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ABSTRACT
With the rise of linked data, more and more semantically
described information is being published online according
to the principles and technologies of the Semantic Web (es-
pecially, RDF and SPARQL). The use of such standard
technologies means that this data should be exploitable,
integrable and reusable straight away. However, once a
potentially interesting dataset has been discovered, signif-
icant efforts are currently required in order to understand
its schema, its content, the way to query it and what it can
answer. In this paper, we propose a method and a tool to
automatically discover questions that can be answered by
an RDF dataset. We use formal concept analysis to build
a hierarchy of meaningful sets of entities from a dataset.
These sets of entities represent answers, which common char-
acteristics represent the clauses of the corresponding ques-
tions. This hierarchy can then be used as a querying in-
terface, proposing questions of varying levels of granularity
and specificity to the user. A major issue is however that
thousands of questions can be included in this hierarchy.
Based on an empirical analysis and using metrics inspired
both from formal concept analysis and from ontology sum-
marisation, we devise an approach for identifying relevant
questions to act as a starting point to the navigation in the
question hierarchy.
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1. INTRODUCTION
The idea of a Semantic Web is quickly gaining momen-

tum as more and more organisations are exposing their data
in structured, semantically described datasets following the
principles of linked data [2]. When coming across such a
dataset, a significant effort is generally required before it can
be exploited. A variety of approaches can be envisaged to
become familiar with the content and the structure of such
a dataset, including inspecting its schema (i.e., the ontol-
ogy) with an ontology editor (such as Protégé1 or the NeOn
Toolkit2), using a graph representation, a faceted browser,
or sending test queries in a trial and error approach.

To simplify this process, example queries are often used
as a way to characterise a dataset (see, e.g., the use of com-
petency questions in ontology engineering [11]). By provid-
ing a simple representation of the kind of answers a dataset
can provide, they help in better understanding what is the
scope of the dataset, and how it can be used. In addition,
as questions can be formulated in a way close to natural
language, such an approach has the advantage of support-
ing users unfamiliar with the underlying technologies (e.g.,
the RDF3 and OWL4 representation languages, and the
SPARQL5 query language), providing easy access points to
the dataset.

In this paper, we propose an approach based on automat-
ically extracting a set of questions that can be answered
by a dataset. We use formal concept analysis (FCA) to
identify sets of objects from a dataset that share common
properties. Each of these sets represents the answers to a
particular question, which is characterised by the properties
shared by the elements of the set. One of the advantages of
using FCA is that these sets are organised in a hierarchy (a
lattice), relating any extracted question with more general
and more specific ones. This hierarchy is used to generate
a navigational query interface, allowing the user to browse
the set of possible questions to a dataset, together with their
answers.

However, one of the main drawbacks of this method is that
the application of FCA can generate thousands of questions,
making browsing the hierarchy cumbersome. We therefore
also study a set of measures, inspired both from ontology
summarisation and from FCA, to identify the questions which
are more likely to be close to the ones of interest to the user.

1http://protege.stanford.edu/
2http://neon-toolkit.org
3http://www.w3.org/RDF/
4http://www.w3.org/TR/owl-ref/
5http://www.w3.org/TR/rdf-sparql-query/



Through studying questions proposed by human users of
three test datasets, we propose a combination of measures
which help identifying a reasonable entry point into the gen-
erated question hierarchy, and so to the dataset.

2. FORMAL CONCEPT ANALYSIS
FCA [6, 15] is a formal, generic framework, generally as-

sociated with the fields of data mining and knowledge dis-
covery. In broad terms, it is concerned with identifying from
raw data, patterns of objects’ characteristics that form for-
mal concepts.6 Such a concept is characterised both by an
intent – i.e., a set of attributes, and an extent – i.e., the set
of objects in the data that share these attributes.

More formally, FCA relies on the notion of a formal con-
text, which represents the raw data. A formal context C =
(G, M, I) is made of a set of objects G, a set of attributes M
and a binary relation I ⊆ G×M . In simpler terms, a formal
context is a binary matrix where the rows represent objects,
and columns represent attributes of these objects. Given O
a set of objects of G, we note O′ the set of attributes of M
which are shared by all the objects of O. In the same way,
given A ⊆ M , A′ ⊆ G is the set of objects that share all
the attributes in A. The double application of (.)′ is said
to represent the closure of a set of objects or attributes. In
other terms, O′′ and A′′ are said to be closed.

A formal concept of a context C = (G, M, I) is charac-
terised by a pair (O, A), where O ⊆ G and A ⊆ M . O is
called the extent and represents the objects that share the
attributes of A, i.e., O = A′. A is called the intent and
represents the attributes that are shared by the objects of
O, i.e., A = O′. Note that this implies that O = O′′ and
A = A′′, i.e., the concept (O, A) is equivalently defined both
by its set of objects, and by its set of attributes.

The set of all concepts that can be derived from a formal
context form a lattice, relying on the subconcept relation
(denoted by ≤). Indeed, we say that a concept (O1, A1) is
a subconcept of another concept (O2, A2) – i.e., (O1, A1) ≤
(O2, A2) – if O1 ⊆ O2 and (equivalently) A2 ⊆ A1. This con-
cept lattice has an upper-bound and a lower-bound (which
are often the concept with an empty extent and the one with
an empty intent respectively).

3. BUILDING A CONCEPT LATTICE TO
IDENTIFY QUESTIONS IN A DATASET

Our goal here is to extract from a dataset, represented
in RDF, a set of questions it can answer. We start by in-
troducing simple notations for describing an RDF dataset.
We illustrate these notations, as well as most of the other
examples in the article, using the FOAF7 profile of Tom
Heath on the Knowledge Media Institute website (http:
//kmi.open.ac.uk/people/tom/rdf).

In such a dataset, we essentially focus on instances. In-
stances represent individual objects that are members of
classes. For example, tom is an instance of the class Person.
This is represented in RDF through the use of the property
rdf:type, but we use here the simplified notation

6To avoid ambiguities in this paper, we use the term concept
to refer to the notion of formal concept in FCA, and the term
class to refer to the corresponding entities in ontologies
7http://www.foaf-project.org/

Person(tom).8 Instances such as tom can have properties
linking them to other instances (e.g., to represent the fact
that Tom knows Enrico Motta) or to literal values (e.g., to
represent the fact that Tom’s phone number is“+44-(0)1908-
653565”). Such assertions are occurrences of binary rela-
tions, presented in our simplified notation as
knows(tom, enrico-motta) and phone(tom,
"+44-(0)1908-653565") respectively.

The classes such as Person and the properties such as
knows come from the ontology(ies) used in the dataset, where
they are part of a taxonomy: for example, Person can be
a subclass of another class Agent and knows can be a sub-
property of a property hasMet. We represent this with the
notation Person $ Agent and knows $ hasMet respectively.
Such taxonomic relationships can be either asserted in the
dataset, or inferred from the definitions of the classes and
properties.

3.1 Assumptions and Requirements
We focus here on questions for which the answers are

sets of objects, such as “Who does Tom know?”. More pre-
cisely, we consider questions corresponding to queries to the
dataset for which results are set of instances (e.g., all the
people that Tom knows). A question itself is characterised
by a set of properties that are common to the elements of
the answer. In this sense, it can be related to a conjunctive
query – e.g.,“Who knows Tom?” corresponds to the query
Person(?x) ∧ knows(?x, tom).

In addition, we assume that a significant question to a
dataset should have more than one answer, as querying for
the common characteristics of a unique object does not ap-
pear relevant. Also, questions complying with our require-
ments should be related with each other in a hierarchy. For
example, it is natural to consider that “What are the things
that Tom knows?” is more general than“What are the people
that Tom knows?’ (i.e., “Who does Tom know?”), or that
“Who has Tom met?” is more general than “Who does Tom
know?”. In other words, a question is more general than
another if it includes its set of answers.

3.2 Building the Formal Context
The basic idea underlying the technique presented here

is relatively straightforward: We want to build a concept
lattice where each concept represents a question, with the
extent being a set of instances from the dataset correspond-
ing to answers, and the intent the common characteristics
of these instances, forming the clauses of the question. We
therefore need to build a formal context C = (G, M, I) where
G is the set of all instances of the dataset, and M corre-
sponds to all the possible characteristics of these instances.

We consider three types of attributes that can be ap-
plied to an instance o of the dataset. Attributes of the
form Class::C appear if o is an instance of C (i.e., C(o)).
Attributes of the form p:-m appear if o is related through
the property p to the instance or the literal value m (i.e.,
p(o, m)). Attributes of the form p-:m are used if the instance
m is related to o through the property p (i.e., p(m,o)).

In order to extend this explicit set of attributes with in-
ferred statements, we also generate additional attributes
substituting the classes, properties, and individuals in exist-
ing ones with all the possible combinations of superclasses,

8In this simplified notation, we use the local ID or label of
an entity, instance, property or class, instead of its full URI.



superproperties and types that can be inferred. For ex-
ample, we extend Class::Person and knows:-Enrico-Motta
with inferred attributes of the form Class::Agent, hasMet:-
Enrico-Motta, knows:-Person and hasMet:-Person.

Having built the set of all attributes for all the instances
of the dataset, we can now build the matrix relating these
attributes to these instances/objects, as a formal context for
FCA.

3.3 Creating the Lattice and Eliminating Re-
dundancies

One parameter of a concept lattice building tool is the
minimum support for a concept to be included in the lattice,
i.e., the minimum cardinality of its extent. In accordance
with our assumptions and requirements (Section 3.1), we
used 2 as minimum support.

An example lattice for the dataset http://kmi.open.ac.
uk/people/tom/rdf is presented in Figure 1(a). Five con-
cepts are present in the hierarchy, with the top one rep-
resenting all the objects of the dataset and therefore, all
the instances of the class Thing, the class of everything in
OWL. It can also be noticed in this example that significant
parts of the elements characterising some of the concepts
are redundant and therefore not really useful. Indeed, hav-
ing both the attributes tom-:knows and Person-:knows, or
Class::Thing and Class::Person is not useful as one of the
attributes can be inferred from the other. Checking such a
relationship between attributes, we reduce the definition of
the intents of concepts to keep only the non-redundant ones
as shown in Figure 1(b).

3.4 Using the Concept Lattice as a Query In-
terface

As mentioned before, the basic idea of our approach is
that each concept of the concept lattice represents a ques-
tion, with its intent being the components of the question,
and its extent the answers. The goal is to use this lattice as
the basis for a navigational interface to query the underly-
ing dataset. The first step is therefore to provide a simple
representation for each concept/question, which would be
reasonably readable by a human user. We derive such a
representation from the (non redundant) intent of a con-
cept as a ‘question’ in pseudo-natural language, following
the template:

What are the (C1, ..., Cn) that (p1 m1, ...pm mm)
and that (n1 q1, ..., nt qt)

where {C1, ...Cn} are extracted from attributes of the
form Class::C1, ..., Class::Cn, {p1 m1, ...pm mm} are ex-
tracted from attributes of the form {p1:-m1, ...pm:-mm} and
{n1 q1, ..., nt qt} are extracted from attributes of the form
{q1-:n1, ..., qt-:nt}. We also adapt this general structure de-
pending on whether or not one of the attribute sets is empty
and the names of classes, properties and individuals are re-
duced to the local fragment of their URI, or to the label
of the entity if available. For example, the concept at the
bottom left of the lattice in Figure 1(b) is transformed into
the question:

What are the (Person) that (tom knows)

Interpreting concepts as questions in this way means that
the obtained lattice represents a complete hierarchy of ques-
tions that can be presented to the user as a query interface

to the considered dataset (see the example Figure 2 where
the question “What are the (Person)?” has been selected,
showing the sub-questions, the super-questions, alternative
questions about Tom’s projects and interests, as well as the
answers to the selected question).

However, while on our toy example the results are simple
and easy to navigate, on a bigger dataset, this process can
result in thousands of questions being generated. In the next
section, we therefore investigate measures that can be used
to identify a set of questions more likely to be of interest to
a user, as a way to generate a reasonable entry point into a
large question hierarchy.

4. MEASURINGTHERELEVANCEAND IN-
TERESTINGNESS OF A QUESTION

In order to identify approaches to find a set of questions
more likely to be of interest to a user, we take inspiration
from the works prominent in two areas: ontology summari-
sation and concept lattice simplification.

4.1 Measures Inspired from Ontology Sum-
marisation

In [12], we presented a work on extracting the key classes
of a (possibly populated) ontology, based on a variety of dif-
ferent metrics taking into account in particular the “topol-
ogy” of the ontology, its structure, and external elements
such as the popularity of a concept. We look at three of
these criteria which appear specially relevant:

Coverage. In ontology summarisation, this criterion intends
to take into account the fact that a good summary
should contain elements from all the significant parts
of the ontology. This also appears important here, as
we would expect any point of the lattice to be reachable
from the identified questions, acting as entry points to
the hierarchy. We define the set of questions reach-
able from another question using the notions of filter
and ideal from FCA (or more generally, from lattice
theory [1]). The ideal of a concept is the set of all its
direct or indirect subconcepts, or in other terms, all the
concepts linked through the transitive closure of the ≤
relation. Similarly, the filter of a concept corresponds
to the set of concepts that are reachable through the
superconcept relation. We define the coverage of a
question in our question hierarchy as the union of the
filter and ideal of the corresponding concept, and in-
dicate that a set of questions covers the dataset when
the union of the coverages of its elements correspond
to the entire lattice.

Level. To extract key classes from an ontology, one of the
ideas is that key classes are never too general or too
specific, but can be found in the middle layer of the
hierarchy. A similar idea can be applied here, as a we
can expect very general or very specific questions not
to be the most useful to the user. We use a measure
of the level of the question/concept of the hierarchy
as the distance between the question/concept and the
root concept.

Density. In ontology summarisation, one of the assump-
tions is that the richer the representation of a class is
(i.e., the denser it is in terms of the properties attached



(a) (b)

Figure 1: Concept lattice generated from http://kmi.open.ac.uk/people/tom/rdf (a); with redundancy elim-
inated (b). In both figures, the bottom concept of the lattice has been omitted.

Figure 2: Simple example of the concept lattice-based interface to querying a dataset.

to it) the more likely it is to be important. Here, the
situation is slightly different, as the related notion of
density (i.e., the number of attributes in the intent of
the concept) is closely related to the one of level (the
more specific a concept is, the more likely it is to have
a large number of attributes). Therefore, we cannot
assume density to be used as criterion to maximise,
but rather as a metric which should be not too high
(useful questions are probably not the most complex
ones), but also not too low (useful questions should be
sufficiently well defined).

4.2 Measures Inspired from FCA
There are only a few metrics that have been devised in

FCA to try to identify the most “interesting” concepts. The
most common one is the support, but a notion of stability,
applicable both to the intent and the extent of a concept,
has been recently discussed as a way to reduce a concept
lattice, providing a possible measure to be applied to our
problem.

Support. As already mentioned, the support of a concept
is the cardinality of its extent, i.e., the number of ob-
jects it represents (and so the number of answers to the

question). As noticed in [10] to motivate the stability
measure, there are many scenarios where the most in-
teresting concepts might not be the ones representing
the largest number of objects. Here as well, an inter-
esting question might be one with few answers, while
questions with a large number of answers might be
meaningless.

Intensional Stability. Intensional stability as described
in [10] intends to define a stable concept as one whose
“intent does not depend much on each particular object
of the extent”. Given a concept (O, A) where O is the
extent and A is the intent, the degree of intensional

stability σi is defined by σi(O, A) = |{C⊆O|C′=A}|
2|A| .

However, as explained in [10], computing such a mea-
sure is complex. We therefore use an approximation,
which corresponds to the ratio between the cardinality
of the concept’s extent and the one of the smallest of
its direct super-concepts, i.e., σi

ap(O, A) = |O|
minn∈N (|n|) ,

where N is the set of extents of the direct supercon-
cepts of (O, A) in the lattice.

Extensional Stability. In a similar way as for intensional
stability, extensional stability can be defined at the



level to which the extent of a concept depends on
a particular attribute of the intent. It is defined as

σe(O, A) = |{C⊆A|C′=O}|
2|O| and we use the following ap-

proximation: σe
ap(O, A) = |A|

minb∈B(|b|) where B is the

set of intents of the direct subconcepts of (O, A) in the
lattice.

5. EXPERIMENT
While the previous section discusses measures that can be

used to assess the potential “interestingness” of a question
generated using our FCA-based method, we present here a
user-based experiment to find out which of these measures
are the most relevant and how to parametrize them. We
asked 12 users with various degrees of familiarity with se-
mantic technologies to inspect a reasonably large dataset
and express up to 5 questions they believed to be interest-
ing on this dataset.

5.1 Datasets
We used 4 different datasets as testbeds for our experi-

ment. Three of them, called geography, jobs and restaurants
were created by the University of Texas, Austin [14], and
later transformed into OWL/RDF [7] for the purpose of eval-
uating a query answering system. The other one (drama)
concerns modern productions of classical greek drama and
was built locally for the needs of a project in the domain
of Arts. Two of the evaluators for this dataset are actually
domain experts involved with the data, with no background
in semantic technologies. For each of the datasets, we con-
structed the concept lattice as explained earlier in this pa-
per. Information about each dataset and the corresponding
lattices is given in Table 1.

Table 1: Summary of the test datasets.
Dataset Nb. Instances Nb. Concepts

geography 715 842
jobs 4142 66284

restaurants 9746 6810
drama 19294 10083

5.2 Results
Out of the 44 valid questions we obtained,9 we tested that

27 (61%) matched the format of questions produced by our
method, and therefore corresponded to questions/concepts
in the generated lattices. In the questions that could not
be represented we found several reasons why they diverged
from our model, which could be considered as possible exten-
sions in the future, including for example the use of disjunc-
tive clauses (e.g., “Which Greek plays have been performed
in Kenneth McLeish’s translations or versions?”) or of nu-
merical manipulations/tests on values (e.g., “What are the
restaurants that have ratings higher than 2.5?”).

The resulting set of user-generated questions represent a
useful sample to analyse the range of values taken by the dif-
ferent measures to be considered. Coverage is not evaluated

9Some of the questions given by users could not be answered
by a set of instances in the considered dataset. There was no
overlap between the questions proposed by different users.

here as it cannot be assessed at the level of an individual
question. Since our goal is to obtain a set of questions as
an entry points to the hierarchy, we consider coverage as a
fundamental criterion to be enforced while generating the
initial question set.

Level. Amongst all the valid and representable questions
given by evaluators, the average level of a question
in its lattice is 4.46. This is slightly higher than the
average level of all the concepts in the lattices and it is
also worth mentioning that none of the questions were
at a level lower than 3 or higher than 7. This validates
our hypothesis that questions of interest are generally
not the most general, or the most specific, but are
located within a small range around the “centre” of
the lattice, which corresponds to the average level. We
therefore define a normalised metric ml for a concept
of our question hierarchy which is computed as the
distance between the concept’s level and the average
level in the lattice.

Density. In the case of the density measure, our initial
hypothesis was also verified that interesting questions
tend to be defined simply, but with sufficient elements
to represent a distinct set of answers. Indeed the av-
erage density of the valid, representable questions is
2.14, and the measure is always included in the range
[1..3] (most of the questions being of density 2, such
as “What are the restaurants in San Francisco?”). We
can argue that there is a strong relationship between
the level of a concept and the density of the question.
However, this highly depends on the structure of the
original dataset, as for example, “What are the restau-
rants in a city?” is more general than the previous
question, while also being of density 2. We therefore
define the normalised metric md based on the differ-
ence between the density of a given concept and 2,
which seems to be the “standard” for simple, but suf-
ficiently defined questions.

Support. Depending on the dataset, the support of the
provided questions can vary a lot. For example, ques-
tions in the jobs dataset tend to have a lot of answers
(up top 3402), while in the drama dataset, they are
generally smaller (from 2 to 38).

Intensional Stability. The expectation related to inten-
sional stability is that the more stable a concept is, the
more it is supposed to represent a significant and dis-
tinct set of individuals. However from our experiment,
there does not seem to be any correlation between a
question being identified by evaluators as interesting,
and its intensional stability. Values can vary from very
low (0.0008) to high (0.82) even for questions provided
by a single user, regarding a single dataset.

Extensional Stability. Surprisingly, contrary to intensio-
nal stability, the values of extensional stability appear
very stable, especially within one dataset, and always
high (between 0.75 and 1.0), in particular if compared
with the average in the dataset (around 0.4 for all of
them). Indeed, it appears that the definition of the
question as being a significant subset of the elements
of more specific questions is an important criterion to
identify interesting questions.



Figure 3: Average scores for the six tested measures on the Course and Podcast datasets.

Considering the results discussed above, we define an ag-
gregated metric to rank questions in a question hierarchy as
the linear combination of the 3 metrics ml, md and σe

ap on
concepts:

m(O, A) = w1.ml(O, A) + w2.md(O, A) + w3.σ
e
ap(O, A)

What constitutes an interesting question to a dataset is very
dependent on the user and the context in which the answer
would be used, but based on the results obtained above, we
expect such a metric to be adequate in supporting the identi-
fication of reasonable entry points to the question hierarchy.

6. IMPLEMENTATION AND VALIDATION
The overall method presented here can be divided in two

separate processes: 1- the creation of the non-redundant
hierarchy of question, and 2- the generation of the user in-
terface based on this hierarchy and using the metric defined
above. For the first process, we developed a program that
generates a formal context in the input format of the lattice
generation tool from a SPARQL endpoint, according to the
method described in Section 3.2. We use the OWLIM triple
store,10 which partially supports OWL/RDF inferences. We
use the implementation of the CHARM algorithm provided
by the CORON tool [8] to generate the concept lattice.

We devised a simple algorithm in order to identify in the
generated lattice a set of questions that both rank high ac-
cording to a chosen metric11 and which, all together, max-
imally cover the lattice (by choosing questions which are

10http://www.ontotext.com/owlim/
11A special case is considered for the support measure re-
garding the top – i.e., the root – of the hierarchy. It is
indeed always the concept with the highest support, and is
therefore excluded from the ranking.

not in the same branch as an already chosen question). In
order to validate the choice of the aggregated measure de-
fined above, we tested it together with 5 other measures
in 2 different datasets. We used as datasets the collection
of 614 course descriptions and 1706 video podcasts from
http://data.open.ac.uk. We generated the list of entry
questions for each of these datasets using each of the fol-
lowing metrics: a random metric, ml (level) alone, md (den-
sity) alone, support, σe

ap (stability) alone and the aggregated
measure of level, density and stability, using a naive distri-
bution of weights (i.e., w1 = w2 = w3 = 1

3 ). We then asked
six different users to give a score between 1 and 5 to each
of the sets of questions (presented in a random order), 5
corresponding to the highest level of interest.

The results are presented in Figure 3. As can be seen, the
aggregated measure appears to provide significantly better
results than all of the other measures on both datasets, es-
pecially compared to the random measure. As expected, the
level, density and stability of questions all contribute to iden-
tifying interesting questions (to different extents), but are
more appropriate when used in combination. More surpris-
ingly, the support (i.e., number of answers) provide better
results than could have been expected from our experiment.
A possible explanation is that, in datasets where objects are
described homogeneously (i.e., they all have more or less
the same structure), support is highly correlated with the
measures related to the question’s level and density.

The application of the querying interface has already been
shown in Figure 2 on our toy example. Figure 4 gives an-
other example, based on the restaurant dataset. It is gen-
erated from the concept lattice using as initial questions the
set computed using the aggregated measure. The value of
this measure is represented in the interface by the font size



Figure 4: Example of application of the lattice-based query interface on the restaurant dataset.

used for the question. The first question is also attached to
the questions directly more general and directly more spe-
cific. Any question displayed can be selected, and will then
be re-displayed at the top of the list, with more general and
more specific questions, as well as the set of its answers (for
example, in Figure 4, the question “What are the (Restau-
rant) that (ratingString good)” has been selected).

7. RELATED WORK
As discussed previously, our approach relates to ontology

summarisation, where an abstract summary of a supposedly
complex ontology is being produced, for example in the form
of a set of important concepts [12]. In [16], the authors pro-
pose a technique to extract a sub-graph of an RDF graph
to act as a summary. Similar ideas have also been recently
applied to large RDF datasets, including for example the
ExpLOD tool [9] which produces a visual representation of
a dataset, clustering (and therefore abstracting) elements
together to produce an overview graph of the dataset. As
can be seen from these initial works, the idea of summaris-
ing datasets and ontologies is only starting to gain attention.
While providing example queries is generally seen as an ef-
ficient way for somebody to quickly understand a dataset
or an ontology,12 to the best of our knowledge, there have
not been any attempt before at summarising a dataset by
providing sets of automatically extracted questions.

FCA, and especially concept lattices, have been used in
several approaches to support the task of browsing struc-
tured datasets. For example, in the context of image search, [3]
makes use of several lattices, representing different aspects of
images (shape, luminance and “semantic content”, with the
“semantic content” aspect being based on an ontology). In

12The system SchemaPedia (http://schemapedia.com/) for
example gives manually created example queries for the on-
tologies it collects.

this case, the lattices act as support for browsing the results
of a search. In [4], the author develops a similar idea, using
a concept lattice built from the metadata attached to doc-
uments, but makes use of logical concept analysis, a variant
of FCA where the attributes are logical properties, partially
ordered by a relation of subsumption. Other works have
been devised that generate views on populated ontologies,
which correspond to formal concepts that can be visualised
as concept lattices, and be defined by users [13]. A signif-
icant difference between these approaches and ours is that
we focus on providing an overview of a dataset using the
set of questions it can answer, and a navigation mechanism
allowing to browse these questions, rather than the data it-
self. Closer to our work in that sense is the recent paper [5].
Indeed, in this work, the author relies on the principles of
FCA to provide a navigation mechanism based on queries to
the underlying dataset. While here, we focus on providing
a navigation interface to the data (through the questions),
targeting users unfamiliar with both the data and the un-
derlying technologies, [5] concentrate on obtaining queries
exploiting the high expressivity of the underlying language
(close to the SPARQL language). Our approach also in-
cludes, as a core mechanism, the ability to identify sets of
questions more likely to provide useful entry points to the
dataset.

8. CONCLUSION
In this paper, we have presented an approach to generate

a hierarchy of questions that could be asked to a dataset
using formal concept analysis, and to derive a navigational
query interface to this dataset based on this hierarchy. This
approach relies on constructing a concept lattice from the
description of the instances of the dataset, creating groups
(concepts) of instances having common properties. How-
ever, for a large dataset, the number of these concepts (and



so of the corresponding questions) can be very large. We
also study the measures providing indications of the poten-
tial interest and relevance of an extracted question. Our ex-
periment shows that the identified measures provide a good
base to select a set of reasonably interesting questions to act
as an entry point into the dataset.

One of the most obvious drawbacks of the approach pre-
sented here is the complexity of the methods deployed, espe-
cially ontological reasoning and concept lattice generation.
Since these complex methods only need to be used once per
dataset, in an offline process, the few minutes they take on
our test datasets cannot be considered a strong limitation.
However, some level of approximation and optimisation will
have to be applied to use our tools on significantly larger
datasets, containing several millions of statements.

There are many extensions that can be considered to the
presented approach. Indeed, our experiment also identified
some of the most common limitations of our model in terms
of the expressiveness of the considered questions. Some of
these elements, such as the possibility to add tests on nu-
merical values, could be added to the model. They would
however increase significantly the size of the lattice, and
therefore the overall complexity of the approach.

Also, while the approach has been shown to provide promis-
ing results on self-contained datasets, an interesting future
work would be to take into account elements derived from
links to external datasets, making it possible to explore the
questions that can be answered from integrating multiple
sources of data.
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