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ABSTRACT 1 

Genetic admixture, resulting from the recombination between structural groups, is frequently 2 

encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate 3 

substantial non-additive genetic variance and contrasted levels of inbreeding which can 4 

impact trait variation. This study aimed at testing recent methodological developments for the 5 

modelling of inbreeding and non-additive effects in order to increase prediction accuracy in 6 

admixed populations. Using two maize (Zea mays) populations of hybrids admixed between 7 

dent and flint heterotic groups, we compared a suite of five genomic prediction models 8 

incorporating (or not) parameters accounting for inbreeding and non-additive effects with the 9 

natural and orthogonal interaction approach (NOIA) in single and multi-environment 10 

contexts. In both populations, variance decompositions showed the strong impact of 11 

inbreeding on plant yield, height and flowering time which was supported by the superiority 12 

of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In 13 

most cases dominance variance was reduced when inbreeding was accounted for. The model 14 

including additivity, dominance, epistasis and inbreeding effects appeared to be the most 15 

robust for prediction across traits and populations (+0.054 in predictive ability for mean 16 

yield). In a multi-environment context, we found that the inclusion of non-additive and 17 

inbreeding effects was advantageous when predicting hybrids not yet observed in any 18 

environment. Overall, comparing variance decompositions was helpful to guide model 19 

selection for genomic prediction. Finally, we recommend the use of models including 20 

inbreeding and non-additive parameters following the NOIA approach to increase prediction 21 

accuracy in admixed populations. 22 

 23 

INTRODUCTION 24 

Hybrid breeding exploits fundamental principles of evolutionary biology for improving crop 25 

and animal performance. When performing intraspecific crosses between two natural 26 

populations, the fitness of F1 hybrids is expected to depend on the genetic distance between 27 

parents. When this distance is optimum, fitness is enhanced and progenies can outperform 28 

their parents, a phenomenon called hybrid vigor or heterosis (Shull 1914; Smith et al. 1990; 29 
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Vasseur et al. 2019). On the edges of this zone, suboptimal fitness originates from inbreeding 30 

depression when the distance is too low or outbreeding depression when the distance is too 31 

high (Waser and Price 1994). In animal and plant breeding, outbreeding depression is rarely a 32 

concern and a focus is made on the minimization of (negative) inbreeding effects and on the 33 

maximization of (positive) heterotic effects (Lin et al. 2017). Heterosis has thus been 34 

exploited for decades in allogamous crops such as maize, but it is also increasingly considered 35 

in autogamous plants such as wheat where more and more hybrid breeding programs are 36 

being developed (Labroo et al. 2021).  37 

Maize has been the pioneer crop for the invention of hybrid breeding and is a model species 38 

for the study of heterosis. From the 1950’s heterotic groups have been designed to maximize 39 

the performance of inter-group crosses. In breeding programs, the value of a hybrid between a 40 

pair of inbred lines is typically assessed through the general combining ability (GCA) of the 41 

lines, corresponding to the average value of their hybrid progeny and through their specific 42 

combining ability (SCA), corresponding to the interaction between the two parental lines 43 

(Sprague and Tatum 1942). It has been shown that the ratio between the variation of SCA and 44 

GCA decreases as dominant alleles at QTLs tend to fixation within one of the two heterotic 45 

groups. So structuring breeding populations into heterotic groups is a practical way to reduce 46 

the contribution of SCA to genetic variance (Reif et al. 2007; Larièpe et al. 2017). This 47 

increases correlatively the relative contribution of additive genetic variance (statistical effects 48 

captured via the GCA), which is beneficial for breeding efficiency. However, the near-49 

complete reproductive isolation between heterotic groups leads to genetic erosion in the maize 50 

breeding population due to drift and selection which can be problematic for long term 51 

diversity management (Gerke et al. 2015; Allier et al. 2019). In this context, admixing plant 52 

material with different origins (different heterotic groups, different breeding programs, 53 

introgression of exotic material) can be of interest to retain or increase allelic diversity within 54 

groups while creating novel allelic combinations (Rincent et al. 2014; Rio et al. 2020). From 55 

a statistical point of view, this can result in a larger contribution of non-additive variance 56 

(statistical effects captured via the SCA) to trait variation of hybrids and to a degree of 57 

inbreeding depression.  58 
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From a biological perspective, dominance, overdominance, pseudo-overdominance, and 59 

epistasis are the driving mechanisms underlying heterosis (Shull 1908; Jones 1917; Garcia et 60 

al. 2008; Fiévet et al. 2010; Waller 2021). It is acknowledged that estimating non-additive 61 

effects at the statistical level is not sufficient to infer biological (functional) non-additive 62 

effects because statistical estimates are population-dependent (Schön et al. 2010, Varona et 63 

al. 2018a) and non-additive biological effects are partly captured by statistical additivity. Yet, 64 

statistical estimates of non-additivity in a given population can allow for a more accurate 65 

prediction of total genetic variance which is useful for genomic prediction. Genetic variance 66 

is usually measured by calculating the genetic covariance between individuals (proportional 67 

to their kinship or pedigree relationship) which can be assessed using variation across 68 

genome-wide genetic markers in a more precise way than when using pedigree information 69 

(Bernardo 1993; Muñoz et al. 2014; Legarra 2016). To assess non-additive variance, the total 70 

genetic variance needs to be dissected between statistical additive, dominant and epistatic 71 

terms. However classical models accounting for additive, dominant and epistatic effects do 72 

not efficiently handle the confounding beween these genetic effects. This generally results in 73 

an overestimation of the total genetic variance (Vitezica et al. 2013; Muñoz et al. 2014; 74 

Varona et al. 2018a), in incorrectly interpretating the contribution of non-additive effects to 75 

genetic variance and in ignoring their usefulness for genomic prediction (Vitezica et al. 76 

2017). Variance decomposition and prediction models need to be improved to alleviate these 77 

issues. Álvarez-Castro and Carlborg (2007) developed the natural and orthogonal interaction 78 

(NOIA) framework to formally navigate between the functional and statistical modelling of 79 

non-additive effects. Their statistical model declares dominance and additive effects 80 

orthogonally and can be applied to populations deviating from Hardy-Weinberg equilibrium 81 

(HWE). More recently, Vitezica and collaborators (2017, 2018) further adapted this 82 

framework for the estimation of additive, dominance and epistatic covariances between 83 

individuals in a genomic (multilocus) context for genomic prediction.  84 

 85 

Dominance affects heterosis if the sum of dominance effects is different from zero, a 86 

phenomenon called directional dominance (Frankel 1983; Lynch and Walsh 1998). In maize 87 
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breeding, it has been long recognized that the correlation between phenotypic performance  88 

and genetic distance between parents (or heterozygosity = 1-homozygosity) holds in the 89 

presence of directional dominance only for intra-heterotic hybrids but not for inter-heterotic 90 

hybrids (Charcosset et al. 1991; Bernardo 1992; Charcosset and Essioux 1994). We 91 

hypothesize that this correlation is restored in populations recombining heterotic groups. 92 

Indeed, the inbreeding effect of a genomic segment inherited from the same group by the two 93 

parents of one hybrid is expected to be predictable with markers thanks to the linkage 94 

disequilibrium (LD) within this group. Also, new LD patterns are created between linked 95 

alleles that have contrasted frequencies across groups. Besides, in presence of directional 96 

dominance, the assumption that dominance effects are centered around zero does not hold. It 97 

was shown in pigs that statistical dominance variance is overestimated if inbreeding is not 98 

accounted for in variance decompositions and that using the inbreeding level (as measured by 99 

the proportion of homozygous marker loci of each individual) as a fixed covariate when 100 

estimating variance components can efficiently control for this artefact (Xiang et al. 2016; 101 

Vitezica et al. 2018; Varona et al. 2018b). Beyond variance component estimation, marker-102 

based models also aim at performing genomic predictions of the value of new individuals 103 

based on their marker-based relatedness with individuals already phenotyped. In this context, 104 

incorparating both non-additive and inbreeding parameters in genomic prediction models thus 105 

appears to be an appropriate strategy when dealing with hybrids between admixed individuals  106 

Xiang et al. 2016; Vitezica et al. 2018; Varona et al. 2018b).  107 

 108 

Predicting individuals in different environments is also a major stake in plant breeding. The 109 

ranking of individuals changes from one environment to another in the presence of genotype 110 

by environment interactions (G×E), which is very common in complex traits. Several 111 

methods have been proposed to take into account G×E in predictions across environments, for 112 

example modelling marker × environment interactions explicitly (Lopez-Cruz et al. 2015), 113 

using the Hadamard product between genetic and environmental covariance matrices (Jarquín 114 

et al. 2014), calculating genotypic sensitivities to environmental gradients (Millet et al. 2019) 115 

or using crop growth models for trait-assisted prediction (Robert et al. 2020). These methods 116 
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clearly outperform predictions based on main effects (G + E only), however little is known 117 

about the partition of G×E effects among additive and non-additive components and their 118 

potential use in genomic prediction in a hybrid context (Kadam et al. 2016; Acosta-Pech et al. 119 

2017). 120 

Here, we worked with two maize admixed populations with the objectives of i) studying the 121 

impact of inbreeding and the relative importance of statistical non-additive effects on trait 122 

variation and ii) finding the best genomic prediction models in single and multi-environment 123 

contexts. These two populations of hybrids are derived from admixed inbred lines between 124 

dent and flint heterotic groups and were chosen for their contrasted level of genetic diversity 125 

and linkage disequilibrium : the parental lines from the iF2 hybrid population (“immortalized 126 

F2”, Hua et al. 2002) were obtained from an original cross between two lines only (one dent, 127 

one flint) while the parental lines from the Het2 population are admixed between a total of 128 

604 lines (300 dent and 304 flint, Rio et al. 2020). To our knowledge, only one study assessed 129 

genomic prediction accuracy among admixed maize hybrids (Guo et al. 2013, based on an iF2 130 

hybrid population). Here, four traits known for their agronomical relevance and contrasted 131 

genetic architecture were measured in the iF2 and Het2 populations. We assessed the effect of 132 

inbreeding and quantified non-additive variance in these populations and tested the 133 

corresponding models with genomic predictions in single and multiple environments.  134 

MATERIAL AND METHODS 135 

Plant material 136 

Two different populations were considered in this study. The heterosis#2 hybrid population 137 

(Het2) consists in 291 single-cross hybrids obtained from an incomplete diallel design 138 

between 321 double haploid (DH) lines. These DH lines derived from F1 hybrids obtained by 139 

crossing dent lines to flint lines issued from two diversity panels of 300 and 304 individuals 140 

respectively (see Rio et al. 2020 for more details). As a consequence, DH lines were admixed 141 

lines carrying some chromosome segments with a dent origin and others with a flint origin 142 

(due to recombination events during the meiosis of F1s). To produce Het2 hybrids, admixed 143 

DH lines were chosen and crossed to limit the number of hybrids per line. In this study, a DH 144 

line can be the parent of four hybrids at the maximum. Due to seed production failures, some 145 
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admixed lines are involved in only one hybrid. The number of contributions per DH line in 146 

the Het2 hybrid panel ranges from 1 to 4. The Het2 panel was phenotyped in four different 147 

locations in France (Jargeau, Loiret; Aubiat, Puy de Dôme; Souprosse, Landes; Saint-Martin 148 

de Hinx, Landes) in 2016 and 2017 resulting in five environments (further referred to as 149 

jar16, aub17, sou17, smh16 and smh17). Each Het2 environment was composed of 150 

elementary two-row plots of 9.28 m². In addition to the 291 hybrids, repeated on average 1.3 151 

times per environment in a partially-replicated design (p-rep), we dedicated 12 plots to 152 

controls (3 replicates for each of the 2 commercial hybrids Milesim and DKC4841 and each 153 

of the 2 additional controls B73 × UH007 and PH207 × UH007 hybrids).  154 

The immortalized F2 population (iF2) consists in 265 hybrids obtained from an incomplete 155 

diallel design among 184 highly recombinant inbred lines of the so-called ‘LHRF’ population 156 

derived from an initial F1 cross between F252, an early dent line and F2, a European flint line 157 

(Falque et al. 2005; Ganal et al. 2011). The LHRF population has experienced four 158 

generations of intermating (i.e. four meiosis events) and is thus more admixed than the Het2 159 

population. The iF2 population was evaluated in two environmentally contrasted locations in 160 

France, Saint-Martin de Hinx (smh, above-mentionned) and Le Moulon (mln, Essonne) in 161 

2010 and 2011 resulting in three environments (smh10, smh11 and mln11). Each environment 162 

was made of elementary two-row plots of 9.28 m². In addition to the 265 hybrids repeated on 163 

average 1.28 times per environment in a partially-replicated design, we dedicated 56 plots to 164 

controls (28 replicates for the F2 line and 28 replicates for the F1 hybrid F2 × F252).  165 

For both populations, planting density was settled according to the usual practice of each 166 

location (ranging from 70 to 95,000 plants per hectare). Hybrids were randomized within the 167 

environments.  168 

Plant phenotyping and field data correction 169 

Plant height (HT; from the soil to the tip of the tassel, in cm), grain moisture at harvest (GM; 170 

in %), grain yield at 15% moisture (GY; in q/ha) and flowering date (FLO) were measured. 171 

For FLO, male or female flowering date were recorded, corresponding to the day at which 172 

50% of the plants exhibited mature tassels or silks, respectively. Male flowering was 173 

measured in Het2 (calendar days) and female flowering was measured in iF2 population 174 
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(expressed in growing degree days in degree days considering 6°C as the base temperature). 175 

In each environment, elementary plots with a final number of plants lower than the median 176 

density minus 15 plants were excluded from the dataset. 177 

 178 

In both populations, phenotypic data were adjusted within each environment to correct for 179 

spatial environmental effects using the following model:  180 

𝑌𝑡ℎ𝑟𝑐 = 𝜇 + 𝛼𝑡 + 𝐺ℎ + 𝑅𝑟 + 𝐶𝑐 + 𝐸𝑡ℎ𝑟𝑐     𝑀1

𝐺 ∼ 𝑁(0, 𝜎𝑔
2𝐼) 

𝑅 ∼ 𝑁(0, 𝜎𝑟
2𝐼) 

𝐶 ∼ 𝑁(0, 𝜎𝑐
2𝐼) 

𝐸 ∼ 𝑁(0, 𝜎𝑒
2𝐼) 

𝐺 ⊥ 𝑅 ⊥ 𝐶 ⊥ 𝐸 ,

 

where Ythrc is the phenotype of hybrid h measured at row r and column c, 𝛼𝑡 is the effect of 181 

control t (a 5 level factor: 4 for the different control hybrids and one for non-control hybrids), 182 

𝐺ℎ is the effect of hybrid h (one level for each experimental hybrid and one for each hybrid 183 

control), 𝑅𝑟 the effect of row r, 𝐶𝑐 the effect of column c and 𝐸𝑡ℎ𝑟𝑐 the error. Except for 184 

control effects, all effects are assumed to be random. The sign ⊥ indicates independence 185 

between random effects. 186 

Broad sense heritability in each environment was calculated according to the following 187 

formula, 188 

𝐻2 =
𝜎𝑔
2

𝜎𝑔
2 + 𝜎𝑒

2/𝑛𝑟𝑒𝑝
 

where 𝜎𝑔
2 and 𝜎𝑒

2 are respectively the genetic and error variance derived from the above 189 

model M1, and 𝑛𝑟𝑒𝑝 is the mean number of experimental hybrid repetitions per environment. 190 

The best linear unbiased predictors (BLUPs) of the row and column effects were subtracted 191 

from the raw phenotypic values to obtain corrected field performances. Hereafter we note 192 

𝑌ℎ𝑒𝑟̃ the corrected field performance of hybrid h in environment e and plot r, and 𝑌ℎ𝑒.̅̅ ̅̅̅ the 193 

average of 𝑌ℎ𝑒𝑟̃ values within environment e. Lastly, these corrected field plot performances 194 
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10 

were used to calculate across-environment least square means 𝑌ℎ..̅̅ ̅̅  for each hybrid h with the 195 

following model: 𝑌ℎ𝑒𝑟̃ = 𝜇 + 𝛽ℎ + 𝛾𝑒 + 𝜀𝑟   196 

where 𝛽ℎ, 𝛾𝑒 and 𝜀𝑟 are the fixed effects of hybrid h, environment e and random effect plot r 197 

respectively, and  𝑌ℎ.. = 𝜇̂ + 𝛽ℎ̂ with 𝜇̂, the estimated intercept and 𝛽ℎ̂ , the estimated 198 

effect of hybrid h.  199 

 200 

Plant genotyping 201 

For Het2 population, parental DH lines were genotyped using a private 15 K SNP-array 202 

provided by Limagrain (Chappes, France), including a subset of the 50K Illumina Maize 203 

SNP50 BeadChip array (Ganal et al. 2011). Genotyping data were expanded up to 600K SNP 204 

by imputation, using 600K SNP genotyping of the founder lines and pedigree information 205 

(see Rio et al. 2020 for more details). Het2 hybrid genotypes were reconstructed from their 206 

respective parental genotypic data. Monomorphic markers were eliminated, and remaining 207 

markers were filtered using a 5% threshold on minor allele frequency (MAF) based on 208 

frequencies in the hybrid population, resulting in a set of 462,247 markers. 209 

For iF2 population, the 184 highly recombinant inbred lines were genotyped with the 50k 210 

SNP array (Ganal et al. 2011). Residual heterozygous data were treated as missing and all 211 

missing values were imputed using Beagle v.3.3.2 and default parameters (Browning and 212 

Browning 2007). The iF2 hybrid genotypes were reconstructed from their respective parental 213 

data. Monomorphic markers were eliminated, and remaining markers were filtered using a 5% 214 

threshold on MAF based on frequencies in the hybrid population, resulting in a set of 16,562 215 

markers. 216 

Variance decomposition 217 

Variance decomposition was performed at three levels: (i) on across-environment least square 218 

means 𝑌ℎ..̅̅ ̅̅  , (ii) separately on each environment e using corrected field plot performances 𝑌ℎ𝑒𝑟̃ 219 

and (iii) on multiple environments jointly using corrected field plot performances 𝑌ℎ𝑒𝑟̃ .  220 
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The following baseline model was used to estimate variance components of across-221 

environment least square means: 222 

𝑌ℎ.. = 𝜇 + 𝛽𝐼𝑛𝑏ℎ + 𝐴ℎ + 𝐷ℎ + 𝐴𝐴ℎ + 𝐴𝐷ℎ + 𝐷𝐷ℎ + 𝜀ℎ         𝑀2

𝐴 ∼ 𝑁(0, 𝜎𝐴
2𝐾𝐴),  𝐷 ∼ 𝑁(0, 𝜎𝐷

2𝐾𝐷),  𝜀 ∼ 𝑁(0, 𝜎𝜀
2𝐼)

𝐴𝐴 ∼ 𝑁(0, 𝜎𝐴𝐴
2 𝐾𝐴𝐴),  𝐴𝐷 ∼ 𝑁(0, 𝜎𝐴𝐷

2 𝐾𝐴𝐷),  𝐷𝐷 ∼ 𝑁(0, 𝜎𝐷𝐷
2 𝐾𝐷𝐷)

𝐴 ⊥ 𝐷 ⊥ 𝐴𝐴 ⊥ 𝐴𝐷 ⊥ 𝐷𝐷 ⊥ 𝜀

 

where Inbh is a quantitative variable representing the percentage of homozygosity (number of 223 

homozygote loci divided by total number of loci) of hybrid h and 𝛽 is its associated 224 

regression coefficient. Including Inbh in the model allows one to account for potential 225 

directional dominance effects in hybrid h and 𝛽 is its associated regression coefficient, Ah and 226 

Dh are the additive and dominant random effects associated to hybrid h, 𝐴𝐴ℎ, 𝐴𝐷ℎ and 𝐷𝐷ℎ  227 

are three random effects modeling epistasis, accounting for additive by additive, additive by 228 

dominant and dominant by dominant effects, respectively. 𝜀ℎ is the random error. 𝜎𝐴
2… 𝜎𝐷𝐷

2  229 

are the variance terms associated to genetic effects, 𝐾𝐴…𝐾𝐷𝐷 are the kinship matrices 230 

corresponding to each genetic effect (see below for their estimation).  231 

The following baseline model was used to estimate variance components in each environment 232 

separately using corrected field plot performance, which is declared for environment e as: 233 

𝑌ℎ𝑒𝑟̃ = 𝜇 + 𝛽𝐼𝑛𝑏ℎ + 𝐴ℎ + 𝐷ℎ + 𝐴𝐴ℎ + 𝐴𝐷ℎ + 𝐷𝐷ℎ + 𝜀ℎ𝑟                      𝑀3

𝐴 ∼ 𝑁(0, 𝜎𝐴
2𝐾𝐴),  𝐷 ∼ 𝑁(0, 𝜎𝐷

2𝐾𝐷),  𝜀 ∼ 𝑁(0, 𝜎𝜀
2𝐼)

𝐴𝐴 ∼ 𝑁(0, 𝜎𝐴𝐴
2 𝐾𝐴𝐴),  𝐴𝐷 ∼ 𝑁(0, 𝜎𝐴𝐷

2 𝐾𝐴𝐷),  𝐷𝐷 ∼ 𝑁(0, 𝜎𝐷𝐷
2 𝐾𝐷𝐷)

𝐴 ⊥ 𝐷 ⊥ 𝐴𝐴 ⊥ 𝐴𝐷 ⊥ 𝐷𝐷 ⊥ 𝜀

 

using the same notations as in Model M2. 234 

Different submodels of models M2 and M3 were considered by removing one or several 235 

effects. In the following we note ADI_Inb the full model including the additive effect (A), the 236 

dominance effect (D), the epistatic effects (I, corresponding to AA, AD and DD) and the 237 

inbreeding effect (Inb). Similarly, we note AD_Inb, the model containing no epistatic effects, 238 

A_Inb the model containing only the additive and inbreeding effects, AD the model 239 

containing only the additive and dominance effects and A the model containing only the 240 

additive effect.   241 
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The following baseline model was used to perform a variance component analysis jointly on 242 

all environments using corrected field plot performance: 243 

𝑌ℎ𝑒𝑟̃ = 𝜇 + 𝛼𝑒 + 𝛽𝐼𝑛𝑏ℎ + 𝐴ℎ + 𝐷ℎ + 𝐴𝐴ℎ + 𝐴𝐷ℎ + 𝐷𝐷ℎ +                𝑀4

  𝐴𝐸ℎ𝑒 + 𝐷𝐸ℎ𝑒 + 𝐴𝐴𝐸ℎ𝑒 + 𝐴𝐷𝐸ℎ𝑒 + 𝐷𝐷𝐸ℎ𝑒 + 𝜀ℎ𝑒𝑟  

𝐴 ∼ 𝑁(0, 𝜎𝐴
2𝐾𝐴),  𝐷 ∼ 𝑁(0, 𝜎𝐷

2𝐾𝐷)

𝐴𝐴 ∼ 𝑁(0, 𝜎𝐴𝐴
2 𝐾𝐴𝐴),  𝐴𝐷 ∼ 𝑁(0, 𝜎𝐴𝐷

2 𝐾𝐴𝐷),  𝐷𝐷 ∼ 𝑁(0, 𝜎𝐷𝐷
2 𝐾𝐷𝐷)

𝐴𝐸𝑒 ∼ 𝑁(0, 𝜎𝐴𝐸(𝑒)
2 𝐾𝐴) 𝐼𝑁𝐷,  𝐷𝐸𝑒 ∼ 𝑁(0, 𝜎𝐷𝐸(𝑒)

2 𝐾𝐷) 𝐼𝑁𝐷,  𝑒 = 1…𝑛𝑒𝑛𝑣

𝐴𝐴𝐸𝑒 ∼ 𝑁(0, 𝜎𝐴𝐴𝐸(𝑒)
2 𝐾𝐴𝐴) 𝐼𝑁𝐷,  𝐴𝐷𝐸𝑒 ∼ 𝑁(0, 𝜎𝐴𝐷𝐸(𝑒)

2 𝐾𝐴𝐷) 𝐼𝑁𝐷,

  𝐷𝐷𝐸𝑒 ∼ 𝑁(0, 𝜎𝐷𝐷𝐸(𝑒)
2 𝐾𝐷𝐷) 𝐼𝑁𝐷,  𝑒 = 1…𝑛𝑒𝑛𝑣

𝜀𝑒 ∼ 𝑁(0, 𝜎𝜀(𝑒)
2 𝐼) 𝐼𝑁𝐷, 𝑒 = 1…𝑛𝑒𝑛𝑣

𝐴𝐸 ⊥ 𝐷𝐸 ⊥ 𝐴𝐴𝐸 ⊥ 𝐴𝐷𝐸 ⊥ 𝐷𝐷𝐸 ⊥ 𝜀

 

where IND stands for the independence between the different vectors. Here AEe corresponds 244 

to the vector of random effects (AE1e,…, AEne) that accounts for the additivity × environment 245 

interactions. These interaction terms are specific to environment e and are assumed to be 246 

normally distributed with a specific variance 𝜎𝐴𝐸(𝑒)
2 . Similar notations are used for DEe, 247 

AAEe, ADEe and DDEe that correspond to interaction terms between environment and 248 

dominance and epistasis effects respectively. 𝜀e corresponds to the vector of error terms 249 

associated to environment e and is assumed to be normally distributed with an environment-250 

specific variance (𝜎𝜀(𝑒)
2 ). 251 

We note model M4 as the ADI×Espec_Inb model, from which we derive the four models 252 

AD×Espec _Inb (no epistasis), AD×Espec (no epistasis and no inbreeding), A×Espec_Inb (only 253 

additive and inbreeding), A×Espec (only additive effect). Together these models are referred to 254 

as G×Espec models. We also considered five models where variance terms for G×E 255 

interactions were common to all environments, noted as A×Ecom, A×Ecom_Inb, AD×Ecom, 256 

AD×Ecom_Inb, ADI×Ecom_Inb together referred to as G×Ecom models. Thus, we derived nine 257 

models from M4 for a total of ten G×E models. Models M2, M3 and M4 were also used to 258 

perform genomic predictions. 259 

 260 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyac018/6527635 by IN

R
A - D

O
C

U
M

EN
TATIO

N
 user on 21 February 2022



   

 

   

 

13 

Kinship matrices 261 

Kinship coefficients were estimated for additive (KA), dominant (KD), additive × additive 262 

(KAA), additive × dominant (KAD) and dominant × dominant (KDD) effects according to the 263 

Natural and Orthogonal Interaction Approach (NOIA, Álvarez-Castro and Carlborg 2007) as 264 

expanded by Vitezica et al. (2017). Briefly, the additive and dominant coefficients were 265 

calculated for a given hybrid i using genotypic frequencies as follows: 266 

ℎ𝐴𝑖,𝑗 = {

−(−𝑝𝐵𝑏 − 2𝑝𝑏𝑏)
−(1 − 𝑝𝐵𝑏 − 2𝑝𝑏𝑏)
−(2 − 𝑝𝐵𝑏 − 2𝑝𝑏𝑏)

 𝑓𝑜𝑟 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠  {
𝐵𝐵
𝐵𝑏
𝑏𝑏

 

ℎ𝐷𝑖,𝑗 =

{
  
 

  
 

−2𝑝𝐵𝑏𝑝𝑏𝑏
𝑝𝐵𝐵 + 𝑝𝑏𝑏 − (𝑝𝐵𝐵 − 𝑝𝑏𝑏)

2

4𝑝𝐵𝐵𝑝𝑏𝑏
𝑝𝐵𝐵 + 𝑝𝑏𝑏 − (𝑝𝐵𝐵 − 𝑝𝑏𝑏)

2

−2𝑝𝐵𝐵𝑝𝐵𝑏
𝑝𝐵𝐵 + 𝑝𝑏𝑏 − (𝑝𝐵𝐵 − 𝑝𝑏𝑏)

2

 𝑓𝑜𝑟 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠  {
𝐵𝐵
𝐵𝑏
𝑏𝑏

 

 267 

with pBB, pBb, pbb being the genotypic frequencies of BB, Bb and bb at locus j. These 268 

coefficients were combined for n individuals and m markers in matrices HA and HD as follows: 269 

𝐻𝐴 = (

ℎ𝐴1,1⋯ℎ𝐴1,𝑚
⋮  ⋯  ⋮

ℎ𝐴𝑛,1⋯ℎ𝐴𝑛,𝑚

)𝑎𝑛𝑑 𝐻𝐷 = (

ℎ𝐷1,1⋯ℎ𝐷1,𝑚
⋮  ⋯  ⋮

ℎ𝐷𝑛,1⋯ℎ𝐷𝑛,𝑚

) 

 Kinship matrices were obtained with the following formula:  270 
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𝐾𝐴 =
𝐻𝐴𝐻𝐴′

𝑡𝑟(𝐻𝐴𝐻𝐴′)/𝑛

𝐾𝐷 =
𝐻𝐷𝐻𝐷′

𝑡𝑟(𝐻𝐷𝐻𝐷′)/𝑛

𝐾𝐴𝐴 =
𝐾𝐴⊙𝐾𝐴

𝑡𝑟(𝐾𝐴⊙𝐾𝐴)/𝑛

𝐾𝐴𝐷 =
𝐾𝐴⊙𝐾𝐷

𝑡𝑟(𝐾𝐴⊙𝐾𝐷)/𝑛

𝐾𝐷𝐷 =
𝐾𝐷⊙𝐾𝐷

𝑡𝑟(𝐾𝐷⊙𝐾𝐷)/𝑛

 

where n is the number of individuals and ⊙ is the Hadamard product. 271 

Model parameters were estimated via restricted maximum likelihood inference, using the 272 

MM4LMM R package (Laporte and Mary-Huard 2019). Models were compared using the 273 

BIC criterion. Fixed parameters were tested for significance using a Wald test procedure. 274 

Pairwise comparisons between the suites of models ADI×Espec_Inb and ADI×Ecom_Inb for 275 

each trait were made using a likelihood ratio test (LRT) with the same procedure as described 276 

in Yadav et al. 2021. 277 

Estimation of predictive ability via cross-validations 278 

In order to assess whether including inbreeding and non-additive effects could improve 279 

genomic prediction models, we calculated predictive ability using different validation 280 

strategies (Figure 1). The “Global” scenario was used to assess the predictive ability when 281 

predicting global means across environment, corresponding to the 𝑌ℎ.. values. In the “Within-282 

environment” scenario, the goal was to calculate predictive ability within each environment 283 

and then compare predictive ability in the different environments. The corrected field plot 284 

performances 𝑌ℎ𝑒𝑟̃ were used for calibrating the model in the training set and 𝑌ℎ𝑒.̅̅ ̅̅̅ values were 285 

used for the validation set. In scenarios “Global” and “Within-environment”, predictive 286 

ability was evaluated using a five-fold cross-validation design: the population was split into 287 

five equal parts, the training set (TS) consisting in 4/5 and the validation set (VS) of the 288 

remaining 1/5. In an iterative process, each part served as validation set for a given cross-289 
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validation and predictive ability was calculated as the mean of the five correlation values 290 

(obtained for each part). Cross-validations were repeated 100 times. 291 

Lastly, we considered two validation scenarios of across environment prediction (Figure 1) 292 

using M4 and submodels. “G×E_new_env” aimed at evaluating the predictive ability for 293 

individuals which have been observed in all environments except one. In that scenario, only 294 

hybrids used in all environments were considered (this set differs depending on trait and 295 

population). The training set was constituted by removing for each hybrid of the validation set 296 

all the observations in one randomly selected environment. Removed values were used as the 297 

validation set. This means that the validation set contained a number of field observations 298 

equal to 
𝑛𝑜𝑏𝑠

𝑛𝑒𝑛𝑣
 and the training set consisted in 

𝑛𝑜𝑏𝑠× (𝑛𝑒𝑛𝑣−1)

𝑛𝑒𝑛𝑣
 field observations, with nobs the 299 

total number of observations and nenv the total number of environments. “G×E_new_hyb” 300 

aimed at evaluating the predictive ability for hybrids which have not been observed in the TS: 301 

in this scenario, the TS was constituted by removing the observations of 1/5 of the hybrids 302 

from all environments. In these last two scenarios, 𝑌ℎ𝑒𝑟̃ values were used for assembling the 303 

TS, and averaged values over replicates of 𝑌ℎ𝑒𝑟̃ (per hybrid and environment) were used for 304 

validation. 305 

All fixed effect and variance parameters were estimated within the TS and used to predict the 306 

genetic values in the VS Using models M2, M3 and M4 (and their submodels). Predictive 307 

ability was defined as the Pearson correlation between observed and predicted field 308 

performances in the VS. 309 

RESULTS 310 

Preliminary analyses of phenotypic data 311 

Globally, Het2 individuals showed higher GY and higher HT than iF2 individuals (mean GY 312 

of 76.7 and 42.7q/ha, mean HT of 210.9 and 150.6 cm across environments, respectively 313 

Table 1, Table S1), indicating a better agronomical performance.  314 

Heritability was high overall, ranging between 0.61 and 0.97 for the Het2 population and 315 

between 0.69 and 0.93 for the iF2 population and strongly depended on trait and environment 316 
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(Table 1). Lowest heritabilities for GY were found in smh16 and aub17 for the Het2 317 

population (0.61 and 0.67) and in environment mln11 for the iF2 population (0.69, Table 1). 318 

Correlations between environments were highest for FLO (0.73 to 0.86 for Het2 and 0.63 to 319 

0.78 for iF2) and lowest for GY (0.29 to 0.62 for Het2 and 0.31 to 0.59 for iF2, Figure S1).  320 

Variance decomposition 321 

Considering only polymorphic loci, mean homozygosity was 0.64 in Het2 and 0.51 in iF2 322 

population, with a narrower distribution in Het2 when compared to iF2 population (respective 323 

standard deviations 0.017 and 0.061 Figure S2). We also observed a wider distribution of 324 

kinship values in iF2 population when compared to Het2, especially for additive and 325 

dominance kinship. In both populations, off diagonal epistasis kinship values had a narrow 326 

distribution around zero (Figure S2).  327 

Variance decompositions on adjusted means across environments (𝑌ℎ.. values) were obtained 328 

with the five models derived from M2 (A, A_Inb, AD, AD_Inb and ADI_Inb) for each trait 329 

and population (Table 2). BIC values indicated that model A_Inb was the best for FLO and 330 

GY in both populations, and for HT in iF2 population. In those cases, the effect of inbreeding 331 

was significant whatever the model (Wald test, Table 2). The simplest model A had the 332 

lowest BIC value for GM in both populations and the effect of inbreeding was not significant 333 

for this trait (Table 2). Inbreeding had overall a negative effect on GY and HT and a positive 334 

effect on FLO. As an example, an increase of 0.1 of the inbreeding coefficient is expected to 335 

reduce global mean GY by 11,7q/ha in Het2 and by 3,3 to 3,5q/ha in iF2 population. Using 336 

model AD, the dominance variance represented up to a third of the additive variance, 337 

depending on the trait, the highest proportions being found for GY (Table 2). In contrast, 338 

dominance variance components were strongly reduced when adding the inbreeding 339 

parameter into the model (in some cases no dominance variance was detected, model AD_Inb 340 

Table 2). Among other non-additive effects, high proportions of genetic variance were 341 

assigned to epistatic AA effects for all traits in iF2, and for HT in Het2 population (using 342 

model ADI_Inb, Table 2). AD and DD effects remained weak across all traits in iF2 343 

population, and were more pronounced in Het2 for FLO, GM and GY. Overall, the lowest 344 
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error variances were obtained with the model ADI_Inb, except for GY in Het2 population 345 

where the lowest error variance was found with model AD (Table 2). 346 

Variance decompositions within each environment (M3 and respective submodels) using 347 

corrected field performances 𝑌ℎ𝑒𝑟̃ confirmed the strong impact of inbreeding on phenotypic 348 

variation and indicated that variance components strongly vary from one environment to 349 

another (Table S2, Figure 2). A comparison of models for these single-environment variance 350 

decompositions using the BIC criterion suggests that A and AD were the best model choices 351 

in Het2 population while iF2 phenotypic data were best fitted with models A and A_Inb 352 

(Table S2). The inbreeding effect was significant for GY in iF2 population using the three 353 

corresponding models (A_Inb, AD_Inb and ADI_Inb). It was consistently non-significant for 354 

GM in both populations. For other cases, the inbreeding effect was significant only for certain 355 

models or certain environments (Table S2). As observed with 𝑌ℎ.. values, the effect of 356 

inbreeding was negative on GY and HT and positive on FLO. Considering only significant 357 

inbreeding regression coefficients in both populations, an increase of inbreeding corresponded 358 

to a loss of yield (loss of 9.9 to 15.3q/ha in Het2 and of 2.1 to 4.4 q/ha in iF2 for an increase 359 

of 0.1 in inbreeding), to a reduction in height (reduction of 14.7 cm in Het2 and 3.0 to 3.3 cm 360 

in iF2 for an increase of 0.1 in inbreeding) to a later flowering (delays of 1.5 to 2 days in Het2 361 

and 5.2 to 8.9 GDD in iF2 for an increase of 0.1 in inbreeding, Table S2). Further, we found 362 

that the relative proportions of genetic effects varied strongly between environments. For 363 

example when considering FLO in Het2 population, the genetic variance was purely additive 364 

for environment aub17, while strong epistatic effects were detected in other environments 365 

(Figure 2A, Table S2). Large dominant effects were observed for most traits in Het2 366 

population using models AD and AD_Inb. Dominance effects were less pronounced in iF2, 367 

except for GY (Figure 2B). Compared to models AD and AD_Inb, dominance was mostly 368 

substituted by epistatic effects in the model ADI_Inb (both populations, Figure 2, Table S2). 369 

A tendency for a slight decrease in dominance effects from model AD to AD_Inb was also 370 

observed. AA effects were more pronounced in iF2 population, where for example the 371 

additive by additive variance term was larger than the additive one considering GY in 372 

environment smh11 (Figure 2B).  373 
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 374 

Using M4 models and submodels, variance decomposition across environments allowed the 375 

quantification of G×E variances considering either environment-specific variances (models 376 

G×Espec) or variances common to all environments (models G×Ecom, Table S3, Figure 3, 377 

Figure S3). We found a significant effect of inbreeding with all corresponding models for GY 378 

and FLO in both population and for HT in iF2 population only. Inbreeding had no significant 379 

effect on GM in both populations using these models (Table S3). In both populations the 380 

lowest BIC values were obtained with the incorporation of the fixed effect of inbreeding in all 381 

traits but GM (both populations) and HT (Het2 population,Table S3).  382 

Although G×E interactions (A×E, D×E, AA×E, AD×E, DD×E variance terms, represented by 383 

lighter colors on Figure 3, Figure S3) were always weaker than main genetic effects (A, D, 384 

AA, AD and DD variance terms, represented by darker colors on Figure 3, Figure S3), 385 

substantial G×E variances were found using M4 (and submodels). The highest G×E effects 386 

were observed for GY and GM in both populations (maximum ratio of G×E variance over G 387 

variance of 0.89 and 0.91 respectively, Table S3). Of note, ADI_Inb detected larger G×E 388 

effects than other models for a given trait. Variance terms of genetic effects (G effects) were 389 

of similar magnitude in G×Ecom and G×Espec but G×E effects tended to be higher with G×Espec 390 

models which contributed a reduction of the error variances. This was particularly visible 391 

considering GM in both populations (Figure S3). As observed with M2 and M3 models, the 392 

additive variance was by far the largest genetic effect identified across traits and populations 393 

and the dominance contribution was slightly reduced in the models AD_Inb (AD×Ecom_Inb 394 

and AD×Espe_Inb) when compared to the models AD (AD×Ecom and AD×Espe). This decrease 395 

was more evident for FLO in Het2 and GY in iF2, where dominance effects were strongest 396 

(Table S3, Figure 3B, Figure S3). Among epistatic effects, AA was strongest for all traits in 397 

iF2 and for HT only in Het2. DD effects were detected only for FLO in iF2 population. AD 398 

effects were negligible across all traits and populations (Table S3, Figure S3).  399 

We observed different trends in the composition of G×E interactions terms between models 400 

G×Ecom and G×Espec. Overall, larger D×E variances were obtained using models G×Ecom (light 401 
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orange color Figure 3, Figure S3) and larger A×E variances were obtained using the models 402 

G×Espec (light red color Figure 3, Figure S3, Table S3).   403 

When focusing on models G×Ecom, larger proportions of D×E variance were found in Het2 404 

than in iF2 population using models AD×Ecom and AD×Ecom_Inb (Figure S3). However, when 405 

assessed with the model ADI×Ecom_Inb, D×E variance terms were much smaller and mostly 406 

substituted by epistatic by environment interactions (Epi×E effects). For both populations 407 

these Epi×E effects consisted mainly in AD×E effects, although strong DD×E effects were 408 

found for GM. The strongest cumulated epistatic interactions, as assessed with the model 409 

ADI×Ecom_Inb, were found for GY in iF2 population (Figure 3B, Figure S3).  410 

When focusing on models G×Espec, G×E variance terms were very contrasted across 411 

environments (Table S3). For example, considering GY in Het2 population and using model 412 

A×Espec, A×E variance ranged from 8.3 to 144.9 across the five environments (Table S3). We 413 

also found substantial D×E effects with models AD×Espec and AD×Espec_Inb, especially for 414 

GY (both populations) and GM in Het2 population (Figure 3, Figure S3). However, we 415 

identified weaker A×E and D×E when using model ADI×Espec_Inb, with D×E effects being 416 

almost entirely replaced by epistatic by environment effects (Figure 3 , Figure S3). There, the 417 

three epistatic interactions (AA×E, AD×E and DD×E) were detected with variable 418 

proportions depending on trait and population. Of note, AD×E was nearly absent in iF2 419 

population when assessed with ADI×Espec_Inb which is in contrast with the results obtained 420 

with ADI×Ecom_Inb, where AD×E were the main G×E effects identified (Figure 3B, Figure 421 

S3). 422 

To gain further insights into differences between these model declinations, we tested the 423 

superiority of G×Espec models (having more parameters) over G×Ecom models and found no 424 

significant differences between them based on likelihood values (LRT values were always 425 

smaller than 
2
 values at p<0.05). 426 

 427 
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Genomic predictions 428 

We predicted 𝑌ℎ phenotypic values in cross-validations using model M3 and submodels 429 

(scenario “Global”, see Methods and Figure 1) and obtained mean predictive abilities ranging 430 

from 0.59 to 0.75 in Het2, and from 0.56 to 0.80 in iF2 population (Table 1, Figure 4, Table 431 

S4). Predictive abilities were higher in iF2 than in Het2 population, especially for HT (mean 432 

across models 0.80 vs. 0.66). In both populations, including the effect of inbreeding in the 433 

model improved predictions for all traits except for GM, which is the only trait on which 434 

inbreeding had no significant effect (Figure 4, Table 2). Predictive abilities increased of 0.02 435 

on average when comparing either model A_Inb to A or model AD_Inb to AD (traits FLO, 436 

HT and GY, both populations, Table S4). Including the effect of inbreeding had the highest 437 

impact on predictions of GY in iF2 population (+0.08 from model A to A_Inb, +0.04 from 438 

model AD to AD_Inb). Regarding GM, adding inbreeding into the model seemed to have an 439 

overall negative impact on predictive abilities when considering models A_Inb and AD_Inb 440 

(Table S4). Adding epistatic effects into the model allowed improving further predictions in 441 

iF2 population (mean increase of 0.01 between models AD_Inb and ADI_Inb (Figure 4B, 442 

Table S4). 443 

Predictive abilities in the “Within-environment” scenario (see Methods and Figure 1) 444 

obtained with the five models ranged from 0.34 to 0.72 in Het2 and from 0.43 to 0.75 in iF2 445 

population (Figure 5, Table S5). In Het2 population, slightly increased predictive abilities 446 

were observed using models including inbreeding as fixed effect for GY and with models of 447 

increasing complexity for FLO (Figure 5A). We also observed overall lower accuracies for 448 

environment smh16, comparatively to other environments (Figure 5A, Table S5). In iF2 449 

population, a marked increase in predictive ability was obtained for GY and FLO with the 450 

three models including inbreeding as a fixed effect (Figure 5B). There, ADI_Inb performed 451 

overall best when compared to model A, resulting in +0.02 to +0.08 in mean predictive ability 452 

for GY (all environments) and in +0.02 to 0.03 for FLO (mln11 and smh10 Figure 5B, Table 453 

S5). For traits HT and GM model choice had a more limited impact on predictive abilities; 454 

changes in predictive abilities were not consistent across models and environments in Het2 455 
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population (Figure 5A) while in iF2 population model ADI_Inb tended to perform overall 456 

better than other models (Figure 5B).  457 

Last, we calibrated the model over all environments using model M4 and submodels 458 

and performed across-environment predictions either by predicting hybrids in a single new 459 

environment chosen randomly (“G×E_new_env”) or by predicting the phenotypes of new 460 

hybrids in all environments ("G×E_new_hybrid", see Methods and Figure 1). When 461 

predicting hybrids in a new environment (“G×E_new_env”) we obtained mean predictive 462 

abilities per environment ranging between 0.41 and 0.92 for Het2, and between 0.43 and 0.84 463 

for the iF2 population (Table S7, Figure S4). In some cases, predictive ability varied strongly 464 

depending on the validation run, resulting in a larger distribution of predictive ability values 465 

(especially when considering population Het2 in sou17 for FLO and in smh17 for HT and 466 

GM, Figure S4). When comparing the performance across all models, the largest differences 467 

were observed between models with common vs. environment-specific G×E variance terms 468 

(G×Ecom vs. G×Espec models). These differences were generally consistent across the five 469 

model variations A×E, A×E_Inb, AD×E, AD×E_Inb and ADI×_Inb. For example, when 470 

considering predictions of iF2 hybrids for GY in environment mln11, all G×Espec models 471 

performed significantly better than all G×Ecom models (Figure 6A). Whether G×Ecom or 472 

G×Espec models performed best was highly depending on the combination of trait and 473 

environment (Figure S4). When comparing performances among models A×E, A×E_Inb, 474 

AD×E, AD×E_Inb within each class of models G×Ecom and G×Espec, we found that 475 

ADI×E_Inb models allowed for a modest but consistent increase in predictive ability 476 

compared to other models (mean increase of 0.006 to 0.010 when compared to A×E, Figure 477 

S4, Table S6). Of note, model ADIspec_Inb provided the highest predictive abilities for GM 478 

and GY in iF2 population, which was particularly visible for GY in environment smh11 479 

(mean pairwise difference of 0.07 when compared to other G×Espec models, Figure 6A, Figure 480 

S4, Table S6). 481 

When applying the prediction scenario ‘G×E_new_hyb’ (Figure 1), we obtained mean 482 

predictive abilities per environment in the range of 0.28 to 0.74 for Het2 and of 0.37 to 0.78 483 

for iF2 population (Table S7). Comparing models within G×Ecom and G×Espec (five model 484 
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variations A×E, A×E_Inb, AD×E, AD_Inb×E, ADI_Inb×E), we found prediction 485 

improvements when incorporating inbreeding into the model (all traits except GM). 486 

ADI×E_Inb models were most frequently associated with the highest predictive abilities 487 

(Figure 6B, Figure S4, Table S6). The maximum improvement was obtained using model 488 

ADI×Ecom_Inb for GM in environment smh17 (increase of 0.059 compared to A×Ecom, Table 489 

S7). We can note that in Het2 population, as observed in within environment predictions 490 

(Figure 5), a gradual increase in predictive ability was observed with increasing model 491 

complexity for FLO (Figure S4, Table S7). G×Espec models performed overall better than 492 

G×Ecom models in iF2 population, the highest contrast being visible for GY, especially when 493 

considering environment mln11 (pairwise differences of 0.14 on average between each 494 

G×Espec and each corresponding G×Ecom model Figure 6A, Table S7). Considering Het2, 495 

although we cannot conclude that either G×Ecom or G×Espec class of models performs overall 496 

better, we can note that in most trait-environment combinations one class of models was 497 

outperforming the other (Figure S4). For example, G×Ecom models allows predicting GY 498 

much more accurately than G×Espec in environment smh16 (pairwise differences of 0.18 on 499 

average), while G×Espec tend to perform better in environment jar16 (pairwise differences of 500 

0.02 on average). Differences were generally consistent across the five model variations A×E, 501 

A×E_Inb, AD×E, AD×E_Inb and ADI×_Inb (at the exception of predictions of GY in sou17, 502 

Het2 population, Figure S4).  503 

DISCUSSION 504 

Impact of inbreeding on phenotypic variation in Het2 and iF2 populations 505 

It is known that inbreeding level correlates with heterosis within heterotic groups, while 506 

correlation is generally weak when considering inter-group hybrids (Charcosset and Essioux 507 

1994; Burstin and Charcosset 1997, Melchinger 1999). First, loci contributing to heterosis are 508 

expected to be fixed differentially among groups, leaving variation in inbreeding coefficient 509 

among hybrids mostly in other regions. Second, differences in LD between heterotic groups 510 

decrease the correlation even if variation within groups persists in genomic regions involved 511 

in heterosis. Here, we dissected phenotypic variation in two populations admixed between 512 

dent and flint heterotic groups where variation at each locus is due to both inter- and intra-513 
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group genetic variation. We found in both populations that inbreeding, measured as the 514 

proportion of homozygous loci, had a significant effect on GY and FLO, on HT (only in iF2) 515 

and no effect on GM. This was shown by variance decompositions and validated by genomic 516 

predictions in all contexts. Our results are consistent with previous reports finding a 517 

significant correlation between inbreeding and GY, FLO and HT (Larièpe et al. 2012; 518 

Ramstein et al. 2020) but not GM (Larièpe et al. 2012). Further, we found that increasing 519 

inbreeding of 0.01 reduced GY from -1.53 to -0.21 q/ha, a range overlapping with previously 520 

reported values using pedigree (from -0.78 to -0.2 q/ha in Hallauer et al. 2010) or genomic 521 

data (-0.69 q/ha Ramstein et al. 2020). To note, MAF filtering could have an impact on the 522 

assessment of inbreeding, as deleterious mutations are expected to be present at low 523 

frequencies. In this context, a recent study showed that MAF can have a significant impact on 524 

the partition of genetic variance, with a tendency for lower MAF classes to be associated with 525 

larger polygenic SNP effects (Ramstein et al. 2020). In our case, a 5% MAF threshold was 526 

chosen to ensure a high quality of the genotyping dataset but the impact of MAF filtering on 527 

variance decompositions and prediction could be further investigated with comparative 528 

analyses. The detrimental impact of homozygosity proportions on trait values indicates a 529 

positive directional dominance effect, a feature underlying heterosis which may evolve via 530 

directional selection on fitness-related traits (Lynch and Walsh 1998). Delayed flowering and 531 

shorter development of hybrid plants with increasing inbreeding could reflect a decreased 532 

developmental rate with inbreeding (Charlesworth and Charlesworth 1987; Charlesworth and 533 

Willis 2009). Regarding GM, we found no clear interpretation for the absence of directional 534 

selection. Dynamic G×E and epistatic genetic interactions during kernel development might 535 

prevail in the establishment of grain moisture at seed maturity (Li et al. 2021). 536 

 537 

Orthogonal estimation of statistical non-additive effects and relation with inbreeding  538 

This study aimed at testing recent methodological improvements for quantifying non-additive 539 

genetic variance in two maize populations while preventing for a potential inflation of non-540 

additive variance terms caused by the non-orthogonality of genetic effects. Accordingly, we 541 

found that the total variance was relatively stable across models (Table 1, Table S2-S3). 542 
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Incorporating dominance effects reduced the error variance overall with only slight reductions 543 

in the additive variance (for example from 30.72 to 29.03 for GY in iF2 considering 𝑌ℎ.. 544 

values). This is congruent with the low correlations found between kinship matrices for 545 

additivity and dominance (-0.005 in iF2 and –0.070 in Het2, off-diagonal values, Table S8). 546 

However, when including epistatic effects with the ADI_Inb model, epistatic variance 547 

replaced some of the additive and almost all dominance variance for most traits. This 548 

indicates that, despite being declared as independent in the model, the epistatic effects are not 549 

decorrelated from dominance and additive effects using this method on our populations. In 550 

fact, even when considering only off-diagonal values, some correlations between additive or 551 

dominant and epistatic kinship matrices were above 0.30 and the highest values were found 552 

between A and AA kinship matrices (0.71 for Het2, 0.34 for iF2, Table S8), a range 553 

overlapping with that observed in maize by González-Diéguez et al. (2021). Overall, our 554 

results indicate that orthogonality is not always guaranteed with the NOIA approach. As 555 

illustrated in our and other studies, it seems that the presence of LD in breeding populations 556 

prevents the orthogonalization of kinship matrices using this method (Vitezica et al. 2017; 557 

González-Diéguez et al. 2021). In fact, LD generates non-independence between genetic 558 

effects by essence (Hill and Mäki-Tanila 2015) and LD can mimic epistatic effects (Wade et 559 

al. 2001; de los Campos et al. 2019). Although LD hinders the precise dissection of genetic 560 

variance into its components, estimates are expected to be more consistent with the NOIA 561 

approach than with orthogonal models which are valid under more restrictive conditions 562 

(Vitezica et al. 2017; Álvarez-Castro and Crujeiras 2019; Yadav et al. 2021). Also, predictive 563 

ability should not be affected because the total genetic variance should be correctly estimated 564 

with the NOIA approach (Vitezica et al. 2017). 565 

It is known that in the presence of directional dominance, dominance variance may be inflated 566 

if inbreeding is not included in the model (de Boer and Hoeschele 1993; Aliloo et al. 2016; 567 

Vitezica et al. 2018; Varona et al. 2018b). Similarly, an overestimation of the SCA variance 568 

has been reported when the distance between parents is not accounted for (Larièpe et al. 569 

2017). We confirmed this trend, as using model AD_Inb led in some cases to a significant 570 

reduction of the dominance variance when compared to model AD. The variance reduction 571 

was more pronounced in analyses on mean values than in within-environment or across-572 
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environment analyses (Table 2, Figure 2-3). Overall, this indicates that our genome-wide 573 

indicator of inbreeding (the homozygosity proportion) captures mean dominance effects and 574 

thus contains part of the information present in the marker-based dominance kinship (Aliloo 575 

et al. 2016, Yadav et al. 2021). Adding inbreeding as a cofactor in the model thus appears to 576 

be necessary in the presence of directional dominance, which also contributes to more 577 

realistic estimates of the variance caused by statistical dominance. 578 

Declaring a residual hybrid effect could capture genetic effects which are not declared in the 579 

model or not captured by SNP markers (see for example “residual genetic” in González-580 

Diéguez et al. 2021). To check this we performed additional analyses by adding  a random 581 

“hybrid” effect with no covariance structure to models A, A_Inb, AD, AD_Inb and ADI_Inb 582 

in within environment variance decompositions. We found that this can decrease BIC values 583 

when considering models A and A_Inb (for example FLO jar16, GM mln11, mean decrease 584 

of – 4.55 in iF2, marginal increase of 0.544 in Het2 Figure S5). We observed a drop of the 585 

variance allocated to the residual hybrid effect effect to near-zero with model ADI_Inb, which 586 

also corresponds to the greatest increases in BIC when compared to the model ADI_Inb 587 

without residual hybrid effect effect (5.7 in Het2 and 5.1 in iF2, Figure S6). Thus, it seems 588 

that epistatic effects are partially captured by additive and residual hybrid variance terms and 589 

that declaring a residual hybrid effect should be avoided when quantifying non-additive 590 

variance.  591 

 592 

Comparison of inbreeding and non-additive effects between iF2 and Het2 populations 593 

The smaller average inbreeding level observed in iF2 seems, at first sight, to contrast with the 594 

clearly poorer agronomical performance of iF2 hybrids when compared to Het2 hybrids 595 

(roughly halved GY values, Table 1, Figure S2). However, it is worth mentioning that we 596 

cannot compare inbreeding values between both populations in an absolute way because they 597 

were genotyped at different densities and only polymorphic markers were retained in each 598 

population (see Methods). In Het2, a larger number of independent genetic segments and a 599 

greater allelic diversity were expected by design, when compared to iF2. Indeed, Het2 was 600 

originally founded with admixed individuals resulting from crosses between 300 dent and 304 601 
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flint parents whereas iF2 hybrids have been generated with only one dent and one flint 602 

parents. This led to more polymorphic markers being retained in Het2, each with an increased 603 

probability for homozygosity. Another point is that in genomic prediction, inbreeding must be 604 

sufficiently variable in the population to be exploited. For example, this was not the case in 605 

the inter-group hybrid population studied by González-Diéguez et al. 2021, where no strong 606 

inbreeding effects were found and thus did not contribute to improved genomic prediction 607 

accuracies. Here, standard deviation of homozygosity proportions was 3.6 times larger in iF2 608 

than in Het2 (Figure S2) which might explain why improvements in predictive ability with 609 

models considering inbreeding (A_Inb, AD_Inb and ADI_Inb) were larger in iF2 than in 610 

Het2. 611 

Het2 hybrids were characterized by lower epistatic and Epi×E effects when compared to iF2 612 

(Table 1, Figure 2-3). Epistasis kinships values tended to be more variable in iF2, which could 613 

explain this contrast (Figure S2). Trait variation was also underlined by larger dominant and 614 

D×E effects in Het2 than in iF2 population, but dominance kinship variation seemed to be 615 

larger in iF2 population (Figure S2) and models taking dominance and/or D×E effects into 616 

account did not improve genomic predictions in Het2 as much as in iF2 (Figure 4-6). This 617 

could imply that dominance effects have been overestimated in Het2 relative to the additive 618 

variance.  619 

 620 

Non-additive and G×E effects reflect differences in trait complexity 621 

Complex traits are typically underlined by significant non-additive and G×E effects which 622 

makes them less heritable than simple traits (Stranger et al. 2011). Because breeding targets 623 

traits of varying complexity level, quantifying these effects and their relative proportions is 624 

useful for defining breeding strategies. Although variance decomposition does not allow for 625 

an accurate estimation of biological effects or gene-action modes (Huang and Mackay 2016), 626 

it is believed that orthogonal models offer the potential to get closer to the most biologically 627 

meaningful scenario (Alvarez-Castro et al. 2019). We explored four standard agronomical 628 

traits and found (unsurprisingly) that dominance and epistasis were strongest in GY, a highly 629 

complex trait displaying strong heterosis (Table 2, Figure 2-3, Hill et al. 2008; Li et al. 2013; 630 
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Larièpe et al. 2017; Samayoa et al. 2017). Large dominance and epistasis variances were also 631 

found for FLO, GM and HT but they were milder and less consistent across environments and 632 

populations than for GY (Table 2, Figure 2). To note, different measurements were done for 633 

FLO in Het2 and iF2 (male flowering in calendar days in Het2 and female flowering in GDD 634 

for iF2), which is expected to affect more G×E interactions than genetic  components. Among 635 

epistatic variance terms, AA variance prevailed across traits (Table 2, Figure 2-3). Owing to 636 

the difficulties to detect epistasis and to contradicting results across studies, the significance 637 

of epistasis for plant phenotypic variation is still debated (Lynch and Walsh 1998; Wade et al. 638 

2001; Buckler et al. 2009; Jiang and Reif 2015). An epistatic control for FLO has been 639 

demonstrated in several species such as barley (Mathew et al. 2018), rice (Lin et al. 2000; Li 640 

et al. 2014) and Arabidopsis (Juenger et al. 2005). In maize, allelic effects at QTLs linked to 641 

flowering date seem to strongly depend on genetic background (Durand et al. 2012; Rio et al. 642 

2020) and non-linear effects of inbreeding on flowering suggest complex gene interactions 643 

(Ramstein et al. 2020).  644 

G×E effects were predominant for GY, and weaker for the three other traits. Also, dominance 645 

and epistasis effects were usually stronger when considering their interaction with the 646 

environment than taken alone, which was not the case for additive effects (Figure 3, Table 647 

S3). This indicates that, independent of trait and population, additive genetic variance appears 648 

to be less sensitive to environmental effects. This contrasts with former studies having found 649 

either a prevalence of GCA×E over SCA×E effects (linseed : Bhateria et al. 2006; maize : 650 

Acosta-Pech et al. 2017) or varying proportions of these effects depending on the trait 651 

(cassava : Parkes et al. 2013). Interestingly, declaring G×E variance terms as environment 652 

specific (G×Espec models) increased the proportions of A×E at the cost of the additive, D×E 653 

and Epi×E variance terms for all traits, which deserves further investigation. It was also 654 

difficult to conclude which of the three Epi×E effects (AA×E, AD×E and DD×E) was largest 655 

across traits and populations. It has been argued that Epi×E variance contributes to phenotypic 656 

plasticity and is an important component of plant adaptation (Lukens and Doebley 1999; Fethi 657 

et al. 2011; Kerwin et al. 2017). We could not find a study having quantified altogether A×E, 658 

D×E, AA×E, AD×E and DD×E effects on plant phenotypes. Previous works have found 659 

significant AA×E effects on HT (rice : Cao et al. 2001; wheat : Zhang et al. 2008), GY 660 
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(cotton : McCarty et al. 2004; rice : Liu et al. 2006; maize : Ma et al. 2007). Also, epistatic 661 

effects could be amplified under stressed conditions which could add to Epi×E effects when 662 

studying jointly highly contrasted environments (reviewed in Fethi et al. 2011).   663 

 664 

Improving genomic predictions with inbreeding and non-additive genetic parameters 665 

Our goal was to test whether we can efficiently control for inbreeding and exploit non-666 

additive effects using adequate prediction models. Having seen that the strongest inbreeding 667 

and epistatic effects were observed in iF2 population, we found that prediction models 668 

incorporating these effects did perform better than models A and AD (model ADI_Inb 669 

generally performing at best: Figure 4B, 5B, 6B). Regarding population Het2, improvements 670 

with models incorporating dominance and inbreeding (A_Inb and AD_Inb) were clear for 671 

FLO and GY and less consistent for HT and GM, with both models AD_Inb and ADI_Inb 672 

yielding overall the best performances (Figure 4A, 5A, Figure S4). In summary, the ADI_Inb 673 

model appeared to be the most reliable model across traits and populations in terms of 674 

prediction. This result might be surprising, as we have seen that the presence of LD causes 675 

imperfect estimations of each genetic effect. However, simulations suggests that LD does not 676 

impair the higher effectiveness of models including epistasis when compared to standard G-677 

BLUP for GY in maize and wheat (Jiang and Reif 2015).  678 

In many studies, including dominance effects in prediction models did not improve accuracies 679 

(Pégard et al. 2020 and references therein, maize : González-Diéguez et al. 2021, maize, pig, 680 

cattle : Zhang et al. 2019) but we also found evidence that dominance can clearly contribute 681 

to improve hybrid prediction (maize and wheat: Jiang and Reif 2015; maize : Ramstein et al. 682 

2020; sorghum : Ishimori et al. 2020 in sorghum; dairy cattle : Aliloo et al. 2019; Eucalyptus 683 

pellita : Thavamanikumar et al. 2020). In our work, adding dominance without accounting for 684 

inbreeding improved predictions only in some cases (model AD, e.g. predictions for GY in 685 

iF2, Figure 4), which reflects that dominance may have been inflated in AD models 686 

(discussed above). In contrast, we found strong evidence for directional dominance and a 687 

large improvement of predictions accuracies when using models A_Inb, AD_Inb and 688 

ADI_Inb in all context and both populations (except for trait GM). Including inbreeding in 689 
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genomic prediction models was advocated in the presence of dominance (e.g. Iversen et al. 690 

2019 for pig) but led to inconclusive results in maize: Ramstein et al. (2020) report a 691 

significant directional dominance but no improvements of accuracies and González-Diéguez 692 

(2021) concluded that inbreeding was not enough contrasted within the population to 693 

contribute to better accuracies. Yet, it was shown recently in a population of sugar cane elite 694 

clones that incorporating both heterozygosity as fixed parameter and non-additive (dominant 695 

and additive by additive) variances using the NOIA framework improved significantly 696 

prediction accuracy for cane yield (Yadav et al. 2021). To summarize, it appears that failure 697 

to improve prediction accuracy using non-additive or inbreeding effects could either stem 698 

from the intrinsic low contribution of these effects in the population of study (biological 699 

origin, e.g. mating system; study design, e.g. population size or crossing design, Bolormaa et 700 

al. 2015) or from an inappropriate modelling of these effects. For example when non-701 

orthogonality between kinship matrices generates strong confounding between genetic effects 702 

or when dominance but not epistasis is declared in the model, non-additive effects might be 703 

estimated inaccurately (Vitezica et al. 2017, Bolormaa et al. 2015, Ramstein et al. 2020). 704 

Despite having identified some degree of correlation between our kinship matrices, we have 705 

seen that total genetic variance was stabilized across models. The improvements in genomic 706 

prediction we observed with the ADI_Inb model thus not only reflect that non-additive effects 707 

(dominance and epistasis) were pronounced in our populations but also that with an 708 

appropriate modelling, they contributed to a better estimation of the genetic variance. Our 709 

cross-validations were performed within dent × flint backgrounds and with relatively high 710 

levels of relatedness between TS and VS. It remains to be tested whether the ADI_Inb model 711 

proves more efficient than simple additive models for genomic prediction across populations. 712 

Increasing diversity in the training set could allow for weaker levels of LD and for larger 713 

contrasts in terms of additive and non-additive kinship and inbreeding coefficients, but as is 714 

generally acknowledged, relationship must be maintained at a sufficiently high level between 715 

TS and VS (Roth et al. 2020, Rio et al.2019). 716 

Choosing the best prediction model a priori (i.e. before training and evaluating 717 

experimentally the predictive ability of models) could lead to significant gains in time and 718 

efficiency. We tried to evaluate whether goodness of fit could be a reliable criterion for model 719 
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choice. Overall, although lower BIC values were often associated with the best performing 720 

prediction model, correlation between mean predictive ability and BIC value across all traits 721 

was weak (Figure S7). Our results confirm that the BIC should not be the only model 722 

selection criterion (Lebarbier and Mary-Huard 2004). An alternative could be to consider the 723 

Akaike Information Criterion (AIC, Lebarbier and Mary-Huard 2004), however in our results 724 

AIC and BIC led to the selection of the exact same models (data not shown).  725 

 726 

Choosing an appropriate model for multi-environment genomic predictions 727 

The large G×E interactions found in our variance decompositions (Figure 3, Figure S3) 728 

indicated that these effects can be exploited to improve genomic predictions across different 729 

environments. We tested two alternative ways to declare G×E in the models (G×Espec vs. 730 

G×Ecom) and found that environment-specific variance terms performed overall better than 731 

global variance terms. Our cross-validation design also reflected two practical settings where 732 

predicted hybrids have already been observed in two to four environments (G×E_new_env) or 733 

not (G×E_new_hybrid, Figure 1). Unsurprisingly, predictive ability was much higher in the 734 

former than in the latter scenario. Including parameters controlling for non-additive and 735 

inbreeding effects led to marginal improvements in the G×E_new_env context, which could 736 

indicate that environment-specific (fixed) and A×E (random) effects may be sufficient to 737 

adjust the phenotypic values when the predicted hybrid has already been characterized in 738 

other environments. In contrast, the inclusion of non-additive and inbreeding effects in the 739 

G×E_new_hybrids scenario did contribute to higher predictive abilities (Figure 6B) in a 740 

similar trend to that observed in the prediction of global means (𝑌ℎ.. values, Figure 4) or 741 

within-environment phenotypic values (𝑌ℎ𝑒𝑟̃ values, Figure 5).  742 

In the light of these results, we wondered whether it is worth using multi-environment 743 

prediction models to predict unobserved hybrids when calibration can be done in single 744 

environments in a simpler manner. We addressed this question by comparing predictions 745 

between G×E_new_hybrids and within-environment scenarios. Multi-environment 746 

predictions performed overall better than single-environment predictions (mean increase in 747 
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pairwise comparisons 0.034 for Het2, 0.022 for iF2, Figure S8). A considerable increase in 748 

predictive ability was observed for Het2 in environment smh16 when using G×E modelling 749 

(for example +0.16 in predictive ability for GY when considering G×Ecom models, Figure S4). 750 

In fact, the lower heritability values found in smh16 may have been partially compensated by 751 

adding environments with higher heritability in the training set, which contributed to a more 752 

accurate estimation of genotypic effects. Besides, declaring G×E variances as environment-753 

specific (G×Espec) allowed more precise predictions in environments which were more weakly 754 

correlated to the other environments from the training set (see predictions of GY in mln11 for 755 

iF2, Figure 6A and Fig S1). Hence, it appears that multi-environment calibration with models 756 

incorporating G×E can be very useful to improve predictions of unobserved hybrids in 757 

environments with lower heritability, provided that phenotypes in the target environment are 758 

sufficiently correlated to those of environments used for calibration. 759 

 760 

Potential use of admixture and long-term diversity management 761 

Maize breeding traditionally relies on crosses between two inbred lines from different 762 

heterotic groups to maximize the contribution of statistical additive effects to total genetic 763 

variance (Larièpe et al. 2017). The reproductive isolation between groups causes a reduction 764 

of genetic diversity via drift which is stronger when considering groups individually than the 765 

whole population (Gerke et al. 2015). Indeed, as drift affects the genome in a random way, 766 

different regions are fixed in the different groups (Reif et al. 2005; Schön et al. 2010). 767 

However, drift remains a problem when considering diversity management in the long term. 768 

Here, iF2 and Het2 hybrids have overall low average performances but some Het2 hybrids 769 

performed as well as commercial hybrids, for example Het_354152 has a mean GY of 112.5 770 

q/ha. In an iF2 population also derived from a dent and a flint lines, Guo and collaborators 771 

(2013) found only very few iF2 hybrids that outperformed the ‘reference’ parental hybrid for 772 

yield. This illustrates that a favourable disruption of the long-established heterotic patterns is 773 

possible but rare. Thus, admixed lines should be rather regarded overall as a reservoir for pre-774 

breeding, than a reservoir of breeding lines (see also “external program” in Allier et al. 2020). 775 

In these admixed populations, non-additive variance and variations in inbreeding levels 776 
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translate into differences in hybrid vigour, which we were able to exploit in predictions. 777 

Importantly, the models we developed for single and multi-environment genomic prediction 778 

can be applied to other types of breeding material (admixed or not) and species to obtain a 779 

better estimation of genetic variance, and are expected to be particularly powerful in the 780 

presence of directional dominance. In fact, while our populations can be regarded as extreme 781 

cases of admixture (especially in iF2 where genetic diversity is reduced at maximum), our 782 

models could be applied to other contexts: (i) starting a program from a commercial hybrid 783 

due to the restricted access to elite inbred lines, a strategy frequently used in developing 784 

countries (Guo et al. 2013), (ii) introgressing material outside from the heterotic pool (ex. 785 

other heterotic pool, open pollinated varieties, exotic material) in an elite genetic background, 786 

(iii) merging long-established breeding programs when merging companies. Our results 787 

highlight that genomic prediction modelling can serve not only for improving evaluation 788 

accuracy in established breeding programs but also to develop new breeding strategies with 789 

the introduction of new breeding material for cultivar improvement (Voss-Fels et al. 2019; 790 

Liu et al. 2019).  791 

 792 

Data and code availability statement 793 

Raw genotyping, phenotypic data and custom R code used for data formatting, analysis and 794 

result plotting are stored in the Data INRAE dataset “Genomic prediction in admixed dent x 795 

flint hybrids” with following DOI number: https://doi.org/10.15454/ZGP766. The physical 796 

position of markers used for the genotyping of Het2 and iF2 parents are available in Rio et al. 797 

2020 and Ganal et al. 2011 respectively. Supplemental Material available at figshare: 798 

https://doi.org/10.25386/genetics.19030004.  799 
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TABLES 1111 

 1112 

 1113 

Table 1. Mean trait values and heritabilities per environment in Het2 and iF2 populations. 1114 

Heritabilities are shown between bracket. FLO, female and male flowering time; HT, plant 1115 

height; GM, grain moisture; GY, grain yield. 1116 

Population Environment GY [q/ha] FLO [f, GDD] FLO [m, days]  HT [cm] GM [%] 

Het2 

jar16 69.5 (0.75) 

 

204.0 (0.97) 175.5 (0.90) 30.3 (0.89) 

aub17 93.3 (0.67) 

 

192.8 (0.92) 217.5 (0.87) 28.5 (0.92) 

sou17 73.3 (0.76) 

 

184.8 (0.79) 228.4 (0.81) 29.9 (0.85) 

smh16 76.1 (0.61) 

 

196.2 (0.90) 216.8 (0.66) 21.2 (0.61) 

smh17 71.4 (0.82)   191.5 (0.94) 216.2 (0.87) 19.9 (0.95) 

IF2 

mln11 40.9 (0.69) 792.0 (0.76) 

 

123.2 (0.83) 25.5 (0.93) 

smh10 44.2 (0.75) 983.9 (0.69) 

 

180.0 (0.83) 28.9 (0.74) 

smh11 43.1 (0.90) 715.3 (0.88)   148.7 (0.88) 26.1 (0.84) 

 1117 

  1118 
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Table 2. Variance decomposition and BIC values (smaller is better, the lowest value in bold) 1119 

for each trait and population considering mean phenotypic values across environments Yh... 1120 

Traits: FLO, flowering time; HT, plant height; GM, grain moisture; GY, grain yield. % hom is 1121 

the percentage of homozygosity. Variance components: A, additive; D, dominant; AA, 1122 

additive by additive; AD, additive by dominant; DD, dominant by dominant. Submodels A, 1123 

additive effect only; A_Inb, additive and inbreeding effects; AD, additive and dominant 1124 

effects; AD_Inb, additive, dominant and inbreeding effects; ADI_Inb, additive, dominant, 1125 

epistasis and inbreeding effects.  1126 

Population Trait 
M2 and 

submodels 
BIC 

Variance components Broad 

sense 

heritability 

Inb reg 

coef 

(%hom) 

Wald 

test (p-

value) 

Mean pred. 

ability (SD) 
A D AA AD DD Error 

Het2 

FLO 

A 1284.7 6.12 

    

0.93 0.89 - - 0.742 (0.017) 

A_Inb 1282.9 6.21 - - - - 0.84 0.90 16.71 5.65E-03 0.748 (0.017) 

AD 1288.9 6.14 0.43 - - - 0.49 0.95 - - 0.741 (0.017) 

AD_Inb 1288.6 6.2 0.02 - - - 0.81 0.91 16.66 6.02E-03 0.747 (0.017) 

ADI_Inb 1305.7 6.15 0.03 0.1 0.21 0.24 0.31 0.97 16.52 7.29E-03 0.747 (0.017) 

HT 

A 2492.7 421.7 - - - - 48.42 0.92 - - 0.653 (0.023) 

A_Inb 2495.2 421.78 - - - - 47.09 0.92 -83.56 7.86E-02 0.655 (0.023) 

AD 2483.6 423.12 41.51 - - - 5.68 0.99 - - 0.653 (0.023) 

AD_Inb 2487.3 422.41 40.91 - - - 5.29 0.99 -89.32 8.41E-02 0.655 (0.023) 

ADI_Inb 2517.7 364.16 1.34 87.8 0 0 0 1.00 -83.32 9.08E-02 0.656 (0.023) 

GM 

A 1265.5 5.21 - - - - 1.06 0.86 - - 0.734 (0.017) 

A_Inb 1270.8 5.24 - - - - 1.06 0.86 3.78 5.54E-01 0.731 (0.017) 

AD 1271.2 5.21 0.09 - - - 0.98 0.87 - - 0.733 (0.017) 

AD_Inb 1276.5 5.25 0.23 - - - 0.83 0.89 3.61 5.57E-01 0.730 (0.017) 

ADI_Inb 1293.6 5.17 0.1 0.15 0.25 0.26 0.37 0.95 3.82 5.55E-01 0.730 (0.017) 

GY 

A 2235.7 120.19 - - - - 43.13 0.78 - - 0.589 (0.027) 

A_Inb 2229.6 117.44 - - - - 40.8 0.79 -117.32 5.49E-04 0.608 (0.026) 

AD 2234.7 115.38 36.24 - - - 8.43 0.96 - - 0.592 (0.026) 
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AD_Inb 2235.3 117.44 0.04 - - - 40.77 0.79 -117.31 5.51E-04 0.605 (0.026) 

ADI_Inb 2252.3 117.44 0.09 0.01 0.03 0.01 40.67 0.79 -117.29 5.54E-04 0.605 (0.026) 

IF2 

FLO 

A 2356.5 706.42 - - - - 163.7 0.85 - - 0.744 (0.017) 

A_Inb 2348.5 716.35 - - - - 149.66 0.86 62.17 1.85E-04 0.761 (0.016) 

AD 2361.8 698.66 7.05 - - - 157.73 0.85 - - 0.741 (0.017) 

AD_Inb 2354 716.36 0 - - - 149.66 0.86 62.17 1.85E-04 0.760 (0.016) 

ADI_Inb 2370.2 606.95 0 53.29 0 6.91 122.32 0.88 61.64 4.19E-04 0.761 (0.016) 

HT 

A 2028.4 228 - - - - 44.05 0.87 - - 0.789 (0.015) 

A_Inb 2021.3 232.27 - - - - 40.24 0.88 -31.74 2.98E-04 0.800 (0.014) 

AD 2032.3 229.56 6.48 - - - 37.39 0.89 - - 0.787 (0.016) 

AD_Inb 2026.8 232.09 0.93 - - - 39.35 0.88 -32.17 4.04E-04 0.797 (0.015) 

ADI_Inb 2037.8 184.86 0 47.81 0.01 0 14.51 0.95 -30.9 1.28E-03 0.804 (0.015) 

GM 

A 1089.1 7.14 - - - - 1.2 0.88 - - 0.756 (0.015) 

A_Inb 1094.7 7.13 - - - - 1.21 0.88 -0.24 8.73E-01 0.752 (0.016) 

AD 1092.5 7.22 0.19 - - - 1 0.91 - - 0.756 (0.015) 

AD_Inb 1098.1 7.23 0.22 - - - 0.98 0.91 0.02 9.90E-01 0.753 (0.016) 

ADI_Inb 1109.3 4.84 0.09 1.37 0 0.09 0.41 0.95 0.01 9.94E-01 0.760 (0.015) 

GY 

A 1705.2 30.72 - - - - 20.11 0.66 - - 0.557 (0.023) 

A_Inb 1672.9 29.45 - - - - 16.79 0.69 -32.46 1.95E-10 0.635 (0.021) 

AD 1700.1 30.25 6.77 - - - 13.5 0.78 - - 0.592 (0.024) 

AD_Inb 1677.9 29.03 1.92 - - - 15.06 0.73 -35.18 7.12E-09 0.633 (0.021) 

ADI_Inb 1689.4 20.02 0.51 10.13 0 0 10.74 0.79 -34.16 1.49E-09 0.648 (0.021) 

 1127 

 1128 

 1129 

 1130 

 1131 
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FIGURE LEGENDS 1132 

 1133 

Figure 1: Experimental design used for cross-validations in each scenario. ‘h’, ‘e’ and ‘r’ 1134 

describe the levels of factors ‘hybrid’, ‘environment’ and ‘plot’ (see Methods). For scenario 1135 

« GxE_new_env », 𝑌ℎ𝑒𝑟̃ values are used for training and 𝑌ℎ𝑒.̅̅ ̅̅̅ values are used for validation. 1136 

𝑌ℎ𝑒.̅̅ ̅̅̅ are mean values per environment and 𝑌ℎ..̅̅ ̅̅  are mean values across environments. For the 1137 

« Within-env. » scenario, environment A serves as an example.  1138 

Figure 2. Variance decomposition within each environment using model M3 and 1139 

corresponding submodels in A, population Het2 and B, population iF2. FLO, flowering time; 1140 

HT, plant height; GM, grain moisture; GY, grain yield. Each column represents a single 1141 

environment. 1142 

Figure 3. Variance decomposition across environments for grain yield using ADI×Ecom_Inb 1143 

and ADI×Espec_Inb models and submodels derived from model M4 in populations Het2 1144 

(A) and iF2 (B). The error variance terms 𝜎𝜀(𝑒)
2  are environment specific and represented by 1145 

their average value. For ADI×Espec_Inb model and submodels G×E variance terms 1146 

𝜎𝐴𝐸(𝑒)
2 …𝜎𝐷𝐷𝐸(𝑒)

2  are environment specific and represented by their average value. In B, and 1147 

represented by their average value.  1148 

Figure 4. Boxplots representing the distribution of predictive ability in scenario « Global » 1149 

considering model M2 and submodels and 100 cross-validations in Het2 (A) and in iF2 (B) 1150 

populations. FLO, flowering time; HT, plant height; GM, grain moisture; GY, grain yield. 1151 

Figure 5. Boxplots representing the distribution of predictive ability in scenario « Within 1152 

environment » considering model M3 and submodels and 100 cross-validations in Het2 (A) 1153 

and in iF2 (B) populations. FLO, flowering time; HT, plant height; GM, grain moisture; GY, 1154 

grain yield. Each column represents a single environment. 1155 

Figure 6. Boxplot representing the distribution of predictive ability for grain yield in iF2 1156 

population using G×E modelling with model M4 and submodels. A, scenario 1157 

« G×E_new_env », 100 cross-validations; B, scenario « G×E_new_hyb », 100 cross-1158 
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validations. Each column represents a single environment. The color legend indicates whether 1159 

results are obtained with ADI×Ecom_Inb models and submodels (“Common”) or 1160 

with ADI×Espe_Inb models and submodels (“Env. specific”). 1161 
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