 <2.2e−16 <2.2e−16 5.012e−06
BHD (White Wine) 4.24e−11 <2.2e−16 <2.2e−16 0.2748
BHD (Red Wine) 8.03e−08 <2.2e−16 <2.2e−16 0.78
BHD (Airfoil Self Noise) 4.116e−13 <2.2e−16 <2.2e−16 0.006906
BHD (Bike Sharing) 3.516e−13 <2.2e−16 <2.2e−16 0.009806
BHD (3D Road Network) 2.016e−11 <2.2e−16 <2.2e−16 0.46101
BHD (Million Song) 3.211e−11 <2.2e−16 <2.2e−16 <2.2e−16
BHD (Online Retail) 6.03e−11 <2.2e−16 <2.2e−16 0.00028

this data has a strong linear association with outcome variable
and SVR with linear kernel captures this better than BHD. In the
Online retail dataset, HD performed better than other state of
the art methods. In this dataset, it may be that local diffusion
is favored in comparison to global diffusion and that might have
affected the accuracy.

We noted that the problem of SSR is more general than the
SSC. In the latter case, the outcome variable is constrained to have
only a finite number of possible values, whereas, in regression,
the outcome variable is assumed to be continuous. Hence, LGC
and HD algorithms might be more suitable for SSC tasks, whereas
HMN and BHD can be applicable for SSR tasks, as shown by our
results. Zhu et al. [15] showed that the Gaussian Fields apply to
both SSR and SSC problems.

Different algorithms shared the same random trials. So, we
could perform statistical tests. We applied the paired t-test to
find out if there is a significant difference in the 10-fold cross-
validation results between BHD and other states of the art meth-
ods using a significance (α) level of 0.05. The p-values of the
t-test are reported in Table 5. We found that there is a significant
difference between the prediction performed by BHD with other
states of the art methods (p-values <0.05). In Boston housing,
white wine, red wine and 3D road network dataset, we observed
the p-value higher than 0.05 between BHD and SVR method. It
suggests that there is no significant difference between the ten
fold predictions between these methods.

We further assess whether the differences in performance
across the compared algorithms are statistically significant in the
ten folds cross-validation results. We used a Friedman Nemenyi
test [35,83,84], which compares the algorithms in a pairwise way.
For this task, algorithms are ranked according to their prediction
accuracy, so that the best performing algorithm is ranked at the
top, the second-best is at the second position, and so on. The
null hypothesis for this test is that all methods have equal per-
formance. The alternative hypothesis is that there is a difference
in performance between the methods. The p-value of the test is
demonstrated in Table 6.
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Fig. 4. Impact of parameter t in regression datasets. X-axis is the percentage of labeled data. Y -axis is the RMSE score.
From Table 6, we come to the following conclusions. First,
the Friedman Nemenyi test suggests that the proposed BHD per-
forms significantly better against the majority of the other state
of the art methods. In Bike Sharing datasets, our BHD has a
9

significant difference with all baseline methods. Similarly, for 3D
Road Network, Airfoil, and Parkinson datasets, BHD is signifi-
cantly different to all the other methods. As for Online Retail
Datasets, BHD is only significantly different to HMN methods,
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-values of the Friedman and Nemenyi statistical test over all the 10 fold cross-
alidation at significance level α = 0.05. The bold figures indicate significant
-value.

HD HMN LGC SVR

Advertisement

HMN 0.0377 – – –
LGC 0.6184 0.6184 – –
SVR 7.2e−06 0.2109 0.0037 –
BHD 7.4e−06 0.2109 0.0035 1.0000

Boston Housing

HMN 0.03770 – – –
LGC 0.61845 0.61845 – –
SVR 7.7e−07 0.08083 0.00072 –
BHD 5.9e−05 0.43571 0.01599 0.91532

Parkinson

HMN 0.00021 – – –
LGC 0.61845 0.03770 – –
SVR 0.03770 0.61845 0.61845 –
BHD 1.5e−07 0.61845 0.00021 0.03770

White Wine

HMN 0.0248 – – –
LGC 0.6184 0.5261 – –
SVR 3.5e−06 0.2109 0.0022 –
BHD 3.0e−05 0.4357 0.0101 0.9932

Red Wine

HMN 0.03770 – – –
LGC 0.61845 0.61845 – –
SVR 7.7e−07 0.08083 0.00072 –
BHD 5.9e−05 0.43571 0.01599 0.91532

Airfoil

HMN 0.0377 – – –
LGC 0.6184 0.6184 – –
SVR 0.2758 0.9153 0.9800 –
BHD 3.5e−06 0.1571 0.0022 0.0160

Bike Sharing

HMN 0.61845 – – –
LGC 0.61845 0.03770 – –
SVR 0.03770 0.61845 0.00021 –
BHD 0.00021 0.03770 1.5e−07 0.61845

3D Road Network

HMN 0.03770 – – –
LGC 0.61845 0.61845 – –
SVR 0.61845 0.00021 0.03770 –
BHD 0.03770 1.5e−07 0.00021 0.61845

Million Song Datasets

HMN 0.03770 – – –
LGC 0.61845 0.61845 – –
SVR 0.03770 1.5e−07 0.00021 –
BHD 0.61845 0.00021 0.03770 0.61845

Online Retail Datasets

HMN 1.5e−05 – – –
LGC 0.3513 0.0248 – –
SVR 0.0022 0.7899 0.3513 –
BHD 0.4357 0.0160 0.9999 0.2758

but not its performance wrt. SVR and LGC. In that dataset, HD
outperformed all methods and is significantly different to them in
terms of accuracy. With respect to the Advertisement and Boston
Housing datasets, both SVR and BHD are significantly different
in performance to HD and LGC, and between them, they are not
significantly different. Whereas in the Million Song Datasets, SVR
is significantly different to all other methods. We conjecture that
this data must have strong linear relationships with the target
value, which is better captured by SVR.
Q3: Comparison with non-label propagation algorithms Apart
rom the state of the art label propagation algorithm, we also
ompared the accuracy of the BHD with other non-label prop-
gation algorithms, namely: Multi-scheme semi-supervised re-
ression approach (MSSRA), [57,85], Semi-Supervised Random
orest [86], Co-Training style semi-supervised regression COREG,
-Nearest Neighbor (KNN) regression, and Linear regression. The
esult of the comparison is shown in Table 7.

We observed that in Boston Housing, Parkinson, White Wine,
nd Red Wine data MSSRA outperformed all the other methods.
owever, our BHD outperforms in Advertisement and Online
etail data. It is also clear from the table that there is no single
ethod that beats all the other methods. In the majority of
ases, MSSRA is performing better. One of the reasons for that
10
is MSSRA is training on the arbitrary number of regressors whose
predictions are filtered through a minimum range criterion for
distinguishing the most accurate regressor to apply in the test
sets. However, other methods only rely on a single regressor
function. One of the caveats of MSSRA is that it trains multiple
regressors, which might be computationally expensive to handle
large datasets without running in multiple core machines.
Q4: Proportion To demonstrate the performance of all the al-
gorithms, we used different percentages of the labeled data in
training sets ranging from 10% to 90%. For each percentage of the
labeled data, we ran 10 Fold cross-validation. The performance of
the algorithm in different datasets is shown in Table 8.

We observe that SVR with linear kernel performed quite well
regardless the fraction of labels for ‘‘Advertisement’’, ‘‘Boston
housing’’ and ‘‘Million songs’’ datasets. One of the reasons for
that is a linear association between predictors and target vari-
ables which is better captured by SVR than other graph-based
label propagation methods. Another important observation about
SVR is that with more labeled data its performance improved in
comparison to the graph based methods particularly for White
and Red wine datasets. It may be due to adding more labeled data
decreases the marginal error in SVR which help to improve the
predictions which is being trained on more examples.

Our BHD method performed better in ‘‘Parkinson’’, ‘‘Airfoil’’,
‘‘Bike sharing’’, ‘‘3D Road network’’ in all the label proportion.
Whereas using fewer labeled training data in ‘‘Red wine’’ 10%
and ‘‘White wine’’ (10%,20%,30% and 40%) BHD outperformed the
other methods. In a ‘‘Million Song Datasets’’ BHD outperform to
all the graph-based method by using only 10%, 20%, 30% and
40% labeled dataset. It means that BHD makes use of the graph
structure to exploit the information of unlabeled data for the
regression problem and improves the performance.

In an ‘‘Online retail’’ datasets, we observed that the HD per-
formed better than rest of the algorithms regardless the fraction
of labels. The heat diffusion has the property that the weights
decay faster and it penalizes more heavily the shorter paths
keeping the heat in a local neighborhood. This property may be
feasible for this datasets which might have influence for better
prediction than other algorithms.
Q5: Speed We performed the run time performance of the al-
gorithm across all our regression datasets. Table 9 shows the
computational time for the algorithms. We observed that in all
the datasets SVR outperforms the state of the art methods. It may
be due to the following reasons: (i) SVR with linear kernel does
not require to construct graph from the data points which saves
the extra computational time unlike other graph based method.
(ii) Furthermore, training SVR with a linear kernel requires only
one parameter (regularization parameter) to be optimized. On
the other hand, some of the graph-based propagation methods
require to do grid search to find optimum parameters which
might have consume more computation time.
Q6: Features In this experiment, we assess the performance of
BHD in various artificial datasets by varying features from [5, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100]. For each feature, we performed
10-fold cross-validation by dividing the data into 10% for training
and 90% for testing and record the average RMSE score.

From Fig. 5, we observe that there are marginal changes in the
RMSE when we change the number of features. In a simulated
regression data (red curve (SRD)), changing the features from 5
to 10, we see a slight reduction of RMSE. It is maybe the fact
that the features we added might have contributed to improve
the predictions. Whereas, when we increase the features > 40
in LR, we do not see much reduction in RMSE. As we increase
the number of irrelevant features, the signal in the data becomes
weaker and has no contribution towards prediction. In such a

case, we can reduce the number of irrelevant features by using
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Advertisement Boston Housing Parkinson White Wine Red Wine Airfoil Self
Noise

Bike Sharing 3D Road
Network

Million Song Online Retail

MSSRA 5.42 ± 0.46 7.76 ± 0.01 3.62 ± 0.51 0.58 ± 0.52 0.63 ± 0.45 12.05 ± 0.14 147.65 ± 0.42 29.12 ± 0.87 10.11 ± 0.42 149.21 ± 19.02
Random Forest 5.48 ± 0.14 10.99 ± 0.41 10.23 ± 0.58 1.15 ± 0.45 1.01 ± 0.24 7.81 ± 0.18 155.90 ± 0.81 17.78 ± 0.01 9.38 ± 0.01 143.66 ± 19.02
KNN regression 5.65 ± 0.14 9.78 ± 0.24 8.37 ± 0.27 1.25 ± 0.35 1.10 ± 0.42 6.77 ± 0.47 150.81 ± 0.43 3.65 ± 0.04 12.01 ± 0.48 169.91 ± 18.86
Linear regression 3.27 ± 0.32 38.67 ± 0.15 38.67 ± 0.24 0.61 ± 0.22 1.11 ± 0.14 8.29 ± 0.15 180.81 ± 0.21 18.37 ± 0.01 85.55 ± 0.01 143.78 ± 9.03
COREG 6.36 ± 0.49 16.34 ± 0.21 4.11 ± 0.29 0.78 ± 0.82 0.90 ± 0.14 5.57 ± 0.58 135.41 ± 0.25 29.31 ± 0.51 80.55 ± 0.01 150.55 ± 0.01
BHD 5.42 ± 0.18 11.12 ± 0.33 10.61 ± 0.03 1.23 ± 0.01 1.11 ± 0.01 11.33 ± 0.1 179.98 ± 0.95 26.31 ± 0.51 70.87 ± 0.11 140.45 ± 12.32
Table 8
Performance of the different state of the art algorithms with different label proportions.
Datasets Algorithms 10% 20% 30% 40% 50% 60% 70% 80% 90%

Advertisement

HMN 12.22 ± 0.51 10.31 ± 0.43 9.05 ± 0.67 7.98 ± 0.65 7.13 ± 0.78 6.62 ± 0.88 5.27 ± 0.67 5.27 ± 0.88 5.34 ± 1.56
LGC 14.06 ± 0.20 13.15 ± 0.16 12.26 ± 0.34 11.22 ± 0.48 10.32 ± 0.67 9.54 ± 0.68 7.99 ± 0.88 7.45 ± 0.96 6.88 ± 1.37
HD 14.44 ± 0.16 13.89 ± 0.19 13.33 ± 0.26 12.65 ± 0.41 12.09 ± 0.51 11.58 ± 0.59 10.31 ± 0.85 10.03 ± 0.82 9.50 ± 1.17
SVR 5.32 ± 1.52 4.50 ± 0.99 4.24 ± 1.10 4.20 ± 0.95 4.19 ± 1.19 4.18 ± 1.70 4.18 ± 2.50 4.10 ± 1.27 4.05 ± 2.06
BHD 5.42 ± 0.17 5.25 ± 0.18 5.22 ± 0.20 5.17 ± 0.37 5.12 ± 0.49 5.06 ± 0.52 5.05 ± 0.55 5.03 ± 0.66 5.01 ± 1.07

Boston housing

HMN 22.24 ± 0.53 20.83 ± 0.52 19.97 ± 0.52 18.77 ± 0.72 18.00 ± 0.68 17.29 ± 0.95 16.63 ± 1.09 16.04 ± 1.11 15.11 ± 1.72
LGC 23.40 ± 0.28 22.51 ± 0.37 21.83 ± 0.41 20.88 ± 0.63 20.19 ± 0.75 19.40 ± 1.02 18.58 ± 1.19 17.84 ± 1.16 16.68 ± 1.57
HD 23.55 ± 0.23 22.80 ± 0.37 22.21 ± 0.37 21.33 ± 0.57 20.71 ± 0.75 19.92 ± 1.01 19.22 ± 1.13 18.35 ± 1.24 17.32 ± 1.34
SVR 8.89 ± 2.12 7.86 ± 1.18 7.39 ± 0.63 7.08 ± 1.31 7.01 ± 1.63 6.84 ± 5.03 6.66 ± 1.54 6.49 ± 1.59 6.51 ± 2.23
BHD 11.40 ± 0.21 11.24 ± 0.29 11.17 ± 0.36 11.03 ± 0.55 10.90 ± 0.57 10.77 ± 0.75 10.48 ± 0.96 10.35 ± 0.89 10.20 ± 1.05

Parkinson

HMN 10.68 ± 0.05 10.61 ± 0.04 10.59 ± 0.05 10.57 ± 0.06 10.58 ± 0.09 10.55 ± 0.11 10.54 ± 0.12 10.60 ± 0.13 10.55 ± 0.22
LGC 28.34 ± 0.07 25.77 ± 0.10 23.30 ± 0.10 20.90 ± 0.15 18.62 ± 0.14 16.47 ± 0.15 14.60 ± 0.21 13.16 ± 0.17 12.07 ± 0.29
HD 29.25 ± 0.05 27.55 ± 0.08 25.91 ± 0.09 24.26 ± 0.13 22.65 ± 0.13 21.03 ± 0.16 19.46 ± 0.21 18.03 ± 0.21 16.47 ± 0.35
SVR 10.89 ± 0.08 10.77 ± 0.05 10.76 ± 0.07 10.70 ± 0.09 10.71 ± 0.10 10.64 ± 0.13 10.65 ± 0.16 10.68 ± 0.14 10.63 ± 0.32
BHD 10.64 ± 0.04 10.63 ± 0.04 10.63 ± 0.05 10.62 ± 0.06 10.62 ± 0.08 10.62 ± 0.11 10.61 ± 0.12 10.61 ± 0.13 10.60 ± 0.21

White wine

HMN 2.66 ± 0.06 1.95 ± 0.05 1.75 ± 0.08 1.68 ± 0.08 1.62 ± 0.08 1.56 ± 0.09 1.47 ± 0.09 1.43 ± 0.13 1.39 ± 0.17
LGC 9.63 ± 0.01 8.67 ± 0.01 7.74 ± 0.02 6.81 ± 0.01 5.93 ± 0.02 5.07 ± 0.02 4.28 ± 0.04 3.62 ± 0.08 3.16 ± 0.11
HD 9.98 ± 0.01 9.36 ± 0.01 8.76 ± 0.02 8.15 ± 0.02 7.55 ± 0.02 6.93 ± 0.02 6.31 ± 0.04 5.73 ± 0.03 5.15 ± 0.05
SVR 1.64 ± 0.49 1.61 ± 0.15 1.60 ± 0.34 1.59 ± 1.31 1.58 ± 0.28 1.57 ± 0.57 1.36 ± 0.41 1.35 ± 0.65 1.32 ± 0.49
BHD 1.23 ± 0.01 1.22 ± 0.01 1.21 ± 0.01 1.20 ± 0.01 1.20 ± 0.01 1.20 ± 0.02 1.19 ± 0.03 1.19 ± 0.05 1.18 ± 0.05

Red wine

HMN 2.46 ± 0.20 1.92 ± 0.19 1.70 ± 0.14 1.65 ± 0.12 1.60 ± 0.13 1.47 ± 0.12 1.49 ± 0.15 1.45 ± 0.21 1.45 ± 0.37
LGC 9.56 ± 0.02 8.64 ± 0.03 7.75 ± 0.03 6.87 ± 0.03 6.01 ± 0.03 5.19 ± 0.04 4.44 ± 0.06 3.78 ± 0.10 3.31 ± 0.21
HD 9.87 ± 0.02 9.27 ± 0.03 8.67 ± 0.02 8.07 ± 0.03 7.47 ± 0.03 6.88 ± 0.06 6.29 ± 0.08 5.68 ± 0.06 5.11 ± 0.15
SVR 1.64 ± 0.39 1.27 ± 0.25 1.16 ± 0.14 1.33 ± 0.36 1.39 ± 0.40 1.23 ± 0.33 1.31 ± 0.41 1.19 ± 0.23 1.28 ± 0.30
BHD 1.11 ± 0.01 1.11 ± 0.02 1.10 ± 0.03 1.09 ± 0.03 1.09 ± 0.03 1.09 ± 0.05 1.09 ± 0.07 1.09 ± 0.10 1.08 ± 0.11

Airfoil

HMN 52.06 ± 5.59 27.77 ± 3.61 20.80 ± 2.40 15.96 ± 3.46 14.57 ± 3.37 13.48 ± 2.65 12.62 ± 2.45 11.83 ± 2.37 10.75 ± 3.66
LGC 114.24 ± 0.16 103.46 ± 0.33 92.82 ± 0.31 81.84 ± 0.42 71.34 ± 0.67 61.33 ± 0.77 51.15 ± 0.95 41.56 ± 1.20 32.30 ± 1.48
HD 115.44 ± 0.17 105.80 ± 0.36 96.42 ± 0.44 86.65 ± 0.46 77.29 ± 0.73 68.66 ± 0.89 59.46 ± 1.09 51.04 ± 1.67 43.00 ± 1.52
SVR 124.95 ± 0.22 122.66 ± 0.85 120.02 ± 0.51 120.85 ± 0.52 107.70 ± 0.46 105.42 ± 0.17 100.42 ± 0.17 87.31 ± 0.85 76.71 ± 0.07
BHD 11.33 ± 0.15 11.32 ± 0.28 11.29 ± 0.37 11.29 ± 0.45 11.27 ± 0.64 11.25 ± 0.81 11.10 ± 1.02 10.83 ± 0.96 10.70 ± 1.19

Bike sharing

HMN 244.57 ± 0.84 227.65 ± 1.80 210.56 ± 2.38 193.10 ± 2.68 175.49 ± 3.83 158.91 ± 3.67 139.37 ± 3.18 118.39 ± 4.43 95.06 ± 5.49
LGC 259.73 ± 0.41 257.94 ± 1.20 255.62 ± 1.51 253.04 ± 1.80 250.14 ± 1.81 247.94 ± 2.12 245.51 ± 2.53 242.94 ± 2.68 240.58 ± 4.80
HD 253.12 ± 0.70 244.55 ± 1.43 235.18 ± 1.85 225.51 ± 2.17 215.36 ± 2.72 205.70 ± 2.93 195.19 ± 2.69 183.77 ± 2.87 171.61 ± 4.18
SVR 185.26 ± 0.82 184.75 ± 1.59 183.43 ± 1.85 182.21 ± 1.83 180.80 ± 1.61 179.66 ± 1.99 179.06 ± 2.59 178.48 ± 3.29 177.59 ± 4.61
BHD 179.98 ± 0.68 177.39 ± 0.53 171.63 ± 0.83 170.77 ± 1.32 169.45 ± 1.84 163.17 ± 2.10 156.65 ± 2.37 150.09 ± 3.00 142.72 ± 3.38

3D Road network

HMN 29.26 ± 0.05 29.47 ± 0.08 29.54 ± 0.08 29.52 ± 0.08 29.48 ± 0.09 29.39 ± 0.08 29.31 ± 0.08 29.24 ± 0.10 29.07 ± 0.15
LGC 27.53 ± 0.03 26.10 ± 0.03 24.71 ± 0.04 23.34 ± 0.04 22.00 ± 0.04 20.70 ± 0.05 19.45 ± 0.05 18.26 ± 0.07 17.12 ± 0.07
HD 27.16 ± 0.04 25.38 ± 0.03 23.65 ± 0.04 21.94 ± 0.05 20.30 ± 0.05 18.72 ± 0.05 17.22 ± 0.06 15.85 ± 0.08 14.58 ± 0.09
SVR 28.86 ± 0.07 25.47 ± 0.41 23.42 ± 0.50 19.42 ± 0.38 19.37 ± 0.59 19.36 ± 0.42 19.27 ± 0.22 19.05 ± 0.51 18.01 ± 0.35
BHD 26.30 ± 0.51 23.69 ± 0.08 21.16 ± 0.04 18.72 ± 0.05 16.44 ± 0.05 14.39 ± 0.06 12.64 ± 0.07 11.37 ± 0.10 10.71 ± 0.12

Million song

HMN 103.55 ± 3.98 92.74 ± 3.07 86.25 ± 1.74 82.45 ± 0.85 80.29 ± 0.64 78.96 ± 0.28 78.22 ± 0.12 77.74 ± 0.13 77.38 ± 0.13
LGC 73.09 ± 0.01 69.18 ± 0.01 65.47 ± 0.02 62.00 ± 0.03 58.83 ± 0.03 55.98 ± 0.03 53.54 ± 0.04 51.53 ± 0.11 50.03 ± 0.11
HD 71.89 ± 0.01 66.89 ± 0.01 62.24 ± 0.03 58.02 ± 0.04 54.36 ± 0.03 51.33 ± 0.04 49.10 ± 0.05 47.73 ± 0.14 47.30 ± 0.16
SVR 15.80 ± 4.49 15.52 ± 2.43 15.32 ± 2.58 15.01 ± 9.51 14.51 ± 8.08 13.59 ± 7.07 12.55 ± 2.02 11.55 ± 8.18 10.11 ± 5.08
BHD 70.88 ± 0.01 65.86 ± 0.01 61.91 ± 0.01 58.82 ± 0.02 56.46 ± 0.02 54.67 ± 0.02 53.36 ± 0.05 52.43 ± 0.06 51.83 ± 0.08

Online retail

HMN 145.59 ± 8.90 146.26 ± 11.83 143.56 ± 13.73 139.44 ± 13.01 137.71 ± 16.07 138.96 ± 12.95 139.66 ± 17.85 139.80 ± 40.12 123.42 ± 56.20
LGC 139.99 ± 11.52 136.36 ± 15.16 129.23 ± 14.95 120.61 ± 17.41 115.62 ± 18.38 112.09 ± 16.62 109.44 ± 19.47 111.67 ± 33.48 98.43 ± 35.49
HD 138.88 ± 12.15 134.54 ± 15.82 125.92 ± 15.59 115.28 ± 18.87 109.44 ± 20.28 104.53 ± 18.40 100.14 ± 20.66 101.73 ± 33.01 88.92 ± 30.10
SVR 143.87 ± 9.01 142.14 ± 12.79 139.72 ± 13.59 137.33 ± 14.13 134.07 ± 14.66 135.02 ± 12.87 138.14 ± 16.79 139.26 ± 39.66 123.54 ± 56.14
BHD 140.47 ± 12.31 138.68 ± 14.93 130.53 ± 16.82 119.93 ± 17.85 117.41 ± 20.78 113.96 ± 16.83 109.50 ± 21.07 108.42 ± 33.07 94.95 ± 31.18
Table 9
Run time comparisons between state of the art algorithms on various regression datasets. s and m refers to seconds and minutes respectively.

Advertisement Boston
Housing

Parkinson White
Wine

Red
Wine

Airfoil Self
Noise

Bike
Sharing

3D Road
Network

Million Song
Datasets

Online Retail
Datasets

HMN Zhu
et al. [15]

0.011 s 0.081 s 20.86 s 11.4 s 1.06 s 0.30 s 23.46 s 25.46 s 28.16 s 34.16 s

LGC Zhou et
al.[22]

0.0064 s 0.053 7.96 s 5.61 s 0.56 s 0.12 s 0.28 s 30.28 s 25.46 s 27.25s

HD Yang
et al. [12]

0.0067 s 0.03 s 6.72 s 4.28 s 0.40 s 0.25 s 26.02s 28.02 s 30.12 s 31.12 s

SVR Drucker
et al. [81]

0.0012 s 0.0035 s 0.014 s 0.04 s 0.13 s 0.0075 s 0.25 s 10.14 s 14.14 s 22.78 s

BHD 0.015 s 0.10 s 7.00 s 4.69 s 0.50 s 0.39 s 67.44 s 28.36 m 33.31 m 41.40 m
a dimensional reduction method and construct the graph us-
ing only relevant features. In Friedman1 (F1) data represented
by the purple line, we see that adding features 5,10, 20 and
30 has helped to reduce RMSE. It means the added feature is
reasonable and helps to strengthen the prediction performance.
11
However, beyond 30 features, the RMSE score did not reduce. It
means the feature added is irrelevant, and added features have
no contribution towards prediction.

In geometrical manifold data like a spiral (blue line (SD))
and swiss roll (sky blue (SRL)) are created using three crucial
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Table 10
Performance of BHD using fully connected and kNN graph based on Time and RMSE. s and m refers to seconds and
minutes respectively.
Datasets Time taken using

fully connected
graph

Time taken using
kNN graph

RMSE fully
connected graph

RMSE kNN graph

Advertisement 0.01 s 0.00756 s 5.42 ± 0.18 6.30 ± 0.30
Boston Housing 0.10 s 0.022133 s 11.12 ± 0.33 12.12 ± 0.85
Parkinson’s 7.00 s 1.56 s 10.61 ± 0.03 10.88 ± 0.04
White Wine 4.69 s 1.21 s 1.23 ± 0.01 1.31 ± 0.03
Red Wine 0.50 s 0.13 s 1.11 ± 0.01 1.13 ± 0.01
Airfoil 0.39 s 0.26 s 11.33 ± 0.1 10.16 ± 0.10
Bike Sharing 67.44 s 7.24 s 179.98 ± 0.95 179.90 ± 0.38
Road Network 28.36 m 2.65 s 26.31 ± 0.51 26.99 ± 0.05
Million Song Datasets 33.3 m 5.8 s 70.87 ± 0.11 69.67 ± 0.01
Online Retail 41.40 m 5.6 s 140.45 ± 12.32 139.45 ± 11.11
Fig. 5. Performance of BHD on artificial datasets by varying features. X-axis is
he number of features and Y -axis is the average root mean square error using
each features in a 10 fold cross validation setting. SD: Spiral Data (blue); SU:
Sparse Uncorrelated (green); SRD: Simulated Regression Data (red); SRL: Swiss
Roll Data (sky blue); F1:Friedman 1 (pink); F2: Friedman2 (yellow).

features. While adding irrelevant features in a spiral dataset,
there is not much of a change in RMSE. Whereas, in SRL, we see
RMSE marginally increased by adding the additional irrelevant
features making the signal in the data weaker. We also observe a
slight decrease in RMSE after features > 40 and remain constant
throughout the additional irrelevant features. One of the reasons
for this variation of RMSE between SRL and SD might be their
topological difference, which might have affected their prediction
performances.
Q7:Performance We assess the performance of BHD in terms
of time and accuracy by means of two different generic graph
construction methods: (i) fully connected graph using Gaussian
Kernel; and (ii) k-NN graph. Table 10 shows the results of the
comparison using 10% labeled data in a 10 Fold cross validation
settings. In our datasets, we observed that in a fully connected
graph, the computation cost increases when the size of the graph
also increases. We can see for 3D Road Network, Million Song,
and Online Retail datasets the computation time increased very
rapidly. It is due to the cubic complexity experienced by an algo-
rithm by using a fully connected graph. However, if we replace
the fully connected by the k-NN graph, we can see that the
computation time is reduced significantly.

The parameter k controls the density of the graph. For a small
k, the number of edges in the graph will be small, which allows
us to speed up the computational time. Small k may result in
disconnected graphs, although it is not a problem for BHD if each
connected component has some labeled points. We chose k by
ross-validation of training nodes. We also observe from Table 10
hat it is almost similar or a marginal difference in accuracy be-
ween these two graph-construction methods. In Advertisement,
12
Boston Housing, Parkinson’s, White Wine, Red Wine, and 3D Road
Network datasets, the fully connected graph has outperformed by
a small margin to k-NN. It may be due to effective weight learning
of the edges between the nodes using a fully connected graph.
The graph needs to be weighted so that similar nodes have large
edge weights between them. The fully connected graph captures
this property with the expense of high computation cost than a
k-NN graph.

7. Conclusion

We presented the application of boundary heat diffusion in
an SSR problem. We applied these algorithms in different do-
mains, such as business, biomedical, physical, and social domain
data. The main idea of our method is to assign a node with
the initial temperatures. The initialized temperatures act as the
boundary and diffuse the heat in the network. The advantages of
our algorithm are:

1. Accuracy: it outperforms or equals the state of the art algo-
rithms in label propagation on graph-based semi-
supervised regression tasks: [Tables 4, 8].

2. Parameter Free: It has just one parameter with the effective
default value 1. [Fig. 4].

We employed BHD for the real-valued labels in a graph con-
structed from manifold data. The method outperformed some of
the states of the art methods, but in some data, the support vector
regression (SVR) method performed better. One of the reasons
for this might be a strong linear association between an outcome
variable and predictors, and SVR with linear kernel captures this
better than BHD. One way to handle this problem is to construct
a better graph from the manifold data. We used the Gaussian
kernel, which provided us with a fully connected graph. Of course,
better graphs can be constructed if one can define better distance
functions, connectivity, and edge weights. It is another critical
challenge in a graph-based semi-supervised regression problem.

One of the significant strengths of the heat diffusion with
boundary condition is computational complexity. We showed
that the boundary-based heat diffusion could be computed using
discrete approximation. It will have an advantage in the scal-
ability issues in a large graph constructed using k-NN method
because the complexity is linear in the number of edges in the
graph. This property makes the method suitable for bigger graph
regression problems. We believe that our proposed approach
provides a simple but effective method to estimate the real values
for performing semi-supervised graph-based regression. In our
future work, we would like to extend our BHD method to a
semi-supervised classification problem in different label correla-
tion problems such as homogeneous, heterogeneous, and mixed

labeled prediction tasks.
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