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ABSTRACT
While neural networks models have shown impressive performance
in many NLP tasks, lack of interpretability is often seen as a dis-
advantage. Individual relevance scores assigned by post-hoc ex-
planation methods are not sufficient to show deeper systematic
preferences and potential biases of the model that apply consis-
tently across examples. In this paper we apply rule mining using
knowledge graphs in combination with neural network explanation
methods to uncover such systematic preferences of trained neural
models and capture them in the form of conjunctive rules. We test
our approach in the context of text classification tasks and show
that such rules are able to explain a substantial part of the model
behaviour as well as indicate potential causes of misclassifications
when the model is applied outside of the initial training context.
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1 INTRODUCTION
Recent years have seen rapid advances in research on neural ma-
chine learning models and their application to different NLP tasks.
However, although demonstrating impressive gains in accuracy, in-
transparency of these models remains a disadvantage [38]: it is not
always clear what caused the model to make a decision. A common
problem is a “Clever Hans”-type behaviour [22], when the model
“cheats” by exploiting shortcut correlations in the training data,
∗Author currently works at AstraZeneca, UK (email: andriy.nikolov@astrazeneca.com).

which results in high reported accuracy during training, but can
lead to problems when deployed in the real world. For example, a
publicly available LSTM network [36] was trained to classify tweets
by political leaning (pro-democrat vs pro-republican) and achieved
about 90% performance on the test dataset. However, when trying
this model with two examples having opposite meaning “I hate
@realDonaldTrump” and “I love @realDonaldTrump”, the model
classifies them both as pro-republican with very high confidence
(0.994 and 0.991 respectively): i.e., it relies on who is referenced in
a tweet rather than what the tweet actually says.

Existing generic neural network explanation methods such as [4,
41], and [28] are focusing on post-hoc interpretability [26], i.e., ex-
plaining the reasons for the model’s decision on a single example
by assigning different relevance scores to atomic tokens in the in-
put text. Such explanations, however, are not sufficient to verify
the whole model or to give clues about directions of improvement.
To achieve model interpretability, we need to (a) make transparent
systematic preferences of the model and possible spurious biases,
which apply consistently across many cases, as well as (b) express
these preferences in a human-understandable form.

A neural NLP model is able to take into account different kinds
of textual features: from low-level syntactic patterns, stylistic ele-
ments, and sentiment to the actual factual information expressed
about the domain. In this paper we focus on the latter and aim at
capturing semantic preferences of the model dealing with domain
knowledge. Our paper therefore makes the following contributions:

• We propose a novel method for discovering semantic pref-
erences of neural text processing models. The method com-
bines decision explanation using relevance scores with as-
sociation rule mining over the knowledge graph to capture
explanation rules stating which categories of domain entities
are likely to shift the model decision in a certain way.

• We report evaluation experiments with our method on four
test scenarios demonstrating that (a) mined rules are able to
explain model decisions to a large extent and (b) preferences
they capture are generic and hold when the model is applied
outside of the original training context.

The rest of this paper is structured as follows. Section 2 presents a
motivational example and briefly outlines the steps of our approach.
In section 3, we provide an overview of existing solutions for deep
learning explanation methods as well as rule mining approaches.
Section 4 describes the process of extracting influential features
from a set of input examples and linking them to knowledge graph
entities. Section 5 focuses on mining the rules from selected entities.
Section 6 describes the evaluation experiments. Finally, section 7
concludes the paper and discusses directions for future work.
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Figure 1: Capturing explanation in the form of knowledge
graph-grounded rules.

2 MOTIVATION
Let us consider a convolutional network for binary text classifica-
tion that takes a short biography of a painter and predicts whether
his/her paintings are likely to be present in a major European art
museum, such as Louvre, Prado, or Uffizi. When we give this model
the following snapshot of Titian’s biography, it gets misclassified,
i.e. the model gives a confidence of only 0.24, which corresponds
to the answer “No”.

Tiziano Vecelli (+0.04) (1488/1490 – 27 August 1576),
known in English as Titian, was an Italian (-0.03)
painter, themost importantmember of the 16th-century
Venetian school (+0.01). Hewas born in Pieve di Cadore
(-0.03), near Belluno (-0.01), in Veneto (-0.01) (Republic
of Venice (-0.01)). His painting methods would pro-
foundly influence future generations of Western Art
(+0.001).

The text itself does not contain any obvious indication of why
Titian would not be represented in a major museum, so, to get an
idea about the reasons for misclassification, we can analyze the de-
cision using an explanation tool such as SHAP/DeepExplainer [28],
which assigns relevance scores to all tokens in the text. Looking
at the scores (in brackets), we can see that the toponyms such as
“Pieve di Cadore” and “Veneto” push the decision in the negative
direction. Indeed, simply reducing the abstract to

Tiziano Vecelli (1488/1490 – 27 August 1576), known
in English as Titian, was an Italian painter, the most
importantmember of the 16th-century Venetian school.
His painting methods would profoundly influence fu-
ture generations of Western Art.

is enough to switch the model’s prediction to “positive” with a
high score of 0.74. This isolated case hints at some non-intuitive
preference within the model, but does not reveal it: e.g., is there
a bias against the token “Pieve di Cadore”, any Italian-originated
word, any Italian toponym, all toponyms in general, or is there
in fact no consistent bias and the decision was caused by some
specific co-occurrence of tokens? In order to understand the model
better, we need to be able to generalize from individual examples
and capture such preferences at the semantic level: i.e., discover
clusters of tokens that consistently influence the model in the same

way and represent meaningful categories from the human point of
view, for example:

“If the text mentions an Italian toponym, this usually shifts the
model’s decision to negative”

Such rules can be used (a) to analyze the reasons for misclassi-
fications when the model is deployed in the real world or (b) to
improve the model by resampling the training data, removing the
undesired correlations, and retraining.

To move from analyzing individual relevance scores to reasoning
over domain categories, we propose an algorithm consisting of three
stages (Figure 1):

• Discovering important input features influencing themodel’s
decision using an existing post-hoc explanation method.

• Mapping discovered influential features to a knowledge graph
which categorizes them and describes them with facts.

• Applying association rule mining [16] to capture the model’s
learned preferences in the form of predictive explanation
rules over knowledge graph concepts and properties.

3 BACKGROUND AND RELATEDWORK
Our work builds on results from two research directions, which,
to our knowledge, have not been applied in combination so far:
explaining neural network models and association rule mining.

3.1 Explaining neural network models
Unlike other machine learning algorithms (e.g., linear regression or
decision trees), non-linear neural networkmodels are not inherently
intelligible [45]: i.e., they do not allow a human user to understand
which input features were important for a given prediction. A post-
hoc explanation method tries to overcome this by analyzing the
network’s decision process and assign relevance scores to input
features. Let 𝑓𝑐 (·) denote some prediction function learned by a
neural network for each class 𝑐 . We denote as X1, . . . ,Xn a set
of input examples, each one consisting of a sequence of tokens of
length𝑇 :Xj = {𝑥 𝑗,1, . . . , 𝑥 𝑗,𝑇 }. Each input feature 𝑥 𝑗,𝑘 represents an
occurrence of some word𝑤𝑖 in the vocabulary V . An explanation
represents a set of real-valued scores 𝜙 (𝑐, 𝑡,X) that assign relevance
for each class 𝑐 for each position 𝑡 = 1, . . . ,𝑇 of the input text X.
For a binary classification task, we will use the notation 𝜙 (𝑡).

Some methods try to provide explanations without analyzing
the internals of the model. One group of such black-box algorithms
utilizes input perturbations: modifying elements of the input and
measuring changes in the output. While originally proposed for
image processing [46, 47], this approach was later adapted for NLP
tasks as well [20, 25]. Another group, represented by the LIME [37]
algorithm tries to approximate the behaviour of a neural network
classifier in the neighbourhood of the input𝑋 with an interpretable
(e.g., linear) model. While being generic, such black-box methods (a)
can be inefficient due to the need for multiple input perturbations
and sampling and (b) do not give interpretable information about
model’s internal parameters.

Another class of methods tries to assign relevance scores by
back-propagating through the model, e.g. by calculating the out-
put’s gradient with respect to the input [42, 43]. This, however,
highlights such input features to whose change the model is the
most sensitive, which are not necessarily the ones that contributed



the most to the decision [31]. Layer-wise relevance propagation
(LRP) [4, 6] defines back-propagation rules that distribute the out-
put value among the relevance scores of inputs such that 𝑓𝑐 (X) =∑𝑇
1 𝜙 (𝑐, 𝑡,X), thus assigning to each input value a fraction of the

output. The DeepLift algorithm proposed by [41] instead com-
putes the relevance scores that characterize the positive/negative
influence of each input relative to some reference point input: i.e.,
𝑓𝑐 (X) = 𝑓𝑐 (X𝑟𝑒 𝑓 ) +

∑𝑇
1 𝜙 (𝑐, 𝑡,X). This is an advantage in our sce-

nario, since it makes relevance score interpretation independent
of its absolute value, which, in turn, makes it easy to aggregate
relevance scores across multiple data instances. There exist several
implemented variations of DeepLift [3, 28, 41], among which we
selected to use SHAP/DeepExplainer [28] in our experiments for
its support for a range of different network architectures.

More recently, the idea of concept-based explanations arose in
the image processing domain [15, 21], where “concepts” are in-
formally defined as human-understandable image segments (e.g.,
“wheel” or “police logo”). While this has some similarities with
our general goal, these methods merely consider “concepts” as
annotated similarity clusters of image segments, rather than on-
tological concepts formally defined in a knowledge graph, which
enable rule mining. The Semantic Web research community also
started exploring the possibilities of bringing in domain ontolo-
gies to complement machine learning models and make them more
transparent [17, 23, 39].

Besides dedicated explanation methods, certain elements of net-
work architectures are often used for interpretation, in particular,
convolution filters [18] and learned attention weights [7, 25]. How-
ever, these can only be exploited for certain architectures and tasks
and it can be non-trivial to interpret them to make judgements
about feature significance across multiple examples. Moreover, the
validity of interpretations is often dubious [19, 40].

3.2 Mining association rules over knowledge
graphs

Association Rule Mining (ARM) was originally proposed to dis-
cover relations between products in transaction databases [1]. The
classical Apriori algorithm [2] established the typical two-stage
procedure including (i) mining frequent itemsets and (ii) generating
rules from these itemsets. Later algorithms followed the same pro-
cedure, but further optimized these stages [8, 33]. While the most
popular measures used for selecting valid rules are support and
confidence, a number of alternative “interestingness” metrics were
proposed [24] with different advantages depending on the context.

One potential issue of ARM is the large number of rules pro-
duced by the Apriori algorithm and its modifications. This can
make the resulting rules difficult to interpret by human users. To
deal with this problem, various post-processing methods have been
proposed to reorganize and filter the mined rule sets. For example,
one approach involves grouping and reorganizing the mined rule
set with the help of metarules [9] which capture the interdepen-
dencies between the rules themseleves. In [29], post-processing
is based on the use of the domain ontology: an approach which
produces well-defined and meaningful groupings, but requires ad-
ditional manual modelling effort. A range of pruning techniques is
based on the notion of rule covers [44]: a rule can be considered

Figure 2: Approximating relevance scores by back-
propagating DeepLift multipliers.

redundant if all objects it covers are also covered by other rules.
In [27] this approach was taken further in application to associative
classification rules (rules where consequents represent class label
attributes), which also makes it relevant for our explanation rules
use case (Section 5).

The growth of structured RDF data triggered research on induc-
tive rule mining in the context of knowledge graphs/ontologies.
Various Inductive Logic Programming (ILP) methods [32] were
adopted to deal with different degrees of expressivity of the output.
For example, AMIE [12, 13] focuses on mining Horn rules involving
multiple variables: a task, for which classical ARM algorithms were
found inefficient. Another direction involves learning description
logic expressions to enrich the ontology [10, 35]. Our algorithm,
however, involves mining Horn rules over a single variable and
bears more similarities with the standard ARM scenario. For this
reason, we adopt a modified the Apriori algorithm for our rule
mining procedure in Section 5.

4 EXTRACTING RELEVANT ENTITIES
The first step of our method involves utilizing individual relevance
scores produced by SHAP/DeepExplainer as evidence to discover in-
fluential domain entities. To this end, we aggregate and analyze the
relevance scores over the whole set of available training instances.

4.1 Computing and aggregating relevance
scores

SHAP assigns to each input feature a positive/negative weight that
characterizes the impact of the feature relative to some reference
point input. Thus, the sum of relevance scores for all input text
tokens would be equal to the difference in prediction scores between
the chosen example and the reference point, i.e. 𝑓𝑐 (X) = 𝑓𝑐 (X𝑟𝑒 𝑓 ) +∑𝑇
1 𝜙 (𝑐, 𝑡,X).
SHAP/DeepExplainer adapts the DeepLift algorithm to calculate

approximate relevance scores by back-propagating DeepLift mul-
tipliers through the network layers (Figure 2). For a given input
neuron with an input 𝑥 and an output 𝑓 (𝑥), the multiplier𝑚𝑥 𝑓 is
defined as:

𝑚𝑥 𝑓 =
𝜙 (𝑓 (𝑥))

Δ𝑥
=

𝜙 (𝑓 (𝑥))
𝑥 − 𝑥𝑟𝑒 𝑓



Thus, the multiplier𝑚𝑥 𝑓 is the contribution of Δ𝑥 to Δ𝑓 (𝑥) divided
by Δ𝑥 . The multipliers in this way are similar in spirit to partial
derivatives (but are defined over finite differences) and are recur-
sively passed back through the network as shown in Figure 2[28].

∀𝑗 ∈{1,2}𝑚ℎ 𝑗 𝑓2 =
𝜙𝑖 (𝑓2 (ℎ))
ℎ 𝑗 − ℎ 𝑗,𝑟𝑒 𝑓

∀𝑗 ∈{1,2}𝑚𝑥𝑖 𝑓1𝑗 =
𝜙𝑖 (𝑓1𝑗 (𝑥))
𝑥𝑖 − 𝑥𝑖,𝑟𝑒 𝑓

𝑚𝑥𝑖 𝑓2 =

2∑
𝑗=1

𝑚𝑥𝑖 𝑓1𝑗𝑚ℎ 𝑗 𝑓2

𝜙𝑖 (𝑓 (𝑥)) ≈𝑚𝑥𝑖 𝑓2 (𝑥𝑖 − 𝑥𝑖,𝑟𝑒 𝑓 )
Back-propagation of the multipliers using the chain rule to pass

through layers and rescaling to handle non-linearities allows ap-
proximating relevance in an efficient way. A common strategy for
selecting an appropriate reference point is to compute the influence
weights relative to a large set of reference examples and compute
an average value, instead of trying to select a single input example.
The relevance scores calculated for all training examples in this
way serve as input of our algorithm.

At the first step of the algorithm we use aggregated influence
weights for each input token to select the tokens that consistently
“push” the model decision in the same direction: in the simplest case
of a binary classification task, consistently “positive” or “negative”
decision. Aggregating over multiple predictions helps to overcome
the known fragility of neural network interpretations [11, 14].

Thus, for a specific token 𝑤𝑖 in the vocabulary, we select all
its mentions in the set of input examples 𝑋1, . . . , 𝑋𝑁 , 𝑀 (𝑤𝑖 ) =⋃

𝑗=1,...,𝑁 {𝑥 𝑗,𝑘 |𝑥 𝑗,𝑘 = 𝑤𝑖 }. After applying the explanation algo-
rithm over the whole set of examples X1, . . . ,Xn, we can get for
each reference of any token in the vocabulary a set of relevance
scores Φ(𝑐,𝑤𝑖 ) = {𝜙 (𝑐, 𝑘,Xj) |𝑥 𝑗,𝑘 ∈ 𝑀 (𝑤𝑖 )}. Within this set, we
separate the occurrences into positive, where the token drives the
model to increase the decision score in favour of the given class:

Φ+ (𝑐,𝑤𝑖 )={𝜙 (𝑐,𝑘,Xj) |𝑥 𝑗,𝑘=𝑤𝑖 ,𝜙 (𝑐,𝑘,Xj)>0}

and, similarly, negative ones Φ− (𝑐,𝑤𝑖 ) where 𝜙 (𝑐, 𝑘,Xj) < 0: e.g.,
the city of Belluno from our example is mentioned 4 times in the
training corpus and only in 1 casewith𝜙 > 0, so |Φ+ (𝑐, ”𝐵𝑒𝑙𝑙𝑢𝑛𝑜”) | =
1 and |Φ− (𝑐, ”𝐵𝑒𝑙𝑙𝑢𝑛𝑜”) | = 3.

4.2 Selecting influential tokens
Once each occurrence of each token has been assigned a relevance
score, the next step involves distinguishing the “influential” tokens
which consistently impact the network in the same way, from non-
significant ones, whose influence varies greatly between different
occurrences and heavily depends on the context. For this, we intro-
duce the influence function 𝐹𝑖𝑛𝑓 (𝑑𝑖 ), which would return a measure
of influence for each token.

We tested several alternative strategies for determining such
significant tokens, in particular:

• Token classification: selecting influential tokens based on the
ratio of positive/negative occurrences: 𝑟± (𝑐,𝑤𝑖 ) = |Φ± (𝑐,𝑤𝑖 ) |

|Φ(𝑐,𝑤𝑖 ) |
and comparing it with a threshold 𝜃 . Thus, a token𝑤𝑖 will

be considered positive (𝐹𝑖𝑛𝑓 (𝑤𝑖 ) = 1) if 𝑟+ (𝑐,𝑤𝑖 ) > 𝜃 , neg-
ative (𝐹𝑖𝑛𝑓 (𝑤𝑖 ) = −1) if 𝑟+ (𝑐,𝑤𝑖 ) < 1 − 𝜃 or not significant
(𝐹𝑖𝑛𝑓 (𝑤𝑖 ) = 0) otherwise.

• Token scoring: instead of assigning discrete labels to tokens,
each token gets assigned a real-valued score 𝐹𝑖𝑛𝑓 (𝑤𝑖 ) =

𝑟+ (𝑐,𝑤𝑖 ).
• Weighted token scoring: each token gets weighted by the
number of positive/negative occurrences 𝐹+

𝑖𝑛𝑓
(𝑤𝑖 ) = |Φ+ |

and 𝐹−𝑤𝑖
= |Φ− | rather than the ratio, so that more frequent

tokens are valued higher.

Note that we only take into account the sign of each relevance score
𝜙 rather than its absolute value. Since the values of relevance scores
are scaled by the final prediction 𝑓𝑐 (·), they are not comparable
between different examples Xj.

4.3 Grounding influential tokens with a
knowledge graph

After determining the set of influential input tokens, we select
only the semantically meaningful ones that reference domain enti-
ties represented in a knowledge graph containing relevant domain
knowledge. We assume the following definition for a knowledge
graph from the Resource Description Framework (RDF): A knowl-
edge graph𝐺 is a finite set of triples (𝑠, 𝑝, 𝑜) ∈ (𝐸∪𝐵)×𝑅×(𝐸∪𝐵∪𝐿),
where 𝐸 is a set of URI resources (entities), 𝐵 denotes blank nodes,
𝑅 is a set of URI relations, and 𝐿 is a set of literals.

Our method therefore requires a mapping between a subset of
tokens VG ⊂ V and their representative named entities 𝑒𝑖 ∈ 𝐸

from𝐺 : e.g., between the token “Belluno” and Wikidata ID “Q6558”.
If there is no available mapping between text tokens and graph enti-
ties, a named entity recognition task has to be performed separately.
As a result of this stage, wemove from the influence functions of tex-
tual tokens 𝐹𝑖𝑛𝑓 (𝑤𝑖 ) to influence functions 𝐹𝑖𝑛𝑓 (𝑒𝑖 ) for influential
domain entities, each one uniquely denoted by a URI.

5 RULE MINING
At the next stage, our algorithm takes the set of discovered sig-
nificant domain entities and their associated relevance scores and
tries to describe this set in terms of the domain knowledge repre-
sented in the knowledge graph. Our use case represents an example
of associative classification, which in turn is a special case of the
association rule mining (ARM) task where the consequent of an
association rule is constrained by class label attributes.

5.1 Background
Formally, the data mining context of ARM is represented by a
transaction database 𝐷 = (𝑂, 𝐼, 𝑅), where 𝑂 and 𝐼 are finite sets of
transactions and items respectively and𝑅 ⊆ 𝑂×𝐼 is a binary relation
between 𝑂 and 𝐼 . 𝐷 is arranged as a set of transactions where each
transaction 𝑡 ∈ 𝑂 is a set of items 𝑦 ∈ 𝐼 (itemset). Thus, (𝑡, 𝑦) ∈ 𝑅

means that the item 𝑦 occurs in the transaction 𝑡 , and a transaction
𝑡 is said to contain an itemset 𝑌 if ∀𝑦 ∈ 𝑌 : (𝑡, 𝑦) ∈ 𝑅. For each
itemset 𝑌 ⊆ 𝐼 its support 𝑠𝑢𝑝 (𝑌 ) is the number of transactions
in which the itemset occurs, i.e. 𝑠𝑢𝑝 (𝑌 ) = |𝑇 |, where 𝑇 = {𝑡 ∈
𝑂 |∀𝑦 ∈ 𝑌 : (𝑡, 𝑦) ∈ 𝑅}. The aim of ARM is to discover intrinsic
relations between itemsets. An association rule is an implication of



the form 𝑋 → 𝑌 , where 𝑋 ⊆ 𝐼 and 𝑌 ⊆ 𝐼 are the antecedent and
the consequent of the rule and 𝑋 ∩ 𝑌 = ∅. For 𝑋 → 𝑌 its support
𝑠𝑢𝑝 (𝑋 → 𝑌 ) is defined as 𝑠𝑢𝑝 (𝑋 → 𝑌 ) = |{𝑡 ∈ 𝑂 |𝑋 ⊆ 𝑡, 𝑌 ⊆ 𝑡}|
and confidence is the conditional probability that 𝑌 ⊆ 𝑡 given that
𝑋 ⊆ 𝑡 , i.e. 𝑐𝑜𝑛𝑓 (𝑋 → 𝑌 ) = 𝑠𝑢𝑝 (𝑋→𝑌 )

𝑠𝑢𝑝 (𝑋 ) .
In the case of explanation rules, our set of transactions𝑂 consists

of all IRI instances in the knowledge graph that are referenced in
the text I𝑡𝑒𝑥𝑡 . For each 𝑡 ∈ I𝑡𝑒𝑥𝑡 , its itemset 𝐼 (𝑡) includes:

• All statements in the knowledge graph 𝐺 containing 𝑡 as a
subject or an object: {(𝑠, 𝑝) | (𝑠, 𝑝, 𝑡) ∈ 𝐺} ∪ {(𝑝, 𝑜) | (𝑡, 𝑝, 𝑜) ∈
𝐺}.

• A class label𝐶𝑙𝑠 stating whether 𝑡 has a positive or negative
influence. 𝐶𝑙𝑠 (𝑥) can take one of {𝑃𝑜𝑠 (𝑋 ), 𝑁𝑒𝑔(𝑋 )}.

Each explanation rule in our case has the format 𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥)
or 𝑌 (𝑥) → 𝑁𝑒𝑔(𝑥), holding the class label as a consequent, while
the antecedent represents a conjunction 𝑌 (𝑥) =

∧
𝑖 (𝑠𝑖 , 𝑝𝑖 , 𝑥) ∧∧

𝑗 (𝑥, 𝑝 𝑗 , 𝑜 𝑗 ): e.g., a rule covering Italian toponyms from our exam-
ple can take the form 𝐶𝑖𝑡𝑦 (𝑥) ∧ 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛(𝑥, 𝐼𝑡𝑎𝑙𝑦) → 𝑁𝑒𝑔(𝑥).

5.2 Mining classification rules
The classical Apriori algorithm [2] for mining rules proceeds in
two steps:

• Finding frequent itemsets 𝑌 (𝑥) that pass the minimum sup-
port threshold 𝑠𝑢𝑝 (𝑌 (𝑥)) ≥ 𝑠𝑢𝑝𝑚𝑖𝑛 . Frequent itemsets are
constructed iteratively: Frequent itemsets of length 𝑘 + 1
are constructed by adding operands to frequent itemsets of
length 𝑘 , starting from 𝑘 = 1.

• Generating rules 𝑌 (𝑥) → 𝐶𝑙𝑠 (𝑥) from frequent itemsets.
Valid rules are selected based on the minimum confidence
threshold 𝑐𝑜𝑛𝑓 (𝑌 (𝑥) → 𝐶𝑙𝑠 (𝑥)) ≥ 𝑐𝑜𝑛𝑓𝑚𝑖𝑛 .

Depending on the influence measurement strategy discussed in
Section 4, we used different confidence measures, which generalize
from the token significance metrics:

• Token classification (TC): this is a straightforward applica-
tion of the confidence measure to evaluate a rule using the
assigned token classification labels:

𝑐𝑜𝑛𝑓𝑇𝐶 (𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥)) =
|{𝑑𝑖 |𝑑𝑖 ∈ 𝑌 (𝑥), 𝐹𝑖𝑛𝑓 (𝑑𝑖 ) = 1}|

|{𝑑𝑖 |𝑑𝑖 ∈ 𝑌 (𝑥)}|
• Token scoring (TS): here a real-valued function 𝐹𝑖𝑛𝑓 (𝑑𝑖 ) is
taken into account

𝑐𝑜𝑛𝑓𝑇𝑆 (𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥)) =
∑
𝑌 (𝑥) 𝐹𝑖𝑛𝑓 (𝑑𝑖 )

|𝑌 (𝑥) |
• Weighted token scoring (WTS):

𝑐𝑜𝑛𝑓𝑊𝑇𝑆 (𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥)) =

∑
𝑌 (𝑥) 𝐹

+
𝑖𝑛𝑓

(𝑑𝑖 )∑
𝑌 (𝑥) (𝐹+𝑖𝑛𝑓 (𝑑𝑖 ) + 𝐹−

𝑖𝑛𝑓
(𝑑𝑖 ))

Note that these metrics behave differently in cases where tokens
within the category vary greatly with respect to their frequency.
For example, in the tweet political leaning classification use case,
we have a candidate rule

(𝑥, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑖𝑎𝑛)∧(𝑥, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑎𝑛𝑎𝑑𝑎) → 𝐷𝑒𝑚𝑜𝑐𝑟𝑎𝑡𝑖𝑐 (𝑥)
with 5 items satisfying the antecedent criterion. For 4 of them the as-
sumption holds, i.e., they were mostly referenced in pro-democratic

tweets, but the 5th one was Ted Cruz who held double citizenship
until 2014 and (a) was referenced in primarily pro-republican tweets
and (b) had significantly more mentions in the training set than the
other 4 combined. Thus, the rule would be selected as valid by the
token classification and token scoring metrics, but with weighted to-
ken scoring an opposite rule would be created classifying Canadian
politicians as evidence for pro-republican leaning. Interpretation of
the rule would be different as well: a newly encountered randomly
selected Canadian politician in a tweet would more likely shift the
model decision towards pro-Democratic, but a random mention of
some Canadian politician in a new tweet would more likely point
to a pro-Republican tweet since this would likely be a mention of
Ted Cruz. For more robust rules that would be valid under both
interpretations, we introduced hybrid metric (H):

𝑐𝑜𝑛𝑓𝐻 (𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥)) =𝑚𝑖𝑛(𝑐𝑜𝑛𝑓𝑇𝐶 , 𝑐𝑜𝑛𝑓𝑊𝑇𝑆 )

5.3 Post-processing mined rules
A well-known issue with rule mining algorithms is the potentially
large set of produced rules, which makes it difficult to interpret and
utilize by a human user. To deal with this, we adapted the approach
described in [27] targeted at classification rules and based on the
notion of closed rule sets: closed sets of rules covering the same
set of transactions. If for two rules, 𝑟1 and 𝑟2, and their supporting
sets of transactions, 𝑇1 and 𝑇2, the relation 𝑇2 ⊂ 𝑇1 holds, then 𝑟1
is called a cover-rule of 𝑟2. The rule 𝑟2 in this situation becomes
redundant and can be safely discarded. Each closed rule set can
then be replaced by a subset of its cover-rules which jointly cover
all its transactions.

6 EVALUATION AND DISCUSSION
Existing benchmark datasets created to evaluate the neural network
explanation methods on NLP tasks [4, 5, 34] are not suitable in our
case, because they do not reference domain informationmodelled by
a knowledge graph. For this reason, we selected our own evaluation
datasets using two criteria: (i) availability of pre-existing mappings
with Wikidata (Wikipedia links and Twitter account references)
to avoid the need for a named entity recognition step, potentially
introducing errors and (ii) non-triviality of prediction: the target
variable should not be directly present in the text itself, which
otherwise would lead to high performance of the model, but trivial
explanation rules. Based on these, we selected the following four
benchmarks:

• Wikipedia abstracts: As examples, we selected abstracts of
Wikipedia articles describing Wikidata instances of the same
type. TheWikipedia links in the text were used to map the to-
kens in the text to Wikidata and the input word embeddings
(word2vec [30]) were trained using the complete Wikipedia
corpus with explicit references of Wikidata IRIs. In this way,
we obtained a common vector space containing Wikidata
IRIs together with common words.
– Painters: The task involves deciding whether painters who
died before 1700 are likely to have their paintings in one of



Figure 3: Aggregated coverage and precision achieved by
mined rules with different metrics.

the 10 most famous European museum collections1. The
dataset contains 3943 abstracts.

– Movie rating: The task involves deciding whether a movie
is likely to receive a higher than median rating on IMDB.
The selected dataset contains 8087 abstracts.

– Movie popularity: The task uses the same textual data as
the previous one, but focuses on deciding whether a movie
is likely to receive more than the median number of votes
on IMDB.

• Political leaning: For this test, we reused a pre-trained LSTM
model published by [36], which classified tweets based on
their political leaning (pro-democratic vs pro-republican),
and the publicly available test set of 10,000 tweets. We used
the referenced Twitter accounts to map them to correspond-
ing Wikidata entities.

For the three Wikipedia datasets, we trained the models ourselves,
splitting the datasets equally into the train and test sets. In order
to evaluate the dependency of mined rulesets on the network ar-
chitecture, for each datasets we trained two models: (i) Bi-LSTM
and (b) two-layer CNN. The details of all models are provided in
Appendix A.

6.1 Accuracy of the learned rules
We evaluated the quality of rules mined in the training set by calcu-
lating their prediction accuracy on the test set. We selected all enti-
ties covered by the mined rules that satisfied the rules’ antecedent
and were mentioned in the test set. The first measure, “impact accu-
racy” (𝐴𝑐𝑐𝑖𝑚𝑝 ), checked whether for each occurrence of the entity
its relevance score corresponded with the rule prediction: i.e., for
all occurrences of entities 𝑥 satisfying rules 𝑌 (𝑥) → 𝑃𝑜𝑠 (𝑥) and
𝑌 (𝑥) → 𝑁𝑒𝑔(𝑥), calculating the ratio of cases where the sign of
the relevance score was correctly predicted.

𝐴𝑐𝑐𝑖𝑚𝑝 =
|⋃{𝑡 ∈ 𝑀+ (𝑒𝑖 ) |𝜙 (𝑡) > 0} ∪⋃{𝑡 ∈ 𝑀− (𝑒𝑖 ) |𝜙 (𝑡) < 0}|

|⋃𝑀 (𝑒𝑖 ) |
As the second metrics “overall prediction accuracy” (𝐴𝑐𝑐𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ),
we measured the ratio of coincidences with the overall model pre-
diction: i.e., for all entity occurrences covered by rules calculating

1Louvre, Hermitage, Prado, Uffizi, Vatican, London National Gallery, Rijksmuseum,
museums in Vienna, Berlin, and Munich.

the ratio of cases where the model prediction for the whole text
coincided with the rule prediction for the mentioned entity.

𝐴𝑐𝑐𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
|⋃{𝑡 ∈ 𝑀+ (𝑒𝑖 ) |𝑓 (Xj) > 0} ∪⋃{𝑡 ∈ 𝑀− (𝑒𝑖 ) |𝑓 (Xj) < 0}|

|⋃𝑀 (𝑒𝑖 ) |
As we can see in Table 1, in all cases a substantial part of the

model’s behaviour can be explained away with the semantic prefer-
ences captured by the mined rules: with the most accurate “hybrid”
strategy, for the subset covered by the rules 𝐴𝑐𝑐𝑜𝑣𝑒𝑟𝑎𝑙𝑙 was usu-
ally close to the accuracy of the model itself. In general, the TC
and H strategies achieved higher accuracy than both TS and WTS.
Accounting for non-influential tokens that receive highly varying
influence scores in different instances helps to produce more robust
rules.

As expected, most of the mined rules reflected common sense
knowledge about the corresponding domains. For instance, in the
Painters use case, the Dutch or Flemish origin, professional painter’s
career, and elements of Christian art were found to be positive
factors leading to such rules like

ℎ𝑢𝑚𝑎𝑛 (𝑥)∧𝑐𝑖𝑡𝑖𝑧𝑒𝑛 (𝑥,𝑆𝑜𝑢𝑡ℎ𝑒𝑟𝑛𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠)

∧𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 (𝑥,𝐴𝑛𝑡𝑤𝑒𝑟𝑝𝐺𝑢𝑖𝑙𝑑𝑜 𝑓 𝑆𝑡𝐿𝑢𝑘𝑒)→𝑃𝑜𝑠 (𝑥)

or

𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 (𝑥)∧𝑑𝑒𝑝𝑖𝑐𝑡𝑠 (𝑥,𝑉 𝑖𝑟𝑔𝑖𝑛𝑀𝑎𝑟𝑦)→𝑃𝑜𝑠 (𝑥)

In turn, non-Western origin (e.g., China, Korea, or Russia) or too
early time period (Classical Antiquity) usually had a negative impact
(Figure 4).

But some preferences were non-intuitive: e.g., a bias against
various Italian toponyms. When analyzing the dataset, two com-
plementing reasons emerged: (i) a large number of Italian artists
created frescoes rather than oil paintings, which could be moved
to museums, and (ii) many Italian painters from small cities did not
join one of the famous communities (e.g., in Florence or Rome) and
did not acquire global fame, although their works survived in local
museums. Such counter-intuitive biases can be used to resample
the training data and fine-tune the model behaviour.

Interestingly, different factors were found to be at play when
classifying movies by rating or by popularity. For the rating, the
most significant positive factors were various awards, while nega-
tive ones included certain genres or character types (e.g., zombie
movies or superheroes). For the popularity, on the other hand, the
positive factors were generally related to recent cultural trends (e.g.,
association with the Marvel universe or having Brad Pitt as a cast
member), while the negative ones had to do with old age (e.g., black
and white colour or Clark Gable as an actor). Finally, for the political
use case, the referenced twitter accounts were found to have greater
influence than the content of the tweet itself: e.g., referencing a
military officer or a Methodist church member usually shifted the
decision towards “pro-republican”, while mentioning a Hollywood
actor or a CNN journalist were signs of “pro-democratic”.

Figure 3 shows a trade-off between the precision of the mined set
of rules and the coverage (percentage of entities which support at
least one rule) achieved with different thresholds. The TC strategy
generally results in higher precision rules, while theWTS produces
more generic rule sets covering a larger proportion of entities.



Use case Model Impact accuracy Overall prediction accuracy Coverage Model
type 𝐴𝑐𝑐𝑖𝑚𝑝 𝐴𝑐𝑐𝑜𝑣𝑒𝑟𝑎𝑙𝑙

TC TS WTS H TC TS WTS H TC TS WTS H accuracy
Painters Conv (all) 0.80 0.69 0.73 0.86 0.69 0.49 0.70 0.75 0.45 0.96 0.96 0.43 0.71Conv (unseen) 0.79 0.71 0.51 0.80 0.72 0.53 0.47 0.72

LSTM (all) 0.85 0.74 0.77 0.86 0.73 0.55 0.68 0.74 0.59 0.97 0.96 0.58 0.71LSTM (unseen) 0.81 0.73 0.74 0.81 0.70 0.59 0.60 0.70
Movies Conv (all) 0.83 0.66 0.67 0.83 0.71 0.46 0.47 0.71 0.45 0.98 0.98 0.44 0.68(rating) Conv (unseen) 0.69 0.63 0.63 0.68 0.55 0.44 0.44 0.54

LSTM (all) 0.86 0.64 0.66 0.84 0.73 0.46 0.48 0.71 0.50 0.99 0.99 0.49 0.68LSTM (unseen) 0.77 0.62 0.62 0.74 0.61 0.44 0.44 0.61
Movies Conv (all) 0.77 0.67 0.66 0.77 0.69 0.54 0.54 0.69 0.79 0.86 0.99 0.78 0.79(popularity) Conv (unseen) 0.64 0.61 0.56 0.64 0.57 0.48 0.45 0.57

LSTM (all) 0.83 0.67 0.67 0.84 0.72 0.52 0.52 0.73 0.79 0.99 0.99 0.78 0.79LSTM (unseen) 0.75 0.63 0.58 0.75 0.66 0.47 0.44 0.66
Political LSTM (all) 0.66 0.64 0.73 0.90 0.63 0.61 0.70 0.86 0.35 0.38 0.42 0.35 0.90tweets LSTM (unseen) 0.70 0.62 0.51 0.70 0.65 0.57 0.47 0.66

Table 1: Accuracy of learned classification rules in (a) predicting the impact of a single entity (positive/negative) and (b) pre-
dicting the overall model decision over the whole text and (c) percentage of entities covered by the final ruleset. All metrics
were tested with the same 𝑐𝑜𝑛𝑓𝑚𝑖𝑛 = 0.75, for TC and H the parameter 𝜃 = 1.0 was used.

Figure 4: Visualized clusters of positive (left) and negative (right) rules composed for the convolutional network applied to
the Painters use case. Rules represent nodes of the graph, while edges reflect overlaps between support sets. Connected com-
ponents represent closed rule sets.

6.2 Impact of network architecture differences
In order to validate that the method is generic enough to be used in
combinations with different network architectures, it is important
to verify to which extent its results are adequately capturing corre-
lations existing in the data and learned by the model rather than
representing uninformative fluctuations dependent on the choice of
the model architecture. For this reason, in the Wikipedia abstracts
experiments we tested our method with two different neural net-
work architectures for the same task: the LSTM and the CNN. As

shown in Table 2, the rules mined after analyzing the influential
tokens for both networks largely reflect the same preferences: the
sets of entities covered by rules for both network types are strongly
overlapping.

The results also show the effects of highly selective metrics (TC
and H): due to high dependency on the separation between influen-
tial and non-influential tokens, the results are more sensitive to the
specific network architecture, the overlap between corresponding
entity sets covered by rules is generally lower, but the positive
and negative token sets are well-separated. On the other hand, TS



Class TC TS WTS H
Pain- Pos 0.76 (0.01) 0.90 (0.18) 0.88 (0.20) 0.84 (0.01)
ters Neg 0.83 (0.01) 0.94 (0.06) 0.96 (0.09) 0.91 (0.01)
Movies Pos 0.54 (0.03) 0.75 (0.34) 0.78 (0.30) 0.53 (0.03)
(rating) Neg 0.52 (0.02) 0.81 (0.40) 0.83 (0.36) 0.51 (0.01)
Movies Pos 0.70 (0.14) 0.90 (0.48) 0.94 (0.64) 0.70 (0.14)
(pop.) Neg 0.84 (0.03) 0.89 (0.30) 0.89 (0.49) 0.84 (0.03)

Table 2: Overlap of entities covered by rules created for dif-
ferent network architectures (CNN and LSTM) for the same
task. The table shows overlap distances between Ω+

𝐶𝑁𝑁
and

Ω+
𝐿𝑆𝑇𝑀

, in brackets the overlap distances with the rules of
the opposite class are given (Ω+

𝐶𝑁𝑁
and Ω−

𝐿𝑆𝑇𝑀
).

Use case Class Avg. score Avg. per-rule score 𝑟𝑃𝑜𝑠

Painters Pos 0.47 0.55 0.47
Neg 0.10 0.12 0.05

Movies Pos 0.68 0.75 0.77
(rating) Neg 0.35 0.34 0.23
Movies Pos 0.34 0.72 0.31
(popularity) Neg 0.05 0.08 0.02

Table 3: Model predictions on entities covered by rules.

and WTS result in greater correlation between the corresponding
entity sets, but the rule sets are so generic that there is high overlap
between opposite classes to the degree which makes the rules non-
informative. This is corroborated by the lower prediction scores
achieved with these metrics (Table 1).

6.3 Validity outside of the training context
In practical scenarios, the trained model usually has to be applied to
new unseen data instances, which can follow different distributions
from the training and test sets, which in turn makes the model more
error-prone in comparison with its test set performance. In such
cases, mined rules can be valuable for diagnosing misclassifications,
but only if they are generic enough to hold outside of the training
corpus. To check this, we applied the model to a different set of text
examples outside of the intended context of the model, but which
would contain internally the semantic preferences captured by the
rules. For this test, we selected all positive and negative entities
covered by mined rules and applied the model to the Wikipedia
abstracts of these entities (excluding those included in the training
or test set). The model predictions themselves for such examples
are not meaningful (e.g., whether the city of Perugia or the char-
acter Virgin Mary would have their paintings in a major gallery if
they were painters). However, we would expect that the Wikipedia
abstracts of entities predicted to have positive impact would them-
selves be more likely to be classified positively by the model. As we
can see in Table 3, for all datasets this expectation holds, which can
be seen as an indication that the semantic preferences captured by
the model are sufficiently generic to explain the model’s behaviour
even outside the original learning context.

6.4 Viewing and utilizing mined rules
As said in section 2, the purpose of the mined explanation rules
is to help the user understand the underlying preferences of the
trained deep learning model. Reducing the set of mined rules and
presenting them in a human-readable form makes this task easier
for the user. Removing redundant rules using closed rule sets (Sec-
tion 5.3) helps towards achieving the first goal. Visualizing closed
rule sets as a graph (Figure 4) makes it easier to explore the rule sets
and identify semantic categories which correspond to influential
model parameters that can shift model’s decision either way. As
said in Section 6.1, majority of mined rules in our experiments are
consistent with common-sense domain knowledge. However, two
types of rules can be of special interest:

• Counter-intuitive rules that contradict common sense, e.g.,
like a counter-intuitive rule that Italian origin somehow
reduces the value of painters’ works. Such rules should moti-
vate further analysis of the training dataset and the learning
process. This analysis can point to an impact of the training
data sampling (like in the case with Italian art) and, in the
worst case, to spurious Clever Hans-type biases.

• Rules that make use of undesired input data features, which
make the model itself violate the requirements: e.g., relying
on race or gender terms.

In both cases, discovering such rules can require modifications in
order to improve the model, for instance, resampling the training
set to avoid biases or pre-processing the training set to remove
undesired features.

7 CONCLUSION AND FUTUREWORK
We have proposed a method for mining explanation rules to cap-
ture consistent semantic preferences of neural NLP models. Our
experiments have shown that generalizing from atomic relevance
scores using association rule mining creates human-interpretable
rules that both explain the model behaviour to a large extent and
are robust enough to be useful when the model is used outside
of the training context. While these results are promising, they
cannot provide a complete understanding of a trained model as
many important factors are left out. Based on our observations, we
consider two directions for future work:

• Using knowledge graphs and rule mining to improve in-
terpretability of intermediate elements of the model: e.g.,
attention weights, convolutional filters, and feature embed-
dings. Mined rules can provide “semantic views” over the
corresponding vector spaces, highlighting regions that are
significant to the model’s decision and on the other hand
can be mapped to the semantic space.

• Extending the method to capture other types of features
significant for the model: e.g., syntactic patterns, elements
of style, and sentiment.
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A MODELS USED IN EXPERIMENTS
Experiments described in Section 6 included two parts: tests on
Wikipedia abstracts and tweets classification. The Wikipedia ab-
stracts tests involved two datasets: abstracts of painters (3943 ab-
stracts) and movies (8087 abstracts). These datasets were in turn
used in three classification tasks: (i) classifying painters represented
in a major European museum collection, (ii) detecting movies with
higher than the median IMDB rating, and (iii) detecting movies
with higher than the median number of IMDB votes. For each of
these tasks we employed two types of models: convolutional (CNN)
and recurrent bi-directional long short-term memory (Bi-LSTM).
These datasets as well as the trained models we used in our ex-
periments are available online2. Finally, for the tweets political
leaning classification [36] we reused a pre-trained LSTMmodel and
a publicly available test dataset of 10000 tweets provided by the
authors3. All use cases involve binary classification, so the output
of all networks constitutes a single neuron. Sigmoid activation is
applied to normalize the output and get the final prediction.

A.1 CNN for Wikipedia abstract classification
This network was used for 3 Wikipedia use cases (Painters, Movies
(rating), and Movies (popularity). The network contains the follow-
ing layers:

• Input layer : Takes as input a sequence of word IDs from the
vocabulary. (Maximum input size: 500)

• Word embedding layer : Transforms each word ID into an
embedding vector. Embedding vectors (word2vec) for the
Wikipedia experiments were trained separately using the
whole Wikipedia corpus. (Dimensionality: 50)

• Convolutional layer : A layer of filters applied to subsequences
of the input. (Number of filters: 50, Window size: 11)

2https://figshare.com/s/5a3b833ea7b08dfdbe14
3https://github.com/klout/opendata/tree/master/political_leaning

• Max pooling: Downscales the convolutional layer output.
(Pool Size: 10)

• Convolutional layer : A second layer of filters. (Number of
filters: 50, Window size: 5)

• Max pooling: Applies to the whole output of each convolu-
tional filter from the previous layer (Pool Size: 45)

• Fully-connected layer : Combines output from all filters and
produces a single output. (Activation: Sigmoid)

A.2 Bi-LSTM for Wikipedia abstract
classification

This network is an alternative architecture to the convolutional
network used in comparative tests. It has the following structure,
sharing its input and embedding layers with the CNN from the
previous example:

• Input layer : Same as CNN. (Maximum input size: 500)
• Word embedding layer : Same as CNN. (Dimensionality: 50)
• Bi-LSTM layer : This layer includes two sets of LSTM neurons:
one for the forward and one for the backward pass and
returns the values of hidden neurons for each input in the
sequences. The outputs get concatenated (Hidden neurons:
100x2, Output sequence size: 500)

• Global max pooling: Applies for all values of each hidden
neuron in the sequence. (Pool Size: 500)

• Fully-connected layer : Combines output from all filters and
produces a single output. (Activation: Sigmoid)

As reference for the SHAP/DeepExplainer explanations for both
models trained on Wikipedia abstracts we used the average of the
first 500 instances from the respective training sets. The trained
models can be found online in the HDF5 format together with the
datasets.

A.3 LSTM for tweets political leaning
classification

This is a pre-trained model described in [36], which consists of the
following four layers:

• Input layer : Takes as input a sequence of word IDs from the
vocabulary. (Maximum input size: 40)

• Word embedding layer : Transforms each word ID into an
embedding vector. (Embedding dimensions: 128)

• LSTM layer : Forward-processing LSTM layer. (Hidden neu-
rons: 32)

• Fully-connected layer : Combines output from all LSTM neu-
rons and produces a single output. (Activation: Sigmoid)
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