
HAL Id: hal-03659142
https://hal.science/hal-03659142v1

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient distributed path computation on RDF
knowledge graphs using partial evaluation

Qaiser Mehmood, Muhammad Saleem, Alokkumar Jha, Mathieu D’aquin

To cite this version:
Qaiser Mehmood, Muhammad Saleem, Alokkumar Jha, Mathieu D’aquin. Efficient distributed path
computation on RDF knowledge graphs using partial evaluation. World Wide Web, 2022, 25 (2),
pp.1005-1036. �10.1007/s11280-021-00965-5�. �hal-03659142�

https://hal.science/hal-03659142v1
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/355710532

Efficient Distributed Path Computation on RDF Knowledge Graphs Using

Partial Evaluation

Article in World Wide Web · March 2022

DOI: 10.1007/s11280-021-00965-5

CITATIONS

0
READS

156

4 authors:

Some of the authors of this publication are also working on these related projects:

MK:Smart View project

Discourse Analysis for Automatic Fake News Classification View project

Qaiser Mehmood

National University of Ireland, Galway

36 PUBLICATIONS 411 CITATIONS

SEE PROFILE

Muhammad Saleem

University of Leipzig

97 PUBLICATIONS 1,180 CITATIONS

SEE PROFILE

Alokkumar Jha

Weill Cornell Medical College

72 PUBLICATIONS 1,236 CITATIONS

SEE PROFILE

Mathieu d'Aquin

National University of Ireland, Galway

203 PUBLICATIONS 3,109 CITATIONS

SEE PROFILE

All content following this page was uploaded by Muhammad Saleem on 28 October 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/355710532_Efficient_Distributed_Path_Computation_on_RDF_Knowledge_Graphs_Using_Partial_Evaluation?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/355710532_Efficient_Distributed_Path_Computation_on_RDF_Knowledge_Graphs_Using_Partial_Evaluation?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MKSmart-5?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Discourse-Analysis-for-Automatic-Fake-News-Classification?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qaiser-Mehmood-3?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qaiser-Mehmood-3?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Ireland_Galway?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qaiser-Mehmood-3?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad-Saleem-76?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad-Saleem-76?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Leipzig?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad-Saleem-76?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alokkumar-Jha?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alokkumar-Jha?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Weill-Cornell-Medical-College?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alokkumar-Jha?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu-Daquin?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu-Daquin?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Ireland_Galway?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu-Daquin?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad-Saleem-76?enrichId=rgreq-1e3d39df95d77caa7d0b90d7ab613aa1-XXX&enrichSource=Y292ZXJQYWdlOzM1NTcxMDUzMjtBUzoxMDgzODcwODU0MjkxNDY0QDE2MzU0MjYzNTc1MDI%3D&el=1_x_10&_esc=publicationCoverPdf

Noname manuscript No.
(will be inserted by the editor)

Efficient Distributed Path Computation on RDF
Knowledge Graphs Using Partial Evaluation

Qaiser Mehmood · Muhammad Saleem ·
Alokkumar Jha · and Mathieu d’Aquin

Received: date / Accepted: date

Abstract A key property of Linked Data is the representation and publica-
tion of data as interconnected labelled graphs where different resources linked
to each other form a network of meaningful information. Searching these im-
portant relationships between resources – within single or distributed graphs –
can be reduced to a pathfinding or navigation problem, i.e., looking for chains
of intermediate nodes. SPARQL1.1, the current standard query language for
RDF-based Linked Data defines a construct – called Property Paths (PPs) –
to navigate between entities within a single graph. Since Linked Data tech-
nologies are naturally aimed at decentralised scenarios, there are many cases
where centralising this data is not feasible or even not possible for querying
purposes. To address these problems, we propose a SPARQL PP-based graph
processing approach – dubbed DpcLD – where users can execute SPARQL
PP queries and find paths distributed across multiple, connected graphs ex-
posed as SPARQL endpoints. To execute the distributed path queries we im-
plemented an index-free, cache-based query engine that communicates with
a shared algorithm running on each remote endpoint, and computes the dis-
tributed paths. In this paper, we highlight the way in which this approach
exploits and aggregates partial paths, within a distributed environment, to

Q. Mehmood
Data Science Institute, NUI Galway
E-mail: qaiser.mehmood@insight-centre.org

M. Saleem
AKSW, Leipzig
E-mail: muhammad.saleem@informatik.uni-leipzig.de

Alokkumar Jha
Stanford University
E-mail: alokjha@stanford.edu

M. d’Aquin
Data Science Institute, NUI Galway
E-mail: mathieu.daquin@insight-centre.org

2 Qaiser Mehmood et al.

produce complete results. We perform extensive experiments to demonstrate
the performance of our approach on two datasets: One representing 10 million
triples from the DBPedia SPARQL benchmark, and another full benchmark
dataset corresponding to 124 million triples. We also perform a scalability test
of our approach using real-world genomics datasets distributed across multi-
ple endpoints. We compare our distributed approach with other distributed
and centralized pathfinding approaches, showing that it outperforms other dis-
tributed approaches by orders of magnitude, and provides a good trade-off for
cases when the data cannot be centralised.

Keywords Distributed Graphs · Reachability · Federated Paths · Graph
Traversal · Path Caching · Path Query · RDF · SPARQL 1.1 Property Path.

1 Introduction

In the past decade, graphs have become the defacto data model in some of
the popular application domains such as bioinformatics, social, and road net-
works. One of the most used variants of the graph model is the labeled graph
where vertices and edges are given names. In the context of Semantic Web
technologies, this graph representation is called Linked Data, expressed us-
ing RDF (Resource Description Format), where entities are given their names
with Uniform Resource Identifiers (URIs) which uniquely identify each entity.
A plethora of such information, corresponding to various domains1, exists over
the Web and is exposed as RDF knowledge bases. Some of the prominent ex-
amples of such knowledge bases or datasets are YAGO 2, DBPedia 3 and
Bio2RDF 4.

This large collection of interlinked and distributed data over the web has
created new challenges in the context of data management, data integration
and knowledge discovery. One of the key challenges is querying and analysing
relevant information from such large-scale knowledge bases. For instance, in
the context of graph analysis, navigational queries are at the basis of core tasks
and processes. Several approaches have been proposed to perform path queries,
with some supporting declarative queries, while others are based on imperative
constructs. Moreover, some approaches work in a distributed manner while
others in a central way. For instance, SPARQL1.1 5, which is a declarative
query language, introduced a feature called Property Paths (PPs). Using PPs,
a user can check the existence of paths between two entities within a single
graph. However, this variant is not very expressive, does not capture some of
the important properties of path finding problems (e.g., path enumeration, K
paths), and has performance issues [3] when dealing with large-scale data. To

1 LOD Cloud: https://lod-cloud.net/
2 https://yago-knowledge.org/
3 https://www.dbpedia.org/
4 https://bio2rdf.org/
5 https://www.w3.org/TR/sparql11-query/

Title Suppressed Due to Excessive Length 3

address these limitations, there has been an extensive amount of work done
either for SPARQL path query extensions [33,2,35,61,21] or to efficiently find
the paths using compressed data models [61,21].

Many state-of-the-art RDF-based path finding approaches [25,61,33,2,35,
61,21] work on single graph where complete RDF data is loaded into a single
machine. However, due to autonomous and distributed, and linked nature of
the RDF data, such approaches cannot exploit the full potential of the Linked
Data. For example, the Bio2RDF data portal6 provides a catalog of a total of
35 RDF datasets from health care domain. These datasets are interlinked and
heterogeneous in nature. Practitioners often need to find the paths between
different entities that can lead to various datasets [41]. In such cases, the single
graph-based path finding approaches cannot be applied. Such challenges have
justified the need for novel approaches for path queries to work in a distributed
environment.

There have been some work done for distributed path queries. For example,
ecosystems such as Hadoop [65] or Pregel [40] have become defacto standards
for such tasks and are capable of navigating the path queries in a distributed
manner. However, these systems are developed for customised data distribu-
tion within a controlled environment, and hence in the context of Linked Data
such systems are not considered purely heterogeneous.

Most of systems (e.g., [22]) that are built on top of Hadoop ecosystems sys-
tems are categorised as homogeneous distributed systems. That is, they work
in such environment where every distributed system or database must have the
same software and configurations. Furthermore, the partition and distribution
of data must follow certain procedures or constraints. Such systems are not fea-
sible in many application where the partitioning strategy is not controlled by
the distributed RDF system itself. There may be some administrative require-
ments that influence the data partitioning. For example, in some applications,
the RDF knowledge bases are partitioned according to topics (i.e., different
domains) or are partitioned according to different data contributors. On the
other side, Pregel’s vertex-centric computing model has been widely adopted
in most of the recent distributed graph computing systems [19,59,74,73,44]
because of being fault tolerant and also efficient as compared to Hadoop-based
approaches. However, Pregel also suffered the aforementioned challenges that
is the controlled environment.

Although partial evaluation is a well studied concept [6,9,10], in the con-
text of SPARQL queries and Linked data, it has only recently been used [71,
36]. One of the most well-know challenge with partial evaluation is the large
number of intermediate results. Moreover, complex queries suffer performance
bottleneck [41] when evaluating on large-scale distributed RDF graphs. In the
context of distributed paths, to assemble these partial paths into complete
paths is also a challenge. There are some other approaches [41,72,24] exist
which are capable of computing distributed paths over RDF data. However,
some of these approaches (e.g., [41]) require a pre-computed up-to-date index.

6 Bio2RDF data portal: https://download.bio2rdf.org/files/release/3/release.html

4 Qaiser Mehmood et al.

Hence, path completeness is only assured if the index is up-to-date according
to the current status of the underlying distributed RDF datasets. Further-
more, some of these approaches, e.g., [24], are unable to perform lookups for
non-dereferenceable URIs [68]. Hence, they may retrieve empty or incomplete
results. Note that our previous work [69] shows that around 43% of the URIs of
more than 660K RDF datasets from LODStats [16] and LODLaundromat [5]
are non-dereferenceable.

In this paper, we address these challenges and limitations, exist in state-
of-the-art approaches. Our contributions are as follows:

i) We propose an efficient path finding approach – using partial evaluations [29] –
in distributed environments. Our solution allows users to find K number
of paths globally.

ii) We proposed an efficient way to assemble partial paths to get the final K
numbers of complete paths.

iii) Our approach is easy to adopt, and unlike the Hadoop or Pregel ecosystems,
it does not require complex configuration and data management.

iv) Our approach is index-free, efficient and does not require dereferenceable
URIs. Therefore, it is agnostic of the changes in the underlying distributed
datasets.

v) We proposed a cache assisted technique that leads to significant perfor-
mance improvement by avoiding duplicate requests and filtering irrelevant
data sets for the given path query.

vi) We performed extensive experiments with synthetic and real-world data.
We compare our approach with local and remote systems that support
querying K paths. We measure the impact of complex queries in terms of
performance (i.e, query execution time) and memory consumption.

The structure of this paper is as follows: Section 2 revies the related work.
In Section 3 we present the preliminary definition to understand the related
terms. In Section 4, we then explain the architecture of the system and our
approach with a running example to make the core components easy to under-
stand. We provide an extensive evaluation both for synthetic and real-world
data, and also provide comparisons with state-of-the-art approaches (i.e., dis-
tributed and centralized). Finally, we present our conclusion and future work.

2 Related Work

In recent years, with the increasing availability of large graph datasets, execut-
ing complex queries or traversing large scale graphs has shown to be impracti-
cal. This is particularly true when a single system is used with limited memory,
creating a bottleneck in the processing of large volumes of data. Therefore, to
process such data, there is a need to distribute it and execute queries in a
distributed manner with a high degree of parallelism. In contrast with the
centralised systems, distributed architectures are characterized as higher pro-
cessing capacity systems with large aggregated memory size. There are several

Title Suppressed Due to Excessive Length 5

distributed architectures and approaches, of which we discuss the relevant ones
to our work.

2.1 Hadoop-based approaches

To process big data, hadoop and its ecosystem have become the de-facto stan-
dard both in academia and industry. In the context of RDF graphs, there have
been numerous works (e.g., [27,32,47,48]) done on RDF data management us-
ing this platform. Surveys such as [30,75] talk about such approaches in details.
Many of them, for example [51,4] in path querying, follow the MapReduce
paradigm and use HDFS [54,27] as their underlying data structure to store
RDF triples. In the MapReduce paradigm, when a query is issued against such
systems, HDFS files are explored and scanned to find adjacent nodes, which
are then concatenated using the MapReduce join implementation (for more
details see [39]). Approaches which follow the MapReduce paradigm differ
mostly with respect to how the RDF data is stored and accessed from HDFS
files, and how many MapReduce jobs are used.

The MapReduce programming model The MapReduce programming model
was introduced by Google [13]. This model is scalable, and fault-tolerant and
new nodes can easily be added to the cluster. Furthermore, the data distribu-
tion and parallel processing of the jobs is handled automatically. Developers
do not need to take care of all these steps, therefore, they do not face the clas-
sical problems of data distribution (e.g., synchronization, network protocol,
and etc.) The advantages and benefits of this programming model has led to
a large number of applications built using it.

However, for most of the users this programming model is too low level:
It does not provide a declarative syntax to execute the tasks, and therefore,
even a simple computation has to be configured, and programmed, as Map
and Reduce steps. To overcome these limitations, there have been a number
of works done [45,43,28,62] to provide declarative query mechanisms on top
of the MapReduce process.

In the context of path queries, Martin et al [51] proposed an approach
named RDFPath; a path query processing method on large RDF graphs with
MapReduce. Their approach is inspired by XPath [8] and designed according
to the MapReduce model. A query in RDFPath is composed of a sequence of
location steps where the output of the ith location step is used as input of the
(i+1)th location step [51]. Conceptually, more edges and nodes are added by
each location step to the intermediate path and this path can be restricted by
applying filters. However, in this approach, the distance between two nodes and
shortest paths are only partially supported. Further, RDFPath only supports
paths of a fixed maximum length.

6 Qaiser Mehmood et al.

2.2 NoSQL-based approaches

Beside the hadoop ecosystem, there has also been work done related to RDF
graph query processing in HBASE 7. HBASE is a NoSQL distributed data
store. The work in [32] provides a criterion to store and query RDF triples in
HBASE. It is based on some permutations of subjects, predicates and objects
which build indices that are then stored in HBase. Trinity [64] is an other
example of NoSQL-based systems. Trinity is built on a distributed memory-
cloud, and model RDF data in its native format (i.e., entities as node and
relationships as edges). It allows SPARQL queries to be executed in an op-
timized way, and also support graph analytics (e.g., reachability) on RDF
data. Survey papers [60,11] highlight some prominent NoSQL databases, their
characteristics and usage for storing and querying RDF data.

Trinity [77] is also claimed to support random walks, regular expression and
reachability queries. Distributed NoSQL graph databases such as Neo4J [67]
and Stardog [66] are optimized for graph navigation features or path querying.

2.3 Partition-based approaches

The partition-based approaches [50,49,18,22,46,38,26,37] partition a large
RDF graph into several fragments and distribute those fragments at different
sites. Each remote site hosts its own centralized RDF storage and querying
mechanism. To answer a posed query, it is first decomposed into multiple
subqueries which are distributed across the sites. Each site answers the received
query locally, and results from different sites are then aggregated.

In [38], an RDF graph is partitioned into n fragments, and each fragment is
extended by including the N hop neighbors of boundary vertices. Their parti-
tioning strategy restricts query processing in such a way that each decomposed
subquery cannot be larger than N .

Partout [18] is an engine to query graph data which uses its own partitioned
strategy. It extends the concepts of minterm predicates and uses the results of
those predicates as its fragment units.

Lee et. al [26,37] in their approaches proposed a “vertex block” concept
where they define a partition unit as a vertex and its neighbors. They adopted
a set of heuristic rules for distribution of those vertex blocks. A query is trans-
formed into blocks and these blocks can be executed among all sites in parallel
and without any communication.

TriAD [22] adopted METIS [31], a multilevel graph partitioning technique
to divide the RDF graph into many partitions. Each partition is considered as
a unit and distributed among different sites. At each site, TriAD maintains six
large, in-memory vectors of triples, which correspond to all subject-predicate-
object permutations of triples. It also constructs a summary graph to maintain
the partitioning information.

7 http://hbase.apache. org

Title Suppressed Due to Excessive Length 7

2.4 Federated SPARQL query systems

SPARQL queries when run over multiple distributed heterogeneous SPARQL
endpoints are considered federated queries. In the context of Linked Data,
different repositories may be interconnected, and therefore provide a virtual
integration of multiple data sources. A common technique in query federation
is the precomputation of metadata for each SPARQL endpoint. Based on the
metatdata, the original query is decomposed into subqueries in a way that
each subquery is dispatched only to its relevant endpoint. On receiving answer
from each subquery, the results are aggregated or joined together to answer
the original query.

In [53], the metadata correspond to a service description that tells which
triple patterns (i.e., predicate) can be answered. SPLENDID [20] is a federated
system that uses Vocabulary of Interlinked Datasets (VOID) as the metadata
schema for describing endpoints. HiBISCuS [57] relies on capabilities to com-
pute the metadata. For each source, HiBISCuS defines a set of capabilities
which map the properties to their subject and object authorities.

The systems above are categorised as index-based, i.e. they rely on the
availability of an index of metadata about the federated endpoints. In contrast
to these, FedX [63] does not require any index or preprocessed catalogue, but
it sends ASK requests to collect the metadata on the fly. Based on the results
of ASK requests, subqueries of the original query are dispatched towards the
relevant endpoints.

Saleem et al [56] provide an extensive, fine-grains evaluation of existing
query federated engines. They show the impact of different factors such as:
number of sources selected, number of ASK requests, etc. They conclude that
source selection time significantly affect the overall query performance. How-
ever, their proposal was for standard SPARQL queries not for the property
paths. In this paper, we have introduced source selection mechanisms for dis-
tributed path computation.

2.5 Vertex-centric approaches

There have been many distributed graph processing systems [34] developed to
efficiently analyse large graphs. We focus only those [19,40,76] which support
navigational features. These systems are built on top of a cluster of low-cost
commodity PCs and are deployed with a shared-nothing distributed computing
paradigm.

Google’s Pregel [40] is an example which adopts a vertex-centic comput-
ing paradigm. In-contrast with MapReduce, the Pregel-based approaches are
inspired by bulk synchronous parallel models [70] and are more fault tolerant,
scalable and efficient.

Different approaches (e.g., [44,74,73]) have adopted Pregel’s architecture
for distributed path or reachability queries. Nolé et al [44] for example proposed
an evaluation technique according to the Pregel-based vertex-centric model.

8 Qaiser Mehmood et al.

In their approach, at each step of the computation, each vertex derives an
input query according to the symbol labeling of outgoing edges and propagate
derivative queries to its neighbours.

In [74,73], the authors proposed a distributed Pregel-based approaches
named DP2RPQ to answer provenance-aware regular path queries Regular
Path Queries (RPQs) using Glushkov automata. In their approach, at each
superstep, one hop of edges in the path of the RDF graph is matched forward
to obtain intermediate partial answers. Also they designed different optimiza-
tion strategies e.g., reduce the vertex computation cost and edge-filtering, to
improve the overall performance of computation.

2.6 Link traversal approaches

As explained previously, Hadoop, Partitions, and Vertex-centric computation
are considered to be homogeneous infrastructures. However, Linked Data by
nature is based on heterogeneous distributed systems, exposed by different
data providers using different systems, each holding data based on require-
ments external to the distributed query processing approach. Consequently,
a focus on a paradigm called Linked Traversal has emerged in this context,
which makes use of the characteristics of Linked Data. In order to execute a
given Linked Data query, for example a path query, live exploration systems
perform a recursive URI lookup process during which they incrementally dis-
cover further URIs that also qualify for lookup [68,23]. Such live explorations
provide valid results in the context of reachability queries. In contrast to Fed-
erated query approaches 2.4 where a source selection mechanism is required,
the important characteristic of live exploration is that query execution do not
require any a priori information about the distributed, remote data sources
being queried.

Although Linked Traversal approaches seem to be fully compliant with
the Linked Data principles, traversing live links may produce incomplete re-
sults. Furthermore, these approaches are not designed for high runtime per-
formance [68].

2.7 Partial evaluation

The concept of partial evaluation has been used in many applications ranging
from compiler optimization to distributed evaluation of functional program-
ming languages [29]. In recent years, partial evaluation has also been used
for evaluating queries on distributed tree-structured data such as XML, and
graphs [7,10,17,71]. Authors in [7,10] introduced the concepts of partial evalu-
ation in XPath [8] queries on distributed XML structured data. In their work,
XPath queries are serialized to a vector of subqueries. Their approach finds
partial answers for all subqueries at individual sites by using a top-down [9]
or bottom-up [6] traversal, in a topological order, over the XML tree. Fi-
nally, all partial answers received from each site are assembled together at

Title Suppressed Due to Excessive Length 9

the server. However, in contrast to XML tree structured data, RDF data and
query language (i.e., SPARQL) are based on graphs. It is not feasible to seri-
alize SPARQL queries and traverse the RDF graph in a topological order.

Partial evaluation on graphs has been considered in prior works [17,71].
Wang et al. in [71] proposed a method for answering regular path queries
(RPQs) on large-scale RDF graphs using partial evaluation. They partitioned
RDF data and distributed it in a cluster, and used a dynamic programming
model to evaluate in parallel the local and partial results of the RPQ on
each computing site. To assemble these partial answers they designed and
implemented an automata-based algorithm to produce complete answers.

3 Preliminaries

In this section we define the definitions and relevant background along with a
running example that we will use throughout the paper to better understand
the proposed approach.

Definition 1 RDF Graph: An RDF graph G is a directed graph (V,E) where
the set of edges E is represented by a set of RDF triples. Nodes V can be IRIs
I, blank-nodes B or literals L. An RDF Triple t := (s; p; o) is an element of
the set (I∪B) × I × (I∪L∪B).

In an RDF graph (V,E), if there exists an RDF triple (edge) between nodes
vi and vj (i.e. a triple of the form (vi, p, vj)), then vj is said to be a successor
for vi and vi is a predecessor of vj .

Definition 2 Path: A Path P (n1, nk) between two nodes n1 and nk within

a graph G = (V,E) is a sequence of nodes and relations n1
p1−→ n2

p2−→,
pk−1−−−→ nk such that for each step i, there exists a property pi connecting vi
to vi+1 through an RDF triple (vi; pi; vi+1) in E. Obviously, a single triple

T := (s; p; o) can also be viewed as a one hop path s
p−→ o between s and o.

Definition 3 Partial Path: A Partial Path P ′(n1, nk) is a path P (n1, ni)
which does not include nk. In other words, it is a path starting at the source
node, but which has not reached the target node. A path P (n1, nk) is therefore
referred to in this paper as a complete path.

Definition 4 Source Datasets: A graph Gi = (Vi, Ei) ∈ D is a source dataset
in the context of a path query PQ(s, t,K) if s ∈ Vi and there is at least one
triple in Ei with s as subject.

Definition 5 Reachability: In a graph G = (V,E), if there exists at least one
path between s and t we say that s and t are reachable and we denote it by
s t. Reachability can be expressed as a boolean value i.e.,:

s t =

{
true, if Ps, t 6= ∅
false, otherwise

10 Qaiser Mehmood et al.

Definition 6 Direct Paths: A direct path is a path where at most two datasets
are involved. For instance, D1 or D2 contributed to calculate the first three
paths shown in Figure 1.

Definition 7 Indirect Paths: An indirect path is a path involving more than
two datasets. For instance, D1, D2 and D3 contribute to calculate the 4th and
5th paths shown in Figure 1.

The coverage of a class C in an RDF dataset D, denoted by CV (C), is
defined as follows [14]:

Definition 8 (Class Coverage) Let D be a dataset. Moreover, let P (C) de-
note the set of distinct properties of class C, and I(C) denote the set of distinct
instances of the class C. Let I(p, C) count the number of entities for which
property p has its value set in the instances of C. Then, the coverage of the
class CV (C) is

CV (C) =

∑
p∈P (C)

I(p, C)

|P (C)| · |I(C)|

In general, RDF datasets comprise multiple classes with a varying number
of instances for different classes. The authors of [14] proposed a mechanism
that considers the weighted sum of the coverage CV (C) of individual classes.
For each class C, the weighted coverage is defined below.

Definition 9 (Weighted Class Coverage) The weighted coverage for a class
C denoted by WTCV (C) is calculated as:

WTCV (C) =
|P (C)|+ |I(C)|∑

C′∈D
|P (C ′)|+ |I(C ′)|

By using Definitions 8 and 9, we are now ready to compute the structured-
ness of a dataset D.

Definition 10 (Dataset Structuredness) The overall structuredness or co-
herence of a dataset D denoted by CH(D) is defined as

CH(D) =
∑
C∈D

CV (C) ·WTCV (C)

Definition 11 (Predicate Relationship Specialty) Let d be the distribu-
tion that records the number of occurrences of a relationship predicate r asso-
ciated with each resource and µ is the mean and σ is the standard deviation of
d. The specialty value of r denoted as κ(r) is defined as the Pearson’s Kurtosis
value of the distribution d.

κ(r) =
n(n+ 1)

(n− 1)(n− 2)(n− 3)
·
∑

xi∈d(xi − µ)4

σ4
− 3(n− 1)2

(n− 2)(n− 3)

Title Suppressed Due to Excessive Length 11

Where n is the number of available values, i.e., sample size. The relationship
specialty of a dataset is defined in the form of a weighted sum of specialty
values of all relationship predicates:

Definition 12 (Dataset Relationship Specialty) The relationship specialty
of dataset D denoted by RS(D) is calculated as follows:

RS(D) =
∑
ri∈R

|T (ri)| · κ(ri)∑
rj∈R

|T (rj)|

where |T (ri)| is the number of triples in the dataset having predicate ri, κ(ri)
is the specialty value of relationship predicate ri.
Running example

Figure 1a shows three fictional datasets distributed across the network and
their connectivity. Suppose a user poses a path query PQ (ref. Listing 1) to
find five paths (i.e., K = 5) between a source F and target in these datasets.
As shown in Figure 1a, dataset D1 contains only a single path between F
and E. However, dataset D1 is connected to other datasets (i.e., D2, D3) via
some links. To fulfil the K requirement, the distributed path finding engine
needs to exploit these links and finds partial paths from remote datasets and
rearranges them to produce the complete final paths. Figure 1b depicts the
generated paths that involve different datasets.

D1 D2

D3

BC

A

F

D

C

A

B
D

E

K G

E L

(a) Sample datasets and their connectiv-
ity.

F B

F K A B E

K A E

F BG A E

C D

F G A B EC D

F E

(b) Sample paths from the example.

Fig. 1: Running example: Datasets and K paths between node F and node E.

Listing 1: Extended property path query

PREFIX : <http :// insight -centre.org/sample/>

PREFIX ppfj: <java:org.centre.insight.property.path.>

SELECT * WHERE

{

?path ppfj:kPaths (:F :E 5) .

}

12 Qaiser Mehmood et al.

Our defined path query PQ is denoted by PQ = (si, ti,K), where si ∈ I
is the source node, ti ∈ I is the target node, and K ∈ Z+ is the number of
paths to be retrieved. The result set of such a query PQ on a graph G is the
set [[PQ]]G of up to K paths connecting si to ti in G.

For the purpose of describing how DpcLD works, we additionally rely on
the notion of partial paths(Definition 3). DpcLD relies on computing partial
paths in individual graphs, and reconnecting them in order to form complete
paths across the overall federated graph. We denote as [[PQG the set of partial
paths P ′(si, ti) resulting from the path query PQ in the graph G.

Formally, considering a set of federated, local graphs D, the objective of
DpcLD is to compute the set of paths [[PQ]]G where G represents the union of
the graphs Gi ∈ D. To simplify, we will also refer to this result set as [[PQ]]D,
substituting the set of graphs D with its union G.

4 DpcLD

DpcLD is a path query processing engine that computes K paths between two
nodes from distributed RDF graphs while communicating with a shared algo-
rithm running on remote endpoints (triple stores). The DpcLD architecture
is summarised in Figure 2, which shows its core components, i.e., (i) Source
Selection: performs source selection and selects a relevant datasource to start
the traversal from, (ii) Federated Path Computation: once a candidate data-
source is selected, DpcLD starts path traversal, interacts with the Cache, and
dispatches the queries to remote triple stores where it is required, and finally
(iii) Paths RDFizer: breaks down (triplize) all retrieved paths (i.e., complete or
partial paths) and stores into a temporary graph where a Bidirectional-BFS
pathfinding algorithm computes the K paths.

In summary, posing a path query, the DpcLD engine delegates the requests
to the data sources. The instances of the shared algorithm 2, running on remote
endpoints, compute the paths (full or partial) against each query request and
return the answers back to engine. The DpcLD engine, on receiving these
answers, intelligently computes and generates the complete paths and finally
the results are presented to the user.

4.1 DpcLD: Algorithm

To evaluate a path query PQ over distributed datasets Gi ∈ D, the DpcLD
engine not only finds the path set [[PQ]]Gi

within each graph, but also partial
paths [[PQGi

. Before we explain the DpcLD system in details, it is important
to understand what type of cases the system has to cope with for a given path
query PQ = (s, t,K):

case 1: if s ∈ Gi ∧ t ∈ Gi, i.e. both the source and target nodes are within the
local graph Gi, and the number of local paths satisfy K, then these will be
directly pushed to the solution list and the algorithm will be terminated.

Title Suppressed Due to Excessive Length 13

hgnc:2638

Taxonomy:9606

gi:181346

drugbank:BE0002362

drugbank:BE0002362

drugbank:BE0002362

/

/

:CYP3A5

Uniport:P20815

gi:181346

hgnc:2638

hgnc:2638

hgnc:2638

/

/

Source selection

RDFSource 1

C
a

ch
e K paths

computation

RDFSource 2 RDFSource 3

Results

Federated path computation Paths RDFizer

Path query

Fig. 2: DpcLD’s high level architecture.

case 2: if s ∈ Gi ∧ t ∈ Gi, but the local paths do not satisfy the required
K, then the algorithm will query the other graphs in D for (complete and
partial paths).

case 3: if s ∈ Gi ∧ t 6∈ Gi, i.e. the source node is in the local graph, but not
the target node, then the algorithm will query the other graphs in D for
partial paths.

The pseudocode in Algorithm 1, shows how a path query PQ = (s, t,K) is
processed over the set of graphs D. The steps performed are described in the
following subsections.

4.1.1 Source Selection

DpcLD performs a partially index-free source selection of relevant graphs
(triple stores, see Definition 4), where only the address URI of the endpoint for
each graph is stored. The source selection of relevant data sources is performed
by selecting the dataset in which the source node s has more outgoing links. For
instance, in our running example, we assume a set of graphs D = G1, . . . , Gn,
where each graph Gi is a dataset accessible through a SPARQL endpoint.
When a user poses a path query PQ = (:F, :E,K), the DpcLD engine probes
the relevant datastore in all datasets (Lines 3-9 of Algorithm 1). Figure 1a
shows that only dataset D1 contains the source node :F. Therefore DpcLD,
in this case, considers D1 as a local graph and starts computation on this
dataset. We formalise the relevant data sources for s in Definition 4.

4.1.2 Federated Path Computation

This component computes the paths, communicates with the cache, and dis-
patches requests where required. The cache here plays a vital role in terms of

14 Qaiser Mehmood et al.

Algorithm 1: Pseudo-code of the algorithm implemented by DpcLD.
Input : A query Q = (s, t,K) over G
Output : The answer set [[Q]]G

1 D = {D1, . . . , Dn} ; /* index of data sources URIs */
2 Dl ← D1;
3 maxoeg ← 0;
4 foreach D ∈ D do
5 outgoing ←findOutGoingEdge(s, D);
6 if |outgoing| > |maxoeg | then
7 maxoeg ← outgoing;
8 Dl ← D

9 end
10 sol← ∅ ; /* solution (retrieved complete paths) */
11 q ← {Tnode(s, null, null)} ; /* initialise q as Tnode which contains triple(tp) binary

relations as transitive closure */
12 while q 6= ∅ do /* check until queue is empty */
13 tp← q.poll() /* take triple tp from current Tnode */
14 for (tpi)

n
i=1 ∈ Dl do /* iterate over all (p; o) of s for current triple tp */

15 if (tp(o)i = literal) ∨ (isV isted(tp(o)i) = true) then /* if o is literal or
current triple tpi | (s; p; o) is already visited then skip */

16 continue;
17 if (tp(o)i = t) then /* if target node found */
18 P← path(tp, tp(p; o)i) ; /* append tp(p; o) to the tp as a complete path

*/
19 sol←P ; /* solution is found */
20 if |sol| ≥ K then
21 return sol; /* if K is satisfied then terminate the algorithm

(i.e., case:1) */

22 end
23 CacheCheck(P, D); /* check the cache and perform necessary tasks */

24 else
25 P′ ← path(tp, tp(p; o)i) ; /* append tp(p; o) to the tp as a partial path

*/
26 q← q.add(tpi); /* update queue */
27 CacheCheck(p′, D); /* check the cache and perform necessary tasks */

28 end

29 end
30 tempModel← RDFizer(Cache.getPartialAndfullPaths); /* when Case:1&2 are not satisfied

and local computation is finished */
31 sol← BidirectionalBFS(s, t,K, tempModel); /* run a bidirectionalBFS algorithm on temp

Graph and computes the K paths */
32 return sol ; /* return solutions */
33 Function CacheCheck(path,D)
34 foreach dataset D ∈ D do
35 foreach (pathnode)

n
node=1 ; /* iterate over each node of a path (P or P ′)

*/
36 do
37 visited ← Cache.check(node,D) ; /* check each node of path if visited

against current dataset */
38 if visited = true then
39 continue;
40 else
41 pr ← FedRequest(node, t,D) ; /* obtain remote path through

federated request */
42 PathStatus(pr, D)

43 end

44 end

45 Function PathStatus(pathLst,D)
46 foreach path ∈ pathLst do
47 if path.startNode=s ∧ path.endNode=t then /* check if current is a full

path P */
48 P ← path;
49 Cache.put(D,BrkPath Into Nodes(P),P)

50 else
51 P′ ← path;
52 Cache.put(D,BrkPath Into Nodes(P′),(P′))
53 end

54 Function BrkPath Into Nodes(path) /* break path into indvisual nodes */
55 nodes← {∅} ;
56 foreach (pathnode)

n
node=1 ; /* iterate over each node of a path (P or P ′) */

57 do
58 nodes.Add(node); ; /* each node is added to the visited nodes list */
59 end
60 return nodes;

Title Suppressed Due to Excessive Length 15

performance and reducing the number of HTTP requests. The DpcLD engine
using cache avoids sending duplicate requests. We implemented the cache as
a key-value pair store, where every dataset D ∈ D is a key and has multiple
values (visited nodes, full paths P , partial paths P ′) against each key.

In our running example, the traversal starts (Line 10 of Algorithm 1) and
the queue q is initialized with an object Tnode which at the beginning contains
a triple with only a source node :F as subject. The object Tnode holds paths for
each node as a transitive closure, i.e., it contains the incoming edge, the current
vertex, and its previous vertex (predecessor). For instance, given a path query
PQ with a source node :F, the traversal starts from :F and iterates over each
of its triples/successors Ti := (current vertex|s; p; o) (Line 14). The algorithm
checks two conditions: (1) if any successor i.e., o is not a URI (i.e., a literal),
and (2) if o is already visited for :F as a predecessor (to check for cycles).
If any of these conditions is true, the particular iteration Ti will be skipped
and the algorithm continues (Lines 15-16) to the next iteration. For example,
a connected object :L to the source node (:F→L) is a literal, as depicted in
Figure 1a. Thus, it will be skipped in the iteration i = 1.

Other than the previous two conditions explained above, the algorithm
navigates along all the paths (successors) of :F (Lines 17-27) and checks the
reachability (Definition 5) between source :F and target :E node.

In our running example, at iteration i = 2, the algorithm finds a complete
path P (i.e.,:F→:E) within the local dataset D1, and the situation in this
iteration represents the case 2. The algorithm does not terminate at iteration
i = 2 but performs the following steps and updates the cache against the
dataset D1:

– stores the path P (:F→:E) in the full path set.
– gets all the nodes (i.e., :F and :E) from the current path and put them in

the visited nodes set against D1.
– in parallel checks the cache to see if these node are visited against other

datasets. If the cache does not have these nodes visited for other datasets,
it sends requests (i.e., Q (:F,:E)) to remote datasets (i.e., D2, D3, see
Line 41).

Since the current path contains only two nodes, one request PQ (:F,:E) is
dispatched to each remote datasets. It is notable that multiple requests will
be dispatched in those cases where more than two nodes exist within a path.
At current iteration i = 2, we can see that remote datasets did not return
any paths, however, we still treat :F, :E as visited nodes against each dataset
D2, D3 and store them as (visited nodes) in the cache. Table 1 shows the
cache storage when iteration i = 2 is completed. The set of visited nodes is
an important factor to minimise the number of remote requests because each
element (i.e., visited node) stored in this set against individual datasets will
not be counted for future requests, hence, reducing the network cost.

Before we explain the next steps, we can see that only one path has been
found and the solution still does not satisfy the K parameter (i.e., 5). There-
fore, the algorithm continues to next iterations. When the algorithm encoun-

16 Qaiser Mehmood et al.

Table 1: Cache at i = 2.

Keys Values

Dataset Vist.Nodes F.Paths P.Paths

D1 [F,E] [(F→E)] []
D2 [F,E] [] []
D3 [F,E] [] []

ters the iterations i = 3 and i = 4, then it has to cope with the situation
that falls under the case 3, where only the source node :F does exist within
the dataset D1. The algorithm (Line 25) finds two incomplete paths, at i = 3
(F→K→A) and at i = 4 (F→G→A) respectively, in local datasets D1. We
denote such paths as partial paths P ′ which do not reach target :E from source
:F.

After iteration i = 3 is completed, the cache is updated and the partial
path (F→K→A) along with the visited nodes are stored against key D1. In
parallel, the algorithm constructs the path queries and delegates those to re-
mote triple stores i.e.,D2, D3. The way the queries are generated is discussed
in the following subsection.

4.1.3 Query Generation

As explained earlier, the number of generated queries directly depends on the
nodes in a path. For example, for the path (F→K→A), the possible queries
could be; (i) PQ(:F,:E), (ii) PQ(:K,:E), and (iii) PQ(:A,:E).

However any node that is already visited, against relevant datasets D ∈ D,
will not be considered in the query generation. Moreover, while constructing a
query, where source and target are the same (e.g., (:E,:E)), the algorithm will
not generate the corresponding query. These two checks improve the query
performance significantly by reducing the number of unnecessary remote re-
quests.

It is also important to note while generating the requests that each query
PQ will always have the same target:E.

For path (F→K→A) at iteration i = 3, the algorithm checks in the cache
(Line 37) which nodes already exist against relevant datasets in D. We can
see that :F, :E are there against all datasets. Therefore, the query PQ(:F,:E)
will not be generated and only two queries, i.e., PQ(:K,:E) and PQ(:A,:E), are
constructed and dispatched to datasets D2 and D3 (not D1 since :K and :A are
already visited in D1). After receiving the responses from remote datasets (i.e.,
D2 and D3), the path status (Line 42) is checked and the cache is updated,
where a partial path (A→B→E) against D2 is returned and no path against
D3. The same procedure, as for i = 3, is followed by Algorithm 1 at iteration
i = 4 where, for the path (F→G→A), only one query PQ(:G,:E) is constructed
and dispatched to D2 and D3. The queries for node :F, :K, :A are not generated
since these nodes are already visited against all datasets. For query Q(:G,:E),

Title Suppressed Due to Excessive Length 17

both D2 and D3 return no result. However, their visited node sets are updated
with :G in the cache. After the completion of i = 3 and i = 4 respectively, the
updated cache contains what is shown in Table 2.

Table 2: Cache at i = 3 and i = 4.

Keys Values

Dataset Vist.Nodes F.Paths P.Paths

D1 [F,K,G,A,E] [(F→E)] [(F→K→A), (F→G→A)]
D2 [F,K,G,A,B,E] [] [(A→B→E)]
D3 [F,K,G,A,E] [] []

In our running example, when the iteration i = 4 is finished, the local
traversal for D1 is terminated because there is no more possible paths P or
P ′ from :F to its triples/successors Ti := (current vertex|s; p; o) within D1.

Until now, the values full path or partial path in the cache included only
direct paths, i.e., paths leading from D1 to D2 and D3. We explain the notion
of direct path in (Definition 6). However, in many cases the paths, could be
indirect paths (Definition 7), as shown in Figure 1a where D1, D2 and D3
participate to complete the 4th and 5th paths in Figure 1..

When local traversal is finished at dataset D1, however, we can get only
3 paths, (1, 2, and 3) (see Figure 1), and these are the direct paths where
D1 and D2 contributed. We still miss the desired K = 5 solutions. How the
remaining 2 paths are calculated is explained in the following paragraph.

After the iteration i = 4 when local traversal has finished, the algorithm
does not terminate but recursively starts checking the difference between sets
of visited nodes A∆B = {x : [x ∈ A and x /∈ B] or [x ∈ B and x /∈ A]}
from one dataset to every other datasets within the cache | PC |. If any non-
overlapping node – visited against one dataset but not for others – is found in
a particular dataset then it is also checked against other unexplored datasets.
For instance, in Table 2, node :B is in the visited nodes list against D2, but
not against D1 and D3. So, when node :B is checked against these remaining
datasets, i.e., D1 and D3, we get updated values in cache as shown in Table 3.

Table 3: Cache update when :B is checked against D1 and D3.

Keys Values

Dataset Vist.Nodes F.Paths P.Paths

D1 [F,K,G,A,B,E] [(F→E)] [(F→K→A), (F→G→A)]
D2 [F,K,G,A,B,E] [] [(A→B→E)]
D3 [F,K,G,A,B,E,C] [] [(B→C)]

18 Qaiser Mehmood et al.

In the previous step performed for Table 3, we can see, in dataset D3,
that node :C in the visited nodes list is not yet checked against other datasets.
When node :C is checked against datasets D1, D2, we get an updated list as
shown in Table 4.

Table 4: Cache update when :C is checked against D1 and D2

Keys Values

Dataset Vist.Nodes F.Paths P.Paths

D1 [F,K,G,A,B,E,C,D] [(F→E)] [(F→K→A), (F→G→A),(C→D)]
D2 [F,K,G,A,B,E,C] [] [(A→B→E)]
D3 [F,K,G,A,B,E,C] [] [(B→C)]

As shown in Table 4, when the cache is updated, the node :D would appear
in the difference between dataset D1 and others. When :D is checked for paths
against D2, D3, the cache is updated as shown in Table 5. When all of the
visited nodes appear for all datasets, Algorithm 1 stops checking cache and is
terminated.

Table 5: Cache update when :D is checked against D2 and D3.

Keys Values

Dataset Vist.Nodes F.Paths P.Paths

D1 [F,K,G,A,B,E,C,D] [(F→E)] [(F→K→A), (F→G→A),(C→D)]
D2 [F,K,G,A,B,E,C,D] [] [(A→B→E),(D→E)]
D3 [F,K,G,A,B,E,C,D] [] [(B→C)]

It is important to note that visited nodes in cache are only those that
contribute to complete P or partial P ′ paths, and therefore include a subset
of the graph only.

4.1.4 Paths RDFizer:

When the main algorithm 1 is terminated, all the paths are broken down into
triples by our path rdfizer algorithm. This is a simple mechanism, since in a
path every node is connected to other node through one hop, like a triple (i.e.,
T := (s; p; o)) and we break a path in such a way that every object o becomes
the subject s for a triple with the next connected node as object. For example,

a path (F→K→A), when triplified, will generate two triples: (i) F
p1−→ K, and

(ii) K
p3−→ A.

An excerpt shown in Listing 2 represents the RDFized (N-Triples) data for
partial paths p’ retrieved in Table 5.

Title Suppressed Due to Excessive Length 19

<http :// node−C> <http :// property−p6> <http :// node−D> .
<http :// node−A> <http :// property−p7> <http :// node−B> .
<http :// node−F> <http :// property−p4> <http :// node−G> .
<http :// node−F> <http :// property−p1> <http :// node−K> .
<http :// node−K> <http :// property−p3> <http :// node−A> .
<http :// node−D> <http :// property−p6> <http :// node−E> .
<http :// node−B> <http :// property−p7> <http :// node−E> .
<http :// node−B> <http :// property−p8> <http :// node−C> .
<http :// node−G> <http :// property−p5> <http :// node−A> .

Listing 2: N-Triples format of paths given in Table 4.

A local traversal algorithm (we presented in [61]) is executed on this temporary
graph Gtmp and all the complete paths p returned by this algorithm are added
into the solution set. In the end, the query shown in Listing 1 returns the
answer set [[Q]]D to the user with the K = 5 results.

4.2 Shared Algorithm

In the previous section, we explained that the DpcLD engine communicates
with a shared algorithm. This algorithm (Algorithm 2) is distributed and de-
ployed on remote SPARQL endpoints, to calculates the paths, either complete
P or partial P ′. It is implemented as a standard Breadth First Search (BFS)
process with some modifications.

Lines 1-4 are the inputs for the algorithm. At Line 6 a queue q of type
Tnode is initialised with the start node s. The Tnode object stores the triples
in a chain such that the predecessor of each current triple can be accessible.
At Line 6, the first time when Algorithm 2 is started, there will not be any
predecessor for the source node s. At Line 8 the current triple is pulled from
the queue q and at Lines 9-24 the algorithm traverses each vertex or the object
o of that particular triple. At Line 10, the algorithm checks and continues to
the next iteration if the object value of the current (s,p,o) triple is a literal or
is already visited. At Line 13, if the leading object value is the actual target
t, the algorithm adds it to the solution. At Line 15, the algorithm checks and
continues to the next iteration if the queue already contains this triple in any
of the triple’s predecessor or successor. Line 15 is an extra check which allows
only to store distinct paths and, therefore, restricts the unnecessary increase
in the queue size. At Line 17 the calculated paths P ′ are also stored into the
solution list. At Line 19, if the size of the solution list, which contains both
P and P ′, becomes greater than K, Algorithm 2 terminates and returns the
solution (i.e., complete P and partial P ′ paths) towards the DpcLD engine.

5 Evaluation

In this section, we explain the evaluation setup, the synthetic and real-world
datasets used, the queries and the results of our experiments.

20 Qaiser Mehmood et al.

Algorithm 2: Algorithm to find K paths locally between source and
target datasets.

1 s← source ; /* source node */

2 t← target ; /* target node */

3 k← Kpaths ; /* search number of TopK paths */

4 D← G ; /* dataset */

5 sol← ∅ ; /* solution (retrieved properties) */

6 q← {Tnode(s, null, null)} ; /* initialise q with Object Tnode which can store

current triple(tp) and all its predecessors */

7 while q 6= ∅ do /* check until queue is empty */

8 tp← q.poll() /* take tp as current Tnode object */

9 for (tpi)
n
i=1 do /* iterate over each child for a specific triple object

*/

10 if (tp(o)i = literal) ∨ (isV isted(tp(o)i)) then /* move next */

11 continue;
12 if (tp(o)i = t) then
13 sol ← path(tp, tp(p; o)i) ; /* append tp(p; o) to the tp as a

complete path P */

14 else
15 if (q.contains(tpi) then /* move next if queue q already contains

this triple */

16 continue;
17 sol ← path(tp, tp(p; o)i) ; /* append tp(p; o) to the tp as a partial

path P′ */
18 q← q.add(tpi)
19 if sol.size ≥ K then
20 return sol;
21 end

22 end

23 end

5.1 Experimental Setup

In this section, we discuss the datasets, the set of path queries over the selected
datasets, the performance metrics we used in the evaluation, and the state-of-
the-art path finding systems over Linked Data, we used in our evaluation.

5.1.1 Datasets

We used both synthetic and real-world RDF datasets in our evaluation. The
synthetic datasets8 were selected from the ESWC-2016 shortest path find-
ing challenge and real − world datasets were selected from biological data9

provided by DisGeNET.

Datasets metrics. Before going in to the details, first we briefly explain the
different RDF datasets metrics that are important to be considered while de-
signing RDF benchmarking [15,58]. For each dataset, we present total triples,

8 https://bitbucket.org/ipapadakis/eswc2016-challenge/downloads/
9 http://rdf.disgenet.org/download/v5.0.0/

Title Suppressed Due to Excessive Length 21

subjects, predicates, objects, graph structuredness and the relationship spe-
cialty, explained as follow.

– Triple:
A triple is an atomic entity, which consists a set of three entities i.e.,
subject, predicate, object. We have defined a triple in Definition 1

– Data Structuredness: This metric measures how well the concepts or classes
(i.e., rdf:typ) are covered by different instances within the dataset. The
value of structuredness lies between [0,1], where 0 stands for lowest possible
structure and 1 indicates to a highest possible structured dataset. Duan et
al. [15] in their paper concluded that synthetic dataset are highly structured
in nature while real-world datasets’s structuredness varies from low to high,
covering the whole structuredess spectrum. Structuredness is considered
one of the important matircs for RDF dataset benchmarking [15,1,55,58].
We have defined structuredness in Section 10.

– Relationship Specialty: It is often that some attribute within a datset are
more common and have more associations with other resources. Moreover,
some attributes have more then one values, e.g., a person entity within
a dataset can have a multiple values for same property, for example, cell
phone or professional skills. The number of occurrence of a property associ-
ated with each resource provides useful information of an RDF graph struc-
ture, and make some resources distinguishable from others [52]. The rela-
tionship specialty is commonplace in real datasets. For instance, a movie
can be liked by several million people. Likewise, a research paper can be
cited in several hundred other research papers. Qiao et al. [52] suggested
that synthetic datasets are limited in how they reflect this relationship spe-
cialty. This could be due to the simulation of uniform relationship patterns
for all the resource, or a random relationship generation process. We have
defined relationship specialty in Definition 12.

Tables 6-8 show this statistical information both for synthetic and real-world
datasets used in our evaluation. In general, we can see a good variation in these
metrics, required for selecting RDF datasets for benchmarking [15,1,55,58].
However, as opposite to Duan et al. [15] conclusion, we can see that the struc-
tured values of the synthetic datasets are smaller as compared to real-world
datasets. This is due to the fact that we have partitioned the complete syn-
thetic dataset into 4 sub-datasets, therefore the completeness, structuredness,
and relationship specialty of these datasets are affected.

Synthetic Datasets: The ESWC-2016 shortest path finding challenge pro-
vides both training and evaluation datasets. The synthetic dataset comprises
of the information from DBPedia knowledge base which is built based on the
information extracted from Wikipedia. The benchmark is based on query-log
mining, clustering and SPARQL feature analysis 10 .

10 https://aksw.org/Projects/DBPSB.html

22 Qaiser Mehmood et al.

– Training Dataset: The training data corresponds to the 10% transforma-
tion of the DBpedia SPARQL Benchmark [42] and comprises 9, 996, 907
triples, structuredness value with 0.445, and relationship specialty 874.491.
To evaluate our approach (i.e., in distributed settings), we divided this data
into 4 equal parts, producing 4 different graphs, based on the order in which
the triples were provided in the overall dataset. Based on our experience,
the 4 datasets represent a reasonable trade-off between the size of the in-
dividual graphs and the overhead generated by communication. Table 6
presents the statistics about this data.

– Evaluation Dataset: This dataset corresponds to 100% of the DBpedia
SPARQL Benchmark and comprises 124, 743, 858 triples, structuredness
value with 0.2695, and relationship specialty 1715.845. We also divided
this data into 4 different graphs. Table 7 presents statistics about the eval-
uation data.

Table 6: Training datasets statistics.

Dataset Triples Subject Predicates Objects Structuredness Specialty

TDataset1 2925457 313036 7109 639743 0.087 937.62
TDataset2 2296074 92078 8536 1100275 0 333.15
TDataset3 2347536 95619 8135 1124389 0 407.73
TDataset4 2427840 97422 8267 1150104 0 460.98

Table 7: Evaluation datasets statistics.

Dataset Triples Subject Predicates Objects Structuredness Specialty

EDataset1 30740699 680727 18541 10157624 0.35 13.76
EDataset2 31892427 723768 17001 9948302 0.33 1256.11
EDataset3 30687403 686672 14119 9318528 0.33 782.15
EDataset4 31423329 674252 14175 9665835 0.33 737.20

Real-world Datasets: As mentioned before, the real − world datasets are
chosen from our previous evaluation [41] and are provided by DisGeNET. Dis-
GeNET is a platform of datasets containing one of the largest publicly avail-
able collections of genes and variants associated with human diseases. The
datasets involved are: Disease, hpoClass, doClass, phenotype, Protein, Vari-
ant, Gene, and pantherClass. We chose these datasets because they are highly
interlinked and contain shared resources. The data comprises of 7, 265, 423
triples. Table 8 shows the statistics for each of the individual datasets.

5.1.2 Queries

Along with datasets, the ESWC-2016 shortest path finding challenge also pro-
vides four different path queries with different source and target and K values.

Title Suppressed Due to Excessive Length 23

Table 8: Real-world datasets statistics.

Dataset Triples Subject Predicates Objects Structuredness Specialty

Disease 738626 60130 12 489756 0.656 317.38
doClass 101 21 11 63 0.524 3.281
Gene 1056346 119522 12 834502 0.655 13536.64
hpoClass 253 36 11 151 0.717 4.48
pantherClass 272 40 9 123 0.760 5.65
Phenotype 83292 8441 8 66249 0.998 1014.12
Protein 160537 14635 8 117034 0.941 1939.11
Variant 5225996 708405 16 3628674 0.930 118.89

These queries are available from Task 111 of the challenge. In our evaluation,
we used these four queries. For the real-world data, we used the 12 path queries
used in the evaluation of our previous work [41]. These queries were carefully
chosen such that they show variation in terms of the number of possible paths
between source and target, the number of distributed datasets contributing
to the paths, and the length and complexity of the paths.

5.1.3 Evaluation Settings

In distributed computing, the network cost can be one of the key factors in
the performance evaluation. For this reason we used two evaluation settings
in our experiments:

– Remote Setting With Network Cost: To compare the distributed
path finding systems, we loaded each RDF dataset (i.e., synthetic, real-
world) into multiple Fuseki servers (version 1.3.0 2015-07-25T17) deployed
on different physical machines with the following specifications: Ubuntu
OS with 2.6GHz Intel Core i5 processors, 16GB 1600MHz DDR3 of RAM,
and 500GB of storage capacity hard disks. It is important to note that
each Fuseki server is integrated with our algorithm 2 and provides a pub-
lic SPARQL endpoint to be queried remotely using SPARQL over HTTP
requests.

– Local Setting With Negligible Network Cost: This represents the
same settings as above, except that the four instances of the Fuseki server
were started on the same machine with different ports for SPARQL end-
points. Since, all of the four instances of the Fuseki server were running on
the same machine, the network cost is negligible.

– Cache size: The configuration of the DpcLD allows to set the maximum
size of the cache depending on available RAM. We have set the cache limit
to 2GB in our evaluation setup to allow making the maximum use of the
memory available12.

11 https://bitbucket.org/ipapadakis/eswc2016-challenge
12 In our stress testing, for a highly complex path query with over 400K distributed paths,

the cache size reached 1.5GB.

24 Qaiser Mehmood et al.

5.1.4 Comparison

We selected state-of-the-art RDF path finding techniques based on the fol-
lowing criteria: (1) open source and configurable13, (2) able to find K paths
in distributed RDF datasets, (3) scaleable to medium-large datasets, such as
DBpedia in our case, (4) no licensing issue of publishing benchmarking re-
sults, and (5) able to show/enumerate complete paths from source to target
node. Based on this criteria, we selected three – TPF [12], QPPDs [41], and
ESWC2016 Winner [25] – state-of-the-art approaches that are able to find K
paths in RDF datasets, which are loaded into triplestores with SPARQL end-
points. Table 9 shows the existing approaches including DpcLD that meet the
above selection criteria.

The performance metrics we used in our evaluation are: (1) the path com-
putation time (in seconds), and (2) the memory consumption during the paths
computation.

Table 9: Systems that support RDF and path queries

System
Support

Single-graph Distributed-graphs K-Paths

DpcLD 3 3 3
TPF [12] 3 3 3

QPPDs [41] 3 3 3
ESWC2016 winner [25] 3 7 3

5.2 Performance Analysis

In this section, we compare the runtime performance of DpcLD, both with
centralized and distributed path finding approaches for RDF datasets.

5.2.1 Comparison with Distributed Approach

As shown in Table 9, QPPDs and TPF are the two approaches that support
finding the K paths in distributed RDF datasets. We compared DpcLD on
exactly the same benchmarks used in the QPPDs and LDF evaluations.

DpcLD vs QPPDs In QPPDs’s evaluation, the aforementioned 8 real −
world datasets were used. Each dataset was loaded into a dedicated Fuseki
triplestore with a SPARQL endpoint. We used the same settings in both ap-
proaches. Figure 3 shows the runtime comparison of our approach with QPPDs

13 We have explicitly asked authors for the availability of their code and/or data used in
the evaluation

Title Suppressed Due to Excessive Length 25

on 12 benchmark queries. As an overall performance evaluation, our approach
is clearly faster than QPPDs on all of the 12 benchmark queries. The average
(over all 12 queries) runtime of DpcLD is 4.0 seconds, while QPPDs took 17.2
seconds on average, leading to a performance improvement of greater than
400%. The main reason for this performance improvement is the lesser num-
ber of distributed path requests sent by our approach compared to QPPDs.
Furthermore, DpcLD makes use of the cache to avoid sending duplicate re-
quests while that is not controlled in QPPDs. In Q1, Q4, Q9, and Q10, we
noticed that the results contain the large number of nodes connectivity (i.e.,
path hops, as well as high degrees for different nodes involved in those paths)
as compare to the other queries results. To process those paths, we observed
that the QPPDs sends more requests for such complex queries while on the
other hand, the DpcLD keeps record of visited nodes and does not send the
duplicate requests.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12

0

20

40

60

T
im

e
(s

ec
)

DpcLD QPPDs

Fig. 3: Response time per query with DpcLD vs. QPPDs.

DpcLD vs TPF We compared our approach to the results presented in the
paper about TPF [12]. To have a fair comparison, we used machines for DpcLD
with the same specifications as was used for the evaluation of TPF. Figure 4
depicts the comparison between DpcLD and the TPF approach in terms of
response time. We outperformed TPF by several orders of magnitude. In gen-
eral, the TPF servers only perform executing single triple patterns SPARQL
queries. The load of the query execution is distributed among TPF client and

26 Qaiser Mehmood et al.

server, thus ensuring high availability with a slight performance loss. While on
the otherside, DpcLD does not allow to send the duplicates request and also
the aggregated results are returned from remote endpoints against each query
request which is not in the case of TPF. Therefore, DpcLD outperformed TPF
in several order of magnitudes.

Q1-K(20152) Q2-K(154) Q3-K(4866)Q4-K(175560)

0

500

1,000

1,500

2,000

2,500

T
im

e
(s

ec
)

DpcLD TPF

Fig. 4: Response time per query with DpcLD vs. TPF.

5.2.2 Comparison with centralised approaches

In this section, we compare our distributed DpcLD approach with a central-
ized path finding solution over RDF data. The goal of the comparison is to
show how DpcLD scales as compared to centralized solutions. To this end,
we compare DpcLD with the winner of the ESWC2016 challenge based on
the datasets and queries used in the ESWC2016 challenge, i.e, the synthetic
datasets (both training and evaluation) and the four queries Q1-Q4. We used
both of the aforementioned evaluation settings (i.e., remote and local settings).

Training data results Figure 5 shows the comparison of the ESWC2016 winner
with DpcLD when deployed both in local and remote settings. The results
clearly suggest that the centralized solution is much faster for smaller K val-
ues shown in all four queries Q1, Q2, Q3 and Q4. On the other hand, the
performance of DpcLD is rather slow for smaller K. The reason DpcLD per-
forms slower with smaller K values is that it first collects the global partial
paths and then performs the local processing.

However, the performance of ESWC2016 winner significantly drops when
we increase the required K number of paths. This can be seen in Q1, Q2, Q3

Title Suppressed Due to Excessive Length 27

that when we increased theK beyond 50000, the performance of ESWC2016 winner
exponentially decreased. In Q4, we also noticed that the performance of ESWC2016 winner
dramatically decreased even before K = 30000. This was because some of the
nodes involved in the path processing were having high degrees, therefore
ESWC2016 winner occupied to much memory and this became performance
bottlneck for ESWC2016 winner. While, DpcLD scales better and perform
linearly as compared to ESWC2016 winner as we increase K.

The results also suggest that DpcLD is approximately 4 times slower in
remote settings as compared to the local settings. This means that network
costs play an important role in the performance of DpcLD.

The runtime performance results shown in Figure 5 are highly correlated to
the memory consumption by each of the systems shown in Figure 6. In general,
DpcLD consumes less memory resources when deployed in remote settings,
followed by DpcLD in local settings, and then ESWC2016 winner. The results
suggest that the significant performance drop in ESWC2016 winner is due to
the large amount of memory consumed, as we increase the value of K. On the
other hand, memory consumption in DpcLD is more controlled as compared
to ESWC2016 winner for large K values.

8 1068 40000 100000
0

20

40

60

(a) Q1

3 79 1000 50000
0

20

40

60

(b) Q2

36 4866 50000 150000
0

20

40

60

(c) Q3

2 250 20224 200000
0

20

40

60

(d) Q4

�.� ���������� 93

drops when we increase the required K number of paths. On the other hands, the performance of
DpcLD is rather slow for smaller K. However, it scales better as compared to ESWC2016_winner
as we increase K. The reason DpcLD performs slower with the smaller K values is that it first
collects the partial paths and then perform the processing. The results also suggests that DpcLD
is approximately 4 times slower in remote settings as compared to the local settings. This means
that network costs play an important role in the performance of DpcLD.

The runtime performance results shown in Figure 7.6 are highly correlated to the mem-
ory consumption by each of the systems shown in Figure 7.7. In general, DpcLD consumes
less memory resources when deployed in remote settings, followed by DpcLD in local set-
tings, and then ESWC2016_winner. The results suggest that the significant performance drop
in ESWC2016_winner is due to the large amount of memory consumed, as we increase the value
of K. On the other hand, memory consumption in DpcLD is more controlled as compared to
ESWC2016_winner for large K values.

8 1068 40000 1000000

20

40

(a) Q1

8 1068 40000 1000000

20

40

(b) Q2

8 1068 40000 1000000

20

40

(c) Q3

8 34510682015240000600001000001500000

20

40

DpcLD_local DpcLD_remote ESWC_winner

(d) Q4

Figure 7.5: Response time per query for DpcLD vs. ESWC2016_winner.

Fig. 5: Training datasets:- Response time per query (with different K paths)
for DpcLD vs. ESWC2016 winner.

28 Qaiser Mehmood et al.

Figure 6 shows the memory consumed by each system. We noticed that Dp-
cLD in remote settings outperformed both DpcLD local and ESWC2016 winner
in all four queries. This was due to the path computation being distributed
on each remote machine instead of a single machine. In Q4 we also noticed
that DpcLD local unexpectedly used less memory when computing paths for
K >= 250 as opposite to the trending line (i.e., with the increase of K the
memory consumption should increase in theory). We concluded that the in-
ternal resource/memory allocation by CPU could be the reason.

8 1068 40000 100000
0

1

2

3

(a) Q1

3 79 1000 50000
0

1

2

3

(b) Q2

36 4866 50000 150000
0

1

2

3

(c) Q3

2 250 20224 200000
0

1

2

3

(d) Q4

�.� ���������� 93

drops when we increase the required K number of paths. On the other hands, the performance of
DpcLD is rather slow for smaller K. However, it scales better as compared to ESWC2016_winner
as we increase K. The reason DpcLD performs slower with the smaller K values is that it first
collects the partial paths and then perform the processing. The results also suggests that DpcLD
is approximately 4 times slower in remote settings as compared to the local settings. This means
that network costs play an important role in the performance of DpcLD.

The runtime performance results shown in Figure 7.6 are highly correlated to the mem-
ory consumption by each of the systems shown in Figure 7.7. In general, DpcLD consumes
less memory resources when deployed in remote settings, followed by DpcLD in local set-
tings, and then ESWC2016_winner. The results suggest that the significant performance drop
in ESWC2016_winner is due to the large amount of memory consumed, as we increase the value
of K. On the other hand, memory consumption in DpcLD is more controlled as compared to
ESWC2016_winner for large K values.

8 1068 40000 1000000

20

40

(a) Q1

8 1068 40000 1000000

20

40

(b) Q2

8 1068 40000 1000000

20

40

(c) Q3

8 34510682015240000600001000001500000

20

40

DpcLD_local DpcLD_remote ESWC_winner

(d) Q4

Figure 7.5: Response time per query for DpcLD vs. ESWC2016_winner.

Fig. 6: Training datasets:- Memory consumption per query (with different K
paths) for DpcLD vs. ESWC2016 winner.

Evaluation data results Figure 7 shows the runtime performance for the
bigger dataset (i.e, 100% DBpedia) as compared to the training dataset (i.e,
10% DBpedia). In general, it can be seen that the performance of ESWC2016 winner
degrades much faster, in all four queries, with the increase in values of K com-
pared to the training data. On the other hand, the performance graph of
DpcLD is almost linear with the increase of K value, confirming that DpcLD
scales better as compared to ESWC2016 winner. For Q1 we set the maximum
K = 400, 000, where ESWC2016 winner was only able to retrieve paths up

Title Suppressed Due to Excessive Length 29

to K = 250, 000. After that limit, it started sending out of memory excep-
tions. DpcLD, on the other hand, was able to retrieve paths to the maximum
K limit. For query Q2, it can be seen that DpcLD performed better than
ESWC2016 winner throughout from the minimum to the maximum values of
K. For queries Q3 and Q4, ESWC2016 winner outperformed DpcLD up to
a certain path limits (i.e, around K = 100, 000). However, it started send-
ing out of memory exceptions after that limit. DpcLD was able to retrieve
paths up to the highest tested values of K for both queries Q3 and Q4. The
results suggest that with huge volumes of data and higher K values, the al-
gorithms that work on a single graph may face performance issues or out of
memory exceptions. This comparison shows that DpcLD could be applicable
as an alternative choice to local traversal approaches when it comes to dealing
with large amount of data. Figure 8 shows the memory consumed by each
system over the evaluation data. In general, we noticed that DpcLD required
about 8 times less memory than ESWC2016 winner. As already mentioned,
ESWC2016 winner throws out-of-memory exceptions for Q1, Q3 and Q4 over
large values of K. This shows that DpcLD can be a good candidate when
finding paths over large distributed datasets using machines with low memory
resources.

32 1914 212988 300000 400000
0

200

400

(a) Q1

3 76 2311 50000
0

200

400

(b) Q2

12 1440 50000 150000
0

200

400

(c) Q3

1 72 5483 471199
0

200

400

(d) Q4

�.� ���������� 93

drops when we increase the required K number of paths. On the other hands, the performance of
DpcLD is rather slow for smaller K. However, it scales better as compared to ESWC2016_winner
as we increase K. The reason DpcLD performs slower with the smaller K values is that it first
collects the partial paths and then perform the processing. The results also suggests that DpcLD
is approximately 4 times slower in remote settings as compared to the local settings. This means
that network costs play an important role in the performance of DpcLD.

The runtime performance results shown in Figure 7.6 are highly correlated to the mem-
ory consumption by each of the systems shown in Figure 7.7. In general, DpcLD consumes
less memory resources when deployed in remote settings, followed by DpcLD in local set-
tings, and then ESWC2016_winner. The results suggest that the significant performance drop
in ESWC2016_winner is due to the large amount of memory consumed, as we increase the value
of K. On the other hand, memory consumption in DpcLD is more controlled as compared to
ESWC2016_winner for large K values.

8 1068 40000 1000000

20

40

(a) Q1

8 1068 40000 1000000

20

40

(b) Q2

8 1068 40000 1000000

20

40

(c) Q3

8 34510682015240000600001000001500000

20

40

DpcLD_local DpcLD_remote ESWC_winner

(d) Q4

Figure 7.5: Response time per query for DpcLD vs. ESWC2016_winner.

Fig. 7: Evaluation datasets:- Response time per query (with different K paths)
over evaluation dataset for DpcLD vs. ESWC2016 winner.

30 Qaiser Mehmood et al.

32 1914 212988 300000 400000
0

5

10

(a) Q1

3 76 2311 50000
0

5

10

(b) Q2

12 1440 50000 150000
0

5

10

(c) Q3

1 72 5483 471199
0

5

10

(d) Q4

�.� ���������� 93

drops when we increase the required K number of paths. On the other hands, the performance of
DpcLD is rather slow for smaller K. However, it scales better as compared to ESWC2016_winner
as we increase K. The reason DpcLD performs slower with the smaller K values is that it first
collects the partial paths and then perform the processing. The results also suggests that DpcLD
is approximately 4 times slower in remote settings as compared to the local settings. This means
that network costs play an important role in the performance of DpcLD.

The runtime performance results shown in Figure 7.6 are highly correlated to the mem-
ory consumption by each of the systems shown in Figure 7.7. In general, DpcLD consumes
less memory resources when deployed in remote settings, followed by DpcLD in local set-
tings, and then ESWC2016_winner. The results suggest that the significant performance drop
in ESWC2016_winner is due to the large amount of memory consumed, as we increase the value
of K. On the other hand, memory consumption in DpcLD is more controlled as compared to
ESWC2016_winner for large K values.

8 1068 40000 1000000

20

40

(a) Q1

8 1068 40000 1000000

20

40

(b) Q2

8 1068 40000 1000000

20

40

(c) Q3

8 34510682015240000600001000001500000

20

40

DpcLD_local DpcLD_remote ESWC_winner

(d) Q4

Figure 7.5: Response time per query for DpcLD vs. ESWC2016_winner.

Fig. 8: Evaluation datasets:- Memory consumption per query (with different
K paths) over evaluation dataset for DpcLD vs. ESWC2016 winner.

5.2.3 Scalability Analysis

We used the evaluation dataset to test the saclability of the proposed ap-
proach with respect to increasing number of partitions. For this purpose, we
distributed the data into 2, 4, 8, and 16 distributions. We executed the same
four queries that we previously used in the evaluation data. We wanted to
test the scalability, therefore, we selected the maximum K value of individual
query that is shown in Figure 8, i.e., for Q1 (K = 400000), Q2 (K = 50000),
Q3 (K = 150000), and Q4 (K = 200000). We used both local and remote
deployments explained in the previous section.

Figure 9 shows the response time for each query. As an overall scalability
analysis, for all queries, we were able to get the required K paths within a
reasonable amount of time (i.e. less than 10 minutes). In the local setting,
our approach response time is almost linear even with increasing number of
distributions. However for the remote setup, as expected, the response time
is slightly increased with increasing number of distributions. This is because
with more distributions the network cost was increased, and the response
time is around 30% increased with with doubling the number of partitions.

Title Suppressed Due to Excessive Length 31

For the local distributions setup, the increase in response time is marginal
with increasing the number of distributions as shown in Figure 9. Finally, as
we used synthetic data for partitioning and distribution, we noticed that with
the increase of partitioning, our experimental data started to become a kind
of random data as we discussed in section 5.2.4). This randomization of data
resulted into increase in communication cost. In contrast to the synthetic data,
the real-world datasets where each dataset represents a complete graph, our
approach was more scalable even for remote experiments as we discussed in
section 5.2.1 when we compared DpcLD with QPPDs.

Dist2 Dist4 Dist8 Dist16
0

200

400

Q1

Q2

Q3

Q4

(a) DpcLD local

Dist2 Dist4 Dist8 Dist16
0

200

400

600
Q1

Q2

Q3

Q4

(b) DpcLD remote

Fig. 9: Response time per query for different distributions

5.2.4 Randomized data and DpcLD performance

In this section, we show the result of testing DpcLD when the dataset is
randomly distributed, rather than being divided in the order provided. In the
original dataset, the triples are provided ordered by subject, meaning that
triples with the same subject are more likely to end up in the same partition.
The objective here is to show the extent of the impact of such a distribution
on the performance of DpcLD.

We randomized the training data using the shuf command14, partitioned it
as before, and loaded it into 4 remotely running Fuseki servers. This represents
an extreme case, unlikely to be encountered in practice, where triples are
distributed in a way that does not follow any specific pattern. It therefore
represents a “worst case scenario” for DpcLD, as a way of torture testing the
system.

Figure 10 shows the response time of DpcLD to compute answers for each
of the queries Q1-Q4 with the indicated K values on the training dataset
(10% DBpedia). Compared to the results obtained with the same K values as
depicted in Figure 4, the effect of random data distribution becomes obvious.
This emphasises how distributed approaches like DpcLD do rely on data being
distributed in a way that is meaningful and that supports balancing local

14 https://shapeshed.com/unix-shuf/

32 Qaiser Mehmood et al.

and remote computations. It is worth mentioning here that QPPDs failed to
respond when tested on the same setting, and that results are not available
with randomised datasets for TPF.

Q1-K(20152) Q2-K(154) Q3-K(4866)Q4-K(175560)

0

5

10

15

20

T
im

e
(m

in
)

DpcLD

Fig. 10: Response time per query from DpcLD with randomized dataset.

6 Conclusion and Futurework

In this paper, we propose DpcLD, an engine for finding paths in distributed
RDF datasets exposed as SPARQL endpoints. DpcLD is an index-free ap-
proach and hence does not require any pre-computations like QPPDs [41] for
generating the index. Since DpcLD does not require an index, it has the ca-
pability of querying up-to-date data. DpcLD exploits and aggregates partial
paths within a distributed environment to retrieve the required K paths. We
used both synthetic and real-world datasets and compared the performance
of DpcLD with distributed and centralized path finding approaches over RDF
datasets. Furthermore, we used two different evaluation settings to measure
the effect of the network cost on the runtime performance. The results suggest
that DpcLD outperforms other distributed methods and scales better as com-
pared to the best centralized approach for path retrieval over RDF datasets.
The results suggest that DpcLD, when tested for local computation, could be
applicable as an alternate choice to local traversal approaches when it comes
to deal with large amounts of data with less memory.

Currently, the DpcLD engine communicates only with a “shared” algorithm
running on remote endpoints and answering local path queries. However, with
some modifications, databases that support SPARQL1.1 property paths (e.g.,

Title Suppressed Due to Excessive Length 33

Virtuoso, Blazegraph, etc) could be adapted to achieve the same results, reduc-
ing the need for a specific shared algorithm. The extent of those adaptations
and whether reference implementations could be provided for them is an in-
teresting area to further explore. We plan to test DpcLD over larger real-wolrd
datasets, e.g., bio2rdf. Finally, the current implementation of the DpcLD en-
gine navigates only reachability queries, i.e., arbitrary paths between source
and target. We plan to introduce the regex-based regular path queries.

Acknowledgment

This work is partly supported by a research grant from Science Founda-
tion Ireland, co-funded by the European Regional Development Fund, for
the Insight SFI Research Centre for Data Analytics under Grant Number
SFI/12/RC/2289 P2. The work conducted in the University of Leipzig has
been supported by the project LIMBO (Grant no. 19F2029I), OPAL (no.
19F2028A), KnowGraphs (no. 860801), 3DFed(Grant no. 01QE2114B), and
SOLIDE (no. 13N14456)

34 Qaiser Mehmood et al.

References

1. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress testing of rdf
data management systems. In International Semantic Web Conference, pages 197–212.
Springer, 2014.

2. K. Anyanwu, A. Maduko, and A. Sheth. Sparq2l: towards support for subgraph extrac-
tion queries in rdf databases. In Proceedings of the 16th international conference on
World Wide Web, pages 797–806. ACM, 2007.

3. M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or how sparql 1.1
property paths will prevent adoption of the standard. In Proceedings of the 21st inter-
national conference on World Wide Web, pages 629–638, 2012.

4. Y. Bai, C. Wang, and X. Ying. Para-g: Path pattern query processing on large graphs.
World Wide Web, 20(3):515–541, 2017.

5. W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, and S. Schlobach. Lod laundro-
mat: a uniform way of publishing other people’s dirty data. In International Semantic
Web Conference, pages 213–228. Springer, 2014.

6. P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis. Using partial evaluation in
distributed query evaluation. In Proceedings of the 32nd international conference on
Very large data bases, pages 211–222, 2006.

7. P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis. Using partial evaluation in
distributed query evaluation. In Proceedings of the 32nd international conference on
Very large data bases, pages 211–222. VLDB Endowment, 2006.

8. J. Clark, S. DeRose, et al. Xml path language (xpath) version 1.0, 1999.
9. G. Cong, W. Fan, and A. Kementsietsidis. Distributed query evaluation with perfor-

mance guarantees. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 509–520, 2007.

10. G. Cong, W. Fan, A. Kementsietsidis, J. Li, and X. Liu. Partial evaluation for distributed
xpath query processing and beyond. ACM Transactions on Database Systems (TODS),
37(4):1–43, 2012.

11. P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth, F. L.
Keppmann, D. Miranker, J. F. Sequeda, and M. Wylot. Nosql databases for rdf: an em-
pirical evaluation. In International Semantic Web Conference, pages 310–325. Springer,
2013.

12. L. De Vocht, R. Verborgh, and E. Mannens. Using triple pattern fragments to enable
streaming of top-k shortest paths via the web. In Semantic Web Evaluation Challenge,
pages 228–240. Springer, 2016.

13. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

14. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a compar-
ison of rdf benchmarks and real rdf datasets. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 145–156, 2011.

15. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a compar-
ison of rdf benchmarks and real rdf datasets. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 145–156, 2011.

16. I. Ermilov, J. Lehmann, M. Martin, and S. Auer. LODStats: The data web census
dataset. In International Semantic Web Conference, pages 38–46. Springer, 2016.

17. W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed reachability
queries. arXiv preprint arXiv:1208.0091, 2012.

18. L. Galárraga, K. Hose, and R. Schenkel. Partout: a distributed engine for efficient rdf
processing. In Proceedings of the 23rd International Conference on World Wide Web,
pages 267–268, 2014.

19. Giraph Team. Apache giraph. http://giraph.apache.org.
20. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descrip-

tions. In Proceedings of the Second International Conference on Consuming Linked
Data-Volume 782, pages 13–24. CEUR-WS. org, 2011.

21. A. Gubichev and T. Neumann. Path query processing on very large rdf graphs. In
WebDB. Citeseer, 2011.

Title Suppressed Due to Excessive Length 35

22. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad: a distributed shared-
nothing rdf engine based on asynchronous message passing. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages 289–300, 2014.

23. O. Hartig. Querying a web of linked data: foundations and query execution, volume 24.
Ios Press, 2016.

24. O. Hartig and G. Pirrò. Sparql with property paths on the web. Semantic Web,
8(6):773–795, 2017.

25. S. Hertling, M. Schröder, C. Jilek, and A. Dengel. Top-k shortest paths in directed
labeled multigraphs. In Semantic Web Evaluation Challenge, pages 200–212. Springer,
2016.

26. J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf graphs.
Proceedings of the VLDB Endowment, 4(11):1123–1134, 2011.

27. M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M. Thuraisingham.
Heuristics-based query processing for large rdf graphs using cloud computing. IEEE
Transactions on Knowledge and Data Engineering, 23(9):1312–1327, 2011.

28. M. F. Husain, L. Khan, M. Kantarcioglu, and B. Thuraisingham. Data intensive query
processing for large rdf graphs using cloud computing tools. In 2010 IEEE 3rd Inter-
national Conference on Cloud Computing, pages 1–10. IEEE, 2010.

29. N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys (CSUR),
28(3):480–503, 1996.

30. Z. Kaoudi and I. Manolescu. Rdf in the clouds: a survey. The VLDB Journal, 24(1):67–
91, 2015.

31. G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Supercom-
puting’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing, pages
29–29. IEEE, 1995.

32. V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, and P. Castagna. Jena-hbase: A dis-
tributed, scalable and efficient rdf triple store. In Proceedings of the 11th International
Semantic Web Conference Posters & Demonstrations Track, ISWC-PD, volume 12,
pages 85–88. Citeseer, 2012.

33. K. J. Kochut and M. Janik. Sparqler: Extended sparql for semantic association discovery.
In European Semantic Web Conference, pages 145–159. Springer, 2007.

34. D. Kossmann. The state of the art in distributed query processing. ACM Computing
Surveys (CSUR), 32(4):422–469, 2000.

35. E. V. Kostylev, J. L. Reutter, and M. Ugarte. Construct queries in sparql. In 18th
International Conference on Database Theory (ICDT 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

36. V. Le Anh and A. Kiss. Efficient processing regular queries in shared-nothing parallel
database systems using tree-and structural indexes. In ADBIS Research Communica-
tions, 2007.

37. K. Lee and L. Liu. Scaling queries over big rdf graphs with semantic hash partitioning.
Proceedings of the VLDB Endowment, 6(14):1894–1905, 2013.

38. K. Lee, L. Liu, Y. Tang, Q. Zhang, and Y. Zhou. Efficient and customizable data
partitioning framework for distributed big rdf data processing in the cloud. In 2013
IEEE Sixth International Conference on Cloud Computing, pages 327–334. IEEE, 2013.

39. F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed data management using mapre-
duce. ACM Computing Surveys (CSUR), 46(3):1–42, 2014.

40. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 135–146.
ACM, 2010.

41. Q. Mehmood, M. Saleem, R. Sahay, A.-C. N. Ngomo, and M. D’Aquin. Qppds: Querying
property paths over distributed rdf datasets. IEEE Access, 7:101031–101045, 2019.

42. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. Dbpedia sparql benchmark–
performance assessment with real queries on real data. In International semantic web
conference, pages 454–469. Springer, 2011.

43. J. Myung, J. Yeon, and S.-g. Lee. Sparql basic graph pattern processing with iterative
mapreduce. In Proceedings of the 2010 Workshop on Massive Data Analytics on the
Cloud, pages 1–6, 2010.

36 Qaiser Mehmood et al.

44. M. Nolé and C. Sartiani. Regular path queries on massive graphs. In Proceedings of
the 28th International Conference on Scientific and Statistical Database Management,
pages 1–12, 2016.

45. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110, 2008.

46. T. Padiya and M. Bhise. Dwahp: workload aware hybrid partitioning and distribution of
rdf data. In Proceedings of the 21st International Database Engineering & Applications
Symposium, pages 235–241, 2017.

47. N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris. H2rdf: adaptive query
processing on rdf data in the cloud. In Proceedings of the 21st International Conference
on World Wide Web, pages 397–400, 2012.

48. N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, and N. Koziris. H2rdf+ an
efficient data management system for big rdf graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 909–912, 2014.

49. P. Peng, L. Zou, L. Chen, and D. Zhao. Adaptive distributed rdf graph fragmentation
and allocation based on query workload. IEEE Transactions on Knowledge and Data
Engineering, 31(4):670–685, 2018.

50. P. Peng, L. Zou, and R. Guan. Accelerating partial evaluation in distributed sparql
query evaluation. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 112–123. IEEE, 2019.

51. M. Przyjaciel-Zablocki, A. Schätzle, T. Hornung, and G. Lausen. Rdfpath: path query
processing on large rdf graphs with mapreduce. In Extended Semantic Web Conference,
pages 50–64. Springer, 2011.

52. S. Qiao and Z. M. Özsoyoğlu. Rbench: Application-specific rdf benchmarking. In Pro-
ceedings of the 2015 acm sigmod international conference on management of data,
pages 1825–1838, 2015.

53. B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In European
semantic web conference, pages 524–538. Springer, 2008.

54. K. Rohloff and R. E. Schantz. High-performance, massively scalable distributed sys-
tems using the mapreduce software framework: the shard triple-store. In Programming
support innovations for emerging distributed applications, pages 1–5. 2010.

55. M. Saleem, A. Hasnain, and A.-C. N. Ngomo. Largerdfbench: a billion triples benchmark
for sparql endpoint federation. Journal of Web Semantics, 48:85–125, 2018.

56. M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A.-C. Ngonga Ngomo. A fine-grained
evaluation of sparql endpoint federation systems. Semantic Web, 7(5):493–518, 2016.

57. M. Saleem and A.-C. N. Ngomo. Hibiscus: Hypergraph-based source selection for sparql
endpoint federation. In European semantic web conference, pages 176–191. Springer,
2014.

58. M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari, Q. Mehmood, and A.-C.
Ngonga Ngomo. How representative is a sparql benchmark? an analysis of rdf triplestore
benchmarks. In The World Wide Web Conference, pages 1623–1633, 2019.

59. S. Salihoglu and J. Widom. Gps: A graph processing system. In Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, pages
1–12, 2013.

60. L. H. Z. Santana and R. d. S. Mello. An analysis of mapping strategies for storing
rdf data into nosql databases. In Proceedings of the 35th Annual ACM Symposium on
Applied Computing, pages 386–392, 2020.

61. V. Savenkov, Q. Mehmood, J. Umbrich, and A. Polleres. Counting to k or how sparql1.
1 property paths can be extended to top-k path queries. In Proceedings of the 13th
International Conference on Semantic Systems, pages 97–103. ACM, 2017.

62. A. Schätzle, M. Przyjaciel-Zablocki, T. Hornung, and G. Lausen. Pigsparql: Übersetzung
von sparql nach pig latin. Gesellschaft für Informatik eV, 2011.

63. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: a federation
layer for distributed query processing on linked open data. In Extended Semantic Web
Conference, pages 481–486. Springer, 2011.

64. B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a memory cloud.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 505–516. ACM, 2013.

Title Suppressed Due to Excessive Length 37

65. K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al. The hadoop distributed file system.
In MSST, volume 10, pages 1–10, 2010.

66. E. Sirin. Stardog - a path of our own. https://www.stardog.com/blog/a-path-of-our-
own/.

67. N. Team. Neo4j. https://neo4j.com.
68. J. Umbrich, A. Hogan, A. Polleres, and S. Decker. Link traversal querying for a diverse

web of data. Semantic Web, 6(6):585–624, 2015.
69. A. Valdestilhas, T. Soru, M. Nentwig, E. Marx, M. Saleem, and A.-C. N. Ngomo. Where

is my uri? In European Semantic Web Conference, pages 671–681. Springer, 2018.
70. L. G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, 1990.
71. X. Wang, J. Wang, and X. Zhang. Efficient distributed regular path queries on rdf

graphs using partial evaluation. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 1933–1936, 2016.

72. X. Wang, J. Wang, and X. Zhang. Efficient distributed regular path queries on rdf graphs
using partial evaluation. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pages 1933–1936. ACM, 2016.

73. X. Wang, S. Wang, Y. Xin, Y. Yang, J. Li, and X. Wang. Distributed pregel-based
provenance-aware regular path query processing on rdf knowledge graphs. World Wide
Web, pages 1–32, 2019.

74. Y. Xin, X. Wang, D. Jin, and S. Wang. Distributed efficient provenance-aware regular
path queries on large rdf graphs. In International Conference on Database Systems for
Advanced Applications, pages 766–782. Springer, 2018.

75. J. X. Yu and J. Cheng. Graph reachability queries: A survey. In Managing and Mining
Graph Data, pages 181–215. Springer, 2010.

76. J. X. Yu and J. Cheng. Graph reachability queries: A survey. In Managing and Mining
Graph Data, pages 181–215. Springer, 2010.

77. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web
scale rdf data. Proceedings of the VLDB Endowment, 6(4):265–276, 2013.

View publication statsView publication stats

https://www.researchgate.net/publication/355710532

