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Abstract

Lattice Boltzmann schemes are efficient numerical methods to solve a broad range of problems under the
form of conservation laws. However, they suffer from a chronic lack of clear theoretical foundations. In particular,
the consistency analysis and the derivation of the modified equations are still open issues. This has prevented,
until today, to have an analogous of the Lax equivalence theorem for Lattice Boltzmann schemes. We propose a
rigorous consistency study and the derivation of the modified equations for any lattice Boltzmann scheme under
acoustic and diffusive scalings. This is done by passing from a kinetic (lattice Boltzmann) to a macroscopic (Finite
Difference) point of view at a fully discrete level in order to eliminate the non-conserved moments relaxing away
from the equilibrium. We rewrite the lattice Boltzmann scheme as a multi-step Finite Difference scheme on the
conserved variables, as introduced in our previous contribution. We then perform the usual analyses for Finite
Difference by exploiting its precise characterization using matrices of Finite Difference operators. Though we
present the derivation of the modified equations until second-order under acoustic scaling, we provide all the
elements to extend it to higher orders, since the kinetic-macroscopic connection is conducted at the fully discrete
level. Finally, we show that our strategy yields, in a more rigorous setting, the same results as previous works in
the literature.

Keywords: Lattice Boltzmann, Finite Difference, truncation error, consistency, modified equations
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1 Introduction

Lattice Boltzmann methods form a vast category of numerical schemes to address the approximation of the solu-
tion of Partial Differential Equations (PDEs) under the form of conservation laws, called macroscopic equations
or target PDEs. These numerical schemes act in a kinetic fashion by employing a certain number q ∈ N? of dis-
crete velocities, larger than the number N ∈N? of macroscopic equations to be solved. The scheme proceeds via a
kinetic-like algorithm made up of two distinct steps. The first one is a local non-linear collision phase on each site
of the mesh, followed by a lattice-constrained transport which is inherently linear. The local nature of the collision
phase allows for massive parallelization of the method and the fact that the “particles” are constrained to dwell on
the lattice allows to implement the stream phase as a pointer shift in memory. This results in a very efficient nu-
merical method capable of reaching problems of important size in terms of computational and memory cost. The
historical seminal papers from the end of the eighties are [39] and [26], while for a general modern presentation
of the lattice Boltzmann schemes and their extremely broad fields of application, including hyperbolic systems
of conservation laws, the quasi-incompressible Navier-Stokes equations, multi-phase systems and porous media,
the interested reader can consult [49], [23] and [35]. The presentation of this plethora of interesting applications is
however beyond the scope of our contribution.

To our understanding, the highest price to pay for this highly efficient implementation of the method is the
lack of pure theoretical understanding on why the overall procedure works well at approximating the solution of
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Figure 1: Different paths to recover the macroscopic equations and the modified equations. The formal ap-
proaches available in the literature [10, 43, 36, 15, 17, 53] rely on the path marked with dashed arrows. They perform
Taylor expansions for small discretization parameters and then utilize the quasi-equilibrium of the non-conserved
moments to get rid of them. Our way of proceeding is marked with full arrows: we eliminate exactly the non-
conserved moments at the discrete level as in [3] and we perform the usual analyses for Finite Difference schemes
as in [48, 1, 52, 8].

the target PDEs. This is essentially due to the fact that – the standpoint of the lattice Boltzmann schemes be-
ing kinetic [46] – the number of discrete velocities is larger than the number of macroscopic equations. There-
fore, the formal analyses for lattice Boltzmann schemes available in the literature try to bridge the gap between
a kinetic and a macroscopic point of view relying essentially on the quasi-equilibrium of the non-conserved vari-
ables. In particular, as far as the consistency with the macroscopic equations and the modified equations are
concerned in the limit of small discretization parameters, two main approaches are at our disposal. The first one is
based on the Chapman-Enskog expansion [9, 28] from statistical mechanics, shaped to the context of lattice Boltz-
mann schemes, see for example [10, 43, 36]. The second approach features the so-called equivalent equations in-
troduced by Dubois [15, 17], consisting in performing a Taylor expansion of the scheme both for the conserved and
non-conserved moments and progressively re-inject the developments order-by-order. This approach has proved
to yield information in accordance with the numerical simulations, see [19, 20, 2]. Despite their proved empirical
reliability and the fact that they yield the same results at the dominant orders (see [16] for instance) these two
strategies are both formal, especially for the computation of the truncation errors. Indeed, the Chapman-Enskog
expansion relies on the introduction of two time variables with different scalings which are not present in the dis-
crete lattice Boltzmann scheme. Moreover, in this approach and in the method of the equivalent equations, the
values of the non-conserved variables are assumed to stem from the point-wise discretization of smooth functions,
whose existence and smoothness cannot be guaranteed because they are absent from the target PDEs. Other ap-
proaches known in the literature are the asymptotic analysis under parabolic scaling deployed in [32, 30, 31] as
well as the Maxwell iteration method [53, 55], which shares strong bonds with the equivalent equations method
presented before. The previous list of formal analysis techniques does not aim at being exhaustive (the interested
reader can refer to [35]) and one should be aware that, despite efforts in this direction [7], there is no consensus on
which is the right method to use [35].

A staple of all the previously mentioned approaches is that the expansion for the discretization parameters
(time and space steps) tending to zero is performed on the kinetic numerical scheme, where both conserved and
non-conserved variables are present. Eventually, the non-conserved variables are formally eliminated from the
continuous formulation by scaling arguments, so to speak, using quasi-equilibrium. This corresponds to follow
the diagonal path on Figure 1. In this contribution, we develop the other path, namely the top-down move-
ment followed by the left-right one on Figure 1. In particular, in order to fill the hollow between lattice Boltz-
mann schemes and traditional approaches known to numerical analysts, such as Finite Difference schemes, we
recently introduced [3] a formalism to recast any lattice Boltzmann scheme, regardless of its linearity, as a multi-
step Finite Difference scheme solely on the conserved moments. It should be stressed that our standpoint, where
lattice Boltzmann schemes are studied in terms of their Finite Difference counterpart, must not be seen as the right
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way of implementing them, because one would lose most of the previously mentioned computational efficiency
coming from the kinetic vision. Conversely, our way of writing the scheme should be seen as a sort of one-way
mathematical transform to pass from a kinetic standpoint to a macroscopic one in a purely discrete setting. The
elimination of the non-conserved moments is carried exactly on the discrete formulation by algebraic devices, thus
independently from the time-space scaling. The price to pay for the non-conserved moments relaxing away from
the equilibria is the multi-step nature of the Finite Difference scheme. In our previous proposal [3], it has been
crucial to be able to provide, thanks to a systematic mathematical approach, a precise description of the main
ingredient needed to reduce the lattice Boltzmann scheme to a Finite Difference scheme, namely the character-
istic polynomial of matrices of Finite Difference operators. We are therefore allowed to utilize this characteristic
polynomial as a tool satisfying certain properties alone from the particular underlying lattice Boltzmann scheme.
Quite the opposite, using the algorithm proposed by [22], one is compelled to explicitly write down the correspond-
ing Finite Difference scheme in order to perform the Taylor expansions to recover the target PDEs. In our case, the
mathematical understanding that we a priori have on the corresponding (macroscopic) Finite Difference schemes,
regardless of the (kinetic) lattice Boltzmann scheme they stand for, allows the following theoretical discussion. The
theory of Finite Difference schemes features two important notions. One is the concept of truncation error (Def-
inition 5.1.3 [24] or Definition 2.2.4 [1]), which is rigorous and is the basic ingredient to prove the celebrated Lax
equivalence theorem [38]. The computations of the truncation error are perfectly justified because of the existence
and smoothness results on the target PDEs (e.g. transport equation with smooth initial datum, Burgers equation
with smooth non-decreasing initial datum, etc.). The second one is the concept of modified equation [52, 8], which
is formal. The modified equations are those which the numerical scheme is “more consistent” with, compared to
the target PDEs, and thus they yield essential but formal information on the behavior of the scheme. The modified
equations cannot be fully justified even for Finite Difference schemes because they assume that smooth functions
which equal the discrete solution of the scheme at the grid points exist.

The main findings presented in the paper are the following.

• We propose a procedure to rigorously analyze the consistency (i.e. the truncation error) of any lattice Boltz-
mann scheme via its corresponding Finite Difference scheme.

• In the case of acoustic and diffusive scaling between time and space discretizations, we rigorously find the
expression of the target PDEs approximated by any scheme and the truncation error. For the acoustic scaling,
we also write the formal modified equations up to order two.

• Under acoustic scaling, these modified equations are the same than the ones obtained by [17] until second
order.

• We rewrite the Maxwell iteration [53, 55] for general lattice Boltzmann schemes. This allows to show that
both for the acoustic and diffusive scaling, the modified equations obtained through the corresponding Fi-
nite Difference scheme are the same than the ones from the Maxwell iteration at any order.

Our derivation of the truncation errors is rigorous – as the ones for Finite Difference schemes – and the formal
modified equations rely on less unjustified assumptions than the existing approaches, for two main reasons. The
first one is that Taylor expansions are applied to the conserved moments only, which also appear in the macro-
scopic equations. Therefore, one only postulates that the discrete conserved moments stem from the point-wise
evaluation of smooth functions. The second one is that we solely rely on the link between time and space steps as
the lattices are refined and which must be specified for any time-space numerical method.

The paper is structured as follows. In Section 2, we set notations and assumptions concerning the lattice Boltz-
mann schemes we shall work with. Section 3 is devoted to recall the main results from our previous work [3]
concerning the recast of any lattice Boltzmann scheme as a Finite Difference scheme. These results are then stated
in a slightly different manner, facilitating the following analysis. The main results of the work are stated in Section 4
and come under the form of two theorems. The proof of the first is detailed in Section 5 under the assumption of
dealing with one conservation law, for the sake of keeping the presentation and the notations as simple as pos-
sible. In Section 6, we indicate how the previous proof is easily extended to several conservation laws, whereas
Section 7 is devoted to hint the links with some available approaches to find the modified equations of lattice
Boltzmann schemes. The conclusions and perspectives of this work are drawn in Section 8.
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2 Lattice Boltzmann schemes

To start our contribution, we present the classical framework of the multiple-relaxation-times (known as MRT)
lattice Boltzmann schemes, as introduced by [13]. For the sake of simplicity, we do not consider source terms
which can be effortlessly introduced in the analysis. This fixes the perimeter of the schemes we shall be allowed to
treat and study in the sequel.

2.1 Spatial and temporal discretization

We set the problem in spatial dimension d = 1,2,3 considering the whole spaceRd since this work is not focused on
the enforcement of boundary conditions. All the following material is valid only under the assumption of working
on unbounded domains or sufficiently far from a boundary. The space is discretized by a d-dimensional lattice
denoted L := ∆xZd with constant step ∆x > 0. The time is uniformly discretized with step ∆t > 0, rendering a
time lattice Z :=∆tN. The role of the initial conditions is not investigated and is a subject on its own, see [51, 44].
We introduce the so-called “lattice velocity” λ > 0 defined by λ := ∆x/∆t . Observe that in the sequel, namely in
Section 4, we shall introduce particular relations between space step ∆x and ∆t when ∆x → 0, in order to provide
the main results of the work, as done in [15, 17]. However, until the end of Section 3, the discussion remains valid
for any choice of these parameters.

2.2 Discrete velocities

The discrete velocities are an essential ingredient of any lattice Boltzmann scheme. One has to choose (e j ) j=q
j=1 ⊂Rd

with q ∈N?, discrete velocities, which are multiple of the lattice velocity λ, namely e j =λc j for any j ∈ [1 .. q]1 with

(c j ) j=q
j=1 ⊂ Zd . Thus, the virtual particles are stuck to the lattice L at each time step of the method. We denote the

distribution density of the virtual particles moving with velocity e j by f j = f j (t , x) for every j ∈ [1 .. q], depending
on the time and space variables.

2.3 Lattice Boltzmann algorithm: collide and stream

As mentioned in the Introduction, any lattice Boltzmann scheme consists in a kinetic algorithm made up of two
phases: a local collision phase performed on each site of the lattice L and a stream phase where particles are
exchanged between different sites of the lattice. Let us independently introduce them.

• Collision phase. We adopt the general point of view of the multiple-relaxation-times schemes, where the
collision phase is written as a diagonal relaxation towards some equilibria in the moments basis, see [13].
We introduce a change of basis called moment matrix M ∈ GLq (R). Gathering the distributions into f =
( f1, . . . , fq )ᵀ, the moments are recovered by m = M f and vice versa. We also introduce

– the matrix I ∈ GLq (R), the identity matrix of size q ;

– the matrix S ∈ Mq (R), called relaxation matrix. This matrix is diagonal with N ∈ [1 .. q − 1] being the
number of conserved moments S = diag(s1, . . . , sN , sN+1, . . . , sq ), where si ∈ R for i ∈ [1 .. N ] for the con-
served moments and si ∈]0,2] for i ∈ [N + 1.. q], see [15], for the non-conserved ones. Observe that
the relaxation parameters corresponding to the conserved moments do not play any role in the lattice
Boltzmann algorithm, therefore the matrix S can be singular, without any specific issue. In particular,
we shall prove in Section 3.4 that the choice of relaxation parameter for the conserved variables does
not have any influence on the outcomes presented in this work. For the sake of presentation, we start
numbering the moments by the conserved ones;

– we employ the notation meq(t , x) = meq(m1(t , x), . . . ,mN (t , x)) for t ∈ Z and x ∈ L, where meq : RN →
Rq are possibly non-linear functions of the conserved moments. In order to guarantee that the first
N moments are conserved through the collision process, irrespective of the values of s1, . . . , sN , the
constraints

meq
i (m1, . . . ,mN ) = mi , ∀i ∈ [1 .. N ], (1)

must hold [5].

1This shall be a notation to indicate closed intervals of integers, namely for a,b ∈Zwith a ≤ b, then [a ..b] := {a, a +1, . . . ,b}.
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Let t ∈Z and x ∈L, the collision phase reads, denoting by ? any post-collision state

m?(t , x) = (I −S)m(t , x)+Smeq(t , x). (2)

• Stream phase. The stream phase is diagonal in the space of the distributions and consist in an exact upwind
advection of the particle distribution densities. It can be written, for t ∈Z and x ∈L, as

f j (t +∆t , x) = f ?j (t , x −c j∆x), (3)

for any j ∈ [1 .. q].

3 Finite Difference formulation of a lattice Boltzmann scheme

Having defined the lattice Boltzmann schemes, we briefly introduce the setting allowing us to rewrite any lattice
Boltzmann scheme (kinetic) as a multi-step Finite Difference scheme (macroscopic) on the N conserved moments
of interest. The interested reader can refer to our previous contribution [3] for more details. Then, the formulation
of the multi-step Finite Difference scheme is given using a more compact notation which is more suitable to the
following discussion. We start with the assumptions needed in the sequel.

Assumptions 3.1 (Finite Difference assumptions). The entries of M and S can depend on ∆x and/or on ∆t but
cannot be a function of the time and space variables.

3.1 Algebraic setting

Let us first introduce the necessary algebraic setting. In particular, we define the shift operators associated with
each discrete velocity as well as the derived Finite Difference operators in space. In the following Definition, the
time variable does not play any role since kept frozen, thus it is not listed for the sake of readability.

Definition 3.2 (Shift and Finite Difference operators in space). Let z ∈ Zd , then the associated shift operator on
the lattice L, denoted tz , is defined in the following way. Take f :L→R be any function defined on the lattice, then
the action of tz is

(tz f )(x) = f (x − z∆x), ∀x ∈L.

We also introduce T := {tz with z ∈Zd } ∼=Zd . The product ◦ :T×T→T of two shift operators is defined by

tz ◦ tw := tz+w , ∀z , w ∈Zd .

The set of Finite Difference operators on the lattice L is defined as

D :=RT= {∑
t∈Tαtt, where αt ∈R and αt = 0 almost everywhere

}
, (4)

the group ring (or group algebra) of T over R. The sum + :D×D→D and the product ◦ :D×D→D of two elements
are defined by (∑

t∈T
αtt

)
+

(∑
t∈T

βtt

)
= ∑

t∈T
(αt+βt)t,

(∑
t∈T

αtt

)
◦
( ∑
h∈T

βhh

)
= ∑

t,h∈T
(αtβh)(t◦h).

Furthermore, the product of σ ∈Rwith elements of D is given by

σ

(∑
t∈T

αtt

)
= ∑

t∈T
(σαt)t.

In the sequel, the products ◦ are understood.

Remark 3.3. We could achieve exactly the same construction, following Chapter 2 in [11], by considering functions
on the lattice L as sequences and the Finite Difference operators as sequences with compact support (whence
the almost everywhere requirement in (4)). Then, the product ◦ can be seen as a convolution (Cauchy) product
between compactly supported sequences and the action of a Finite Difference operator on a function as the con-
volution of a finitely supported sequence with a generic sequence.
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Upon introducing the generating displacements along each axis xk := tek where ek is the k-th vector of the
canonical basis, for any k ∈ [1 ..d ], we can isomorphically identify D∼=R[x1,x−1

1 , . . . ,xd ,x−1
d ], the ring of multivariate

Laurent polynomials. The real numbers R can be viewed as sub-ring of D, being the constant polynomials. This
identification can be somehow interpreted as the historical starting point of umbral calculus [45], also known as
calculus of Finite Differences [40]: allow to interchange indices in sequences (operators or functions) with expo-
nents (in polynomials). The stream phase (3) can be recast under its non-diagonal form in the space of moments
[53, 17] by introducing what we call the moments-stream matrix T := Mdiag(tc1 , . . . ,tcq )M−1 ∈Mq (D) and merged
with the collision phase (2) to obtain the scheme, for any t ∈Z and for any x ∈L

m(t +∆t , x) =Am(t , x)+Bmeq(t , x), (5)

where A :=T(I −S) ∈Mq (D) and B :=TS ∈Mq (D).

3.2 Corresponding Finite Difference schemes

With this new compact algebraic form of any lattice Boltzmann scheme, namely (5), we are able to recall the main
results proved in [3]. These results encompass the findings from [50], [12] and [22]. The version for one conserved
moment can be formulated as follows.

Proposition 3.4 (Corresponding Finite Difference scheme for N = 1, [3]). Consider N = 1. Then the lattice Boltz-
mann scheme given by (5) corresponds to a multi-step explicit macroscopic Finite Difference scheme on the conserved
moment m1 under the form

m1(t +∆t , x) =−
q−1∑
k=0

ck m1(t + (1−q +k)∆t , x)+
(

q−1∑
k=0

(
k∑
`=0

cq+`−kA
`

)
Bmeq(t −k∆t , x)

)
1

, (6)

for all t ∈ Z and for all x ∈ L, where (ck )k=q
k=0 ⊂D are the coefficients of det(X I −A) = ∑k=q

k=0 ck X k , the characteristic
polynomial of A, with det(·) indicating the determinant of a matrix.

The proof – given in [3] – relies on the fact that D is a commutative ring and that therefore the Cayley-Hamilton
theorem [6], stipulating that any square matrix with entries in a commutative ring annihilates its characteristic
polynomial, holds.

This result is easily generalized to the case of multiple conservation laws, namely N > 1. For this, let us in-
troduce a new notation. For any square matrix C ∈ Mq (R) on a commutative ring R, consider C I := (

∑
i∈I ei ⊗

ei )C (
∑

i∈I ei ⊗ ei ) ∈ Mq (R) for any I ⊂ [1 .. q], corresponding to the matrix where only the entries with row and
column indices in I are kept and the remaining ones are set to zero. Then we have the following statement.

Proposition 3.5 (Corresponding Finite Difference schemes for N ≥ 1, [3]). Consider N ≥ 1. Then the lattice Boltz-
mann scheme given by (5) corresponds to a family of multi-step explicit macroscopic Finite Difference schemes on
the conserved moments m1, . . . ,mN . This is, for any i ∈ [1 .. N ]

mi (t +∆t , x) =−
q−N∑
k=0

ci ,k mi (t + (k −q +N )∆t , x)+
(

q−N∑
k=0

(
k∑
`=0

ci ,q+1−N+`−kA
`
i

)
A¦

i m(t −k∆t , x)

)
i

(7)

+
(

q−N∑
k=0

(
k∑
`=0

ci ,q+1−N+`−kA
`
i

)
Bmeq(t −k∆t , x)

)
i

,

for all t ∈ Z and x ∈ L, where Ai :=A{i }∪[N+1.. q] and A¦
i :=A−Ai , with (ci ,k )k=q+1−N

k=0 ⊂D being the coefficients of

det(X I −Ai ) = X N−1 ∑k=q+1−N
k=0 ci ,k X k , the characteristic polynomial of Ai .

This result is the natural generalization of Proposition 3.4 to the case N > 1, in the sense that each sub-problem
for any i ∈ [1 .. N ] deals with one conserved moment (the i -th) at each time, only trying to eliminate the non-
conserved moments while keeping the conserved ones other than the i -th. This is achieved by using a tailored
characteristic polynomial for each conserved moment in the problem.

Observe that each scheme in (7) is a priori a (q −N )-steps scheme (thus with q −N +1 stages), see Figure 2.
When some non-conserved moment relaxes to its equilibrium, the schemes in (7) involve less time steps, see [3]
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Figure 2: Comparison between lattice Boltzmann scheme (circle) and corresponding Finite Difference schemes
(square) in terms of involved moments (respectively q and N ), number of time steps (respectively 1 and q−N ) and
size of the maximal spatial stencil (respectively max j |c j | and (q −N )max j |c j |).

for more details. However, this question is marginal in the present work since the results we will demonstrate hold
whatever the number of steps in (7) and thus for any value of the relaxation parameters sN+1, . . . , sq for the non-
conserved moments. Further comments on Proposition 3.4 and Proposition 3.5 are postponed to the following
Section.

3.3 A more compact form of corresponding Finite Difference schemes

Although the asymptotic analysis we shall develop in Section 5 can be carried on the formulations from Proposi-
tion 3.4 and Proposition 3.5 previously introduced in [3], we propose a different formalism based on shift operators
in time. Having utilized both approaches, the advantage of this new standpoint – which shall be adopted in this
paper – is to easily deal with the asymptotic analysis of the coefficients of the characteristic polynomial and of the
powers of the matrix A on the right hand side of (6) or (7). In particular, this allows for the straightforward gen-
eralization of the procedure above second-order. Furthermore, the links with other asymptotic analysis of lattice
Boltzmann schemes from the literature – which we shall develop in Section 7 – become noticeably more transpar-
ent. To this end, we introduce the following Definition.

Definition 3.6 (Shift operator in time). Let f :Z→R be any function defined on the time lattice, then the time shift
operator z acts as

(z f )(t ) = f (t +∆t ), ∀t ∈Z.

With this, the scheme (5) can be recast under the fully-operatorial form: for any t ∈Z and for any x ∈L

(zI −A)m(t , x) =Bmeq(t , x), (8)

which corresponds to taking the Z -transform [33] of the scheme in the variable z. Here, the inverse of the resolvent
associated with A, namely zI −A ∈Mq (R[z]⊗RD), where R[z]⊗RD∼=R[z,x1,x−1

1 , . . . ,xd ,x−1
d ], with ⊗R indicating the

tensor product of R-algebras (see Chapter 16 in [37] or Chapter 2 in [34]), forms a commutative ring. In the sequel,
we shall drop the time and the space variables when not strictly needed for the sake of readability, because the
system given by (8) is intrinsically time and space invariant thanks to Assumptions 3.1 and since we work on an
unbounded domain, without considering the initial conditions.

Proposition 3.4 bis (Corresponding Finite Difference scheme for N = 1). Consider N = 1. Then the lattice Boltz-
mann scheme given by (5) or (8) corresponds to a multi-step explicit macroscopic Finite Difference scheme on the
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conserved moment m1 under the form

det(zI −A)m1 =
(
adj(zI −A)Bmeq)

1 , (9)

where adj(·) indicates the adjugate matrix,2 also known as classical adjoint, which is the transpose of the cofactor
matrix [27].

Up to a temporal shift of the whole scheme, the corresponding multi-step explicit Finite Difference scheme by (9)
equals the one from (6).

Proof. The proof can be done starting from Proposition 3.4. Alternatively, using the fundamental relation between
adjugate and determinant, see Chapter 0 in [27], which is a consequence of the Laplace formula, we have that for
any C ∈Mq (R) where R is any commutative ring

C adj(C ) = adj(C )C = det(C )I . (10)

Hence, multiplying (8) by adj(zI −A) yields det(zI −A)m = adj(zI −A)Bmeq. Selecting the first row gives (9).

Remark 3.7 (From kinetic to macroscopic). We observe the following facts:

• The procedure can be reversed – when keeping all the lines in det(zI −A)m = adj(zI −A)Bmeq – using a
multiplication by zI −A and then dividing by the polynomial det(zI −A). In this way, one comes back to
the lattice Boltzmann scheme by (8). This can be done as long as one does not select and store only the
first row as in (9). Contrarily, if this selection is performed, the irreversible passage from the kinetic to the
macroscopic formulation is accomplished. The non-conserved moments m2, . . . ,mq are no longer defined
and they cannot be recovered from (9). This fact has been observed by [12]: the same macroscopic Finite
Difference scheme can correspond to distinct lattice Boltzmann schemes which can have different evolu-
tion equations for the non-conserved moments m2, . . . ,mq . This is not surprising, since for a given monic
polynomial, one can find an infinite number of matrices of which it is the characteristic polynomial.

• Though – as previously emphasized – the non-conserved moments are no longer present in the macroscopic
Finite Difference scheme by (9), there is a residual shadow of their presence, namely the multi-step nature
of the Finite Difference scheme, see Figure 2. In particular, each non-conserved moment mi relaxing away
from the equilibrium, namely with si 6= 1, for i ∈ [2 .. q], adds a time step to the corresponding Finite Differ-
ence scheme solely acting on the conserved moment m1.

Remark 3.8 (Adjugate and characteristic polynomial). A time shift and a change of variable in (6) allows to express
adj(zI−A) as a polynomial in z of degree q−1 computed from the characteristic polynomial. This relation is indeed
classical and reads

adj(zI −A) =
q−1∑
k=0

(
q−1−k∑
`=0

ck+`+1A
`

)
zk , where det(zI −A) =

q∑
k=0

ckz
k .

In the same way, we can restate Proposition 3.5 using the new formalism.

Proposition 3.5 bis (Corresponding Finite Difference schemes for N ≥ 1). Consider N ≥ 1. Then the lattice Boltz-
mann scheme given by (5) or (8) corresponds to a family of multi-step explicit macroscopic Finite Difference schemes
on the conserved moments m1, . . . ,mN . This is, for any i ∈ [1 .. N ]

det(zI −Ai )mi =
(
adj(zI −Ai )A¦

i m
)

i +
(
adj(zI −Ai )Bmeq)

i . (11)

Up to a temporal shift of the whole scheme, the corresponding multi-step explicit Finite Difference scheme by (11)
equals the one from (7).

We could call the form of Finite Difference scheme from Proposition 3.5 and Proposition 3.5 bis “canonical”
since we shall prove in Section 3.4 that it guarantees that the Finite Difference schemes do not depend on the
choice of relaxation parameters for the conserved variables, which do not play any role in the original lattice Boltz-
mann scheme either, as previously discussed.

2It is worthwhile observing that the determinant and the adjugate matrix are defined for any square matrix with elements in a commutative
ring.
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Remark 3.9 (Lack of scaling assumption). The results in Proposition 3.4, Proposition 3.5, Proposition 3.4 bis,
Proposition 3.5 bis are fully discrete and do not make any assumption on the particular scaling between the time-
step ∆t and the space-step ∆x.

The previous Remark 3.9 signifies that the corresponding Finite Difference schemes can be utilized to assess
the consistency of the underlying lattice Boltzmann scheme with respect to the macroscopic equations for any
particular scaling between time and space discretizations, as we will showcase in Section 4.

3.4 On the choice of relaxation parameters for the conserved moments

In Section 2, we have observed that the choice of relaxation parameters for the conserved moments, namely
s1, . . . , sN , does not change the lattice Boltzmann scheme (2). However, it could be argued that different choices
for s1, . . . , sN can affect the formulations of the corresponding Finite Difference schemes resulting from Propo-
sition 3.4 bis and Proposition 3.5 bis. We now show that, as one could hope, this is not the case for the Finite
Difference schemes given by Proposition 3.5 bis.

Proposition 3.10. The multi-step explicit macroscopic Finite Difference schemes given by (11) in Proposition 3.5 bis
do not depend on the choice of s1, . . . , sN , the relaxation parameters of the conserved moments.

Proof. Fix the indices of the conserved moment i ∈ [1 .. N ]. Let us decompose B, the part of the lattice Boltz-
mann scheme dealing with the equilibria, as follows: B= bi ⊗ei +B|si=0 where bi =B·,i is the i -th column of B. On
the one hand, the dependency of B on the choice of si is now fully contained in bi . On the other hand B|si=0 does
not depend on it. The Finite Difference scheme from Proposition 3.5 bis can be therefore recast, upon rearranging
and using well-known properties of the external product ⊗, as(

det(zI −Ai )−eᵀi adj(zI −Ai )bi
)

mi =
(
adj(zI −Ai )A¦

i m
)

i +
(
adj(zI −Ai )B|si=0meq)

i . (12)

The left hand side does not depend on s j for j ∈ [1 .. N ]r {i } by construction of Ai and bi . On the other hand, the
right hand side does not depend on s j for j ∈ [1 .. N ]r {i }, because (A¦

i )·, j + (B|si=0)·, j = (A¦
i |s j =0)·, j , where we have

used (2) and (1). We are left to discuss the possible dependency of (12) on si . For the left hand side, we need the
following result concerning the determinant of matrices under rank-one updates, whose proof is analogous to that
in [14].

Lemma 3.11 (Matrix determinant). Let R be a commutative ring, C ∈Mq (R) and u, v ∈Rq , then det(C +u ⊗ v ) =
det(C )+vᵀadj(C )u.

By this Lemma, we deduce that (12) now reads

det(zI − (Ai +bi ⊗ei ))mi =
(
adj(zI −Ai )A¦

i m
)

i +
(
adj(zI −Ai )B|si=0meq)

i . (13)

Observe that Ai +bi ⊗ei =Ai |si=0, thus the left hand side of (13) does not not depend on si . The right hand side of
(13) is independent of si because A¦

i does not depend on it and since the i -th row of adj(zI −Ai ) – the transpose of
the cofactor matrix of zI −Ai – cannot depend on si , because only the i -th column of zI −Ai depends on si . This
concludes the proof.

We have thus shown that the Finite Difference schemes from Proposition 3.5 bis are the same regardless of the
choice of relaxation parameters for the conserved moments and so that we are allowed to take them equal to zero
or any other value of specific convenience without loss of generality. In particular, the choice of taking si = 0 for
i ∈ [1 .. N ] offers interesting simplifications in the computations to come in Section 5, in a way that shall be clearer
by looking at the details. Moreover, this choice has the advantage of showing which moments are conserved at a
glance.

4 Main results

Everything is in place to start the standard consistency analysis [48, 1] and computation of the modified equations
[52, 8] of Finite Difference schemes. We stress the fact that we aim at studying these features for (9) and (11)
without explicitly writing these schemes down. We start from the assumptions allowing us to identify each term

9



once developing in formal power series of ∆x, i.e. performing Taylor expansions. Observe that for any time-space
numerical scheme at hand, the time step ∆t and the space step ∆x are linked (scaling) when the grids are refined.
Therefore, we decide to take ∆x as discretization parameter tending to zero. Specific bonds between these two
parameters will be given in the following pages.

Assumptions 4.1 (General assumptions). Assume that the change of basis M and the relaxation matrix S are fixed
as ∆x → 0.

We also introduce the spaces of differential operators which shall be obtained by taking the limit∆x → 0 as well
as other tightly associated concepts.

Definition 4.2 (Time-space differential operators). We define.

• The commutative ring of time-space differential operators D :=R[∂t ]⊗RR[∂x1 , . . . ,∂xd ] ∼=R[∂t ,∂x1 , . . . ,∂xd ].

• We consider the commutative ring of formal power series [42, 41] S :=DJ∆xK.

• For any δ = ∑r=+∞
r=0 ∆xrδ(r ) ∈ S , we indicate δ = O(∆xr◦ ) for some r◦ ∈ N if δ(r ) = 0 for r ∈ [0 ..r◦ − 1] and

δ(r◦) 6= 0. The integer r◦ is called “order” of the formal power series δ, see Chapter 1 in [45].

• Finally, let d ∈ R[z]⊗RD and δ ∈S , then we indicate d³ δ, called “asymptotic equivalence” of d and δ, if for
any smooth function of the time and space variables f :R×Rd →R, we have

(d f )(t , x) =
+∞∑
r=0

∆xr (δ(r ) f )(t , x), ∀(t , x) ∈R×Rd , as ∆x → 0.

The previous O(·) notation and the notion of asymptotic equivalence are effortlessly extended to vectors and
matrices in an entry-wise fashion. It shall be common and harmless not to distinguish between Mq (S ) and
(Mq (D))J∆xK.

The momentum-velocity operator matrix G ∈ Mq (D), introduced by [17] with slightly different notations, is
defined as follows. It is indeed closely linked to the moment-stream matrix T ∈ Mq (D) that we have previously
introduced.

Definition 4.3 (Momentum-velocity operator matrix). The momentum-velocity operator matrix made up of first-
order differential operators in space is given by

G := M

( ∑
|ν|=1

diag
(
cν1 , . . . ,cνq

)
∂ν

)
M−1 ∈Mq (D),

where the multi-index notation is employed.

This momentum-velocity operator matrix can be partitioned in four blocks with different meanings according
to the different nature (conserved or not) of the corresponding moments, as for Equation (8) in [17].

As previously announced, one needs to specify the used scaling between ∆t and ∆x in order to perform the
consistency analysis and also to recover the modified equations. We start by the acoustic scaling, see for example
[15, 17, 53], where ∆t ∼∆x.

Assumptions 4.4 (Acoustic scaling). The assumptions when considering schemes with the acoustic scaling are:

1. λ> 0 is a fixed real number as ∆x → 0.

2. The moments at equilibrium meq are fixed as ∆x → 0.

For the diffusive scaling, see [55, 54], where ∆t ∼∆x2, we have:

Assumptions 4.5 (Diffusive scaling). The assumptions when considering schemes with the diffusive scaling are:

1. λ=µ/∆x where µ> 0 is a fixed real number as ∆x → 0.

2. Gi j = 0 for i , j ∈ [1 .. N ].
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3. meq
i =∆xm̂eq

i where m̂eq
i are fixed, for i ∈Ω := { j ∈ [1 .. q] : G` j 6= 0 for some ` ∈ [1 .. N ]}, as ∆x → 0.

4. meq
i for i ∉Ω are fixed as ∆x → 0.

Remark 4.6. These assumptions are needed to state the general results to come. However, there are examples in
the literature [4] where they are violated, in particular because the relaxation parameters depend on∆x. This does
not prevent from writing the corresponding Finite Difference schemes (9) or (11) for the lattice Boltzmann scheme
at hand and then recover their modified equations, but introduces a difficulty to directly obtain the modified equa-
tions without explicitly write (9) or (11) down.

We are now ready to state and then prove the main results of the present contribution. The Taylor expansions
are applied to the solution of the corresponding Finite Difference schemes given by Proposition 3.5 or Proposi-
tion 3.5 bis, where non-conserved moments have been removed yielding purely macroscopic discrete equations.

Theorem 4.7 (Acoustic scaling). Under Assumptions 4.1, Assumptions 4.4 and in the limit ∆x → 0, the correspond-
ing macroscopic Finite Difference schemes given by Proposition 3.5 or Proposition 3.5 bis are consistent with the
target PDEs

∂t m̃i +λ
N∑

j=1
Gi j m̃ j +λ

q∑
j=N+1

Gi j meq
j (m̃1, . . . ,m̃N ) = 0, (14)

for i ∈ [1 .. N ]. For smooth solutions m̃1, . . . ,m̃N :R+×R→R of (14), the truncation error is given by

τi =λ∆x
q∑

j=N+1

(
1

s j
− 1

2

)
Gi j

(
N∑
`=1

G j`m̃`+
q∑

`=N+1
G j`meq

`
(m̃1, . . . ,m̃N )− 1

λ

N∑
`=1

dmeq
j

dm`
(m̃1, . . . ,m̃N )γ1,`(m̃1, . . . ,m̃N )

)
+O(∆x2),

where γ1,i (m̃1, . . . ,m̃N ) := λ
∑ j=N

j=1 Gi j m̃ j +λ∑ j=q
j=N+1 Gi j meq

j (m̃1, . . . ,m̃N ). Therefore, the modified equations up to

second order read

∂t mi +γ1,i (m1, . . . ,mN )

−λ∆x
q∑

j=N+1

(
1

s j
− 1

2

)
Gi j

(
N∑
`=1

G j`m`+
q∑

`=N+1
G j`meq

`
(m1, . . . ,mN )− 1

λ

N∑
`=1

dmeq
j

dm`
(m1, . . . ,mN )γ1,`(m1, . . . ,mN )

)
=O(∆x2).

The first term in γ1,i represents the derivatives of fluxes of the conserved variables, which are necessarily lin-
ear, while the second one represents the derivatives of the fluxes given by the equilibria of the non-conserved
moments, which can be non-linear. In the numerical diffusion terms, the so-called Hénon’s parameters [25] of
type 1/s j −1/2 appear. These terms are proportional to ∆x. This is not surprising, since the only way of having a
stable explicit Finite Difference scheme to simulate the heat equation under the acoustic scaling is to consider a
diffusion coefficient proportional to ∆x, in order to constrain the speed of propagation of information to remain
finite in the limit ∆x → 0, see for instance Theorem 6.3.1 in [48].

Let us provide two examples for specific lattice Boltzmann schemes taken from the literature and employed
with the acoustic scaling.

Example 4.8 (D1Q3 with one conserved moment - acoustic scaling). We consider the D1Q3 scheme presented in
[18, 3], for which d = 1, q = 3, c1 = 0, c2 = 1, c3 =−1 and N = 1. The moment matrix is

M =
 1 1 1

0 1 −1
−2 1 1

 , hence G =
 0 ∂x1 0

2
3∂x1 0 1

3∂x1

0 ∂x1 0

 .

Theorem 4.7 immediately gives the modified equation for the acoustic scaling, which reads

∂t m1 +λ∂x1 meq
2 (m1)−λ∆x

(
1

s2
− 1

2

)
∂x1

(
2

3
∂x1 m1 + 1

3
∂x1 meq

3 (m1)− dmeq
2 (m1)

dm1
∂x1 meq

2 (m1)

)
=O(∆x2).
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Example 4.9 (D2Q9 with three conserved moments - acoustic scaling). We consider the D2Q9 scheme presented
in [36], for which d = 2, q = 9, with

c j =


(0,0)ᵀ, if j = 1,

(cos(( j −2)π/2),sin(( j −2)π/2))ᵀ, if j ∈ [2 ..5],p
2(cos((2 j −3)π/4),sin((2 j −3)π/4))ᵀ, if j ∈ [6 ..9],

and N = 3. The moment matrix is taken to be (we just permute rows compared to [36] to start with the conserved
moments)

M =



1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


, hence G =



0 ∂x1 ∂x2 0 0 0 0 0 0
2
3∂x1 0 0 1

6∂x1 0 0 0 1
2∂x1 ∂x2

2
3∂x2 0 0 1

6∂x2 0 0 0 − 1
2∂x2 ∂x1

0 ∂x1 ∂x2 0 0 ∂x1 ∂x2 0 0
0 0 0 0 0 ∂x1 ∂x2 0 0
0 0 0 1

3∂x1
1
3∂x1 0 0 −∂x1 ∂x2

0 0 0 1
3∂x2

1
3∂x2 0 0 ∂x2 ∂x1

0 1
3∂x1 − 1

3∂x2 0 0 − 1
3∂x1

1
3∂x2 0 0

0 2
3∂x2

2
3∂x1 0 0 1

3∂x2
1
3∂x1 0 0


.

The equilibria defining the modified equations under acoustic scaling at second-order are taken as in [36, 17], that
is

meq
4 =−2m1 +3(m2

2 +m2
3)/m1, meq

6 =−m2 +3m2(m2
2 +m2

3)/m2
1, meq

7 =−m3 +3m3(m2
2 +m2

3)/m2
1,

meq
8 = (m2

2 −m2
3)/m1, meq

9 = m2m3/m1.

Is is well-known [21, 17] that the O(∆x) terms for the second and third modified equations contain spurious third-
order contributions in m2,m3. We shall neglect these terms considering that they are small (low-speed flow). Fur-
thermore, we consider that m1 varies slowly as far as the O(∆x) term is concerned, thus we neglect its derivatives.
Moreover, we take s9 = s8, see [36, 17]. Under these assumptions, the modified equations from Theorem 4.7 read

∂t m1 +∂x1 m2 +∂x2 m3 =O(∆x2),

∂t m2 +∂x1

(
m2

2

m1
+ λ2

3
m1

)
+∂x2

(
m2m3

m1

)
− λ

3
∆x

(
∂x1

(
2

(
1

s8
− 1

2

)
∂x1 m2 +

(
1

s4
− 1

s8

)
(∂x1 m2 +∂x2 m3)

)
+∂x2

((
1

s8
− 1

2

)
(∂x2 m2 +∂x1 m3)

))
=O(∆x2),

∂t m3 +∂x1

(
m2m3

m1

)
+∂x2

(
m2

3

m1
+ λ2

3
m1

)
− λ

3
∆x

(
∂x1

((
1

s8
− 1

2

)
(∂x2 m2 +∂x1 m3)

)
+∂x2

(
2

(
1

s8
− 1

2

)
∂x2 m3 +

(
1

s4
− 1

s8

)
(∂x1 m2 +∂x2 m3)

))
=O(∆x2),

were we have used m2 := λm2 and m3 := λm3. The first equation enforces the conservation of the density m1

in the Euler system, discretized with a second-order scheme. The momentum along the first axis (respectively,
second) is m2 (respectively, m3). The second equation represents – at leading order – the conservation of mo-
mentum along the first axis in the Euler system. The pressure law is linear and prescribes that the pressure is
equal to λ2m1/3, hence the speed of the sound is λ/

p
3. The numerical diffusion at order O(∆x) is what makes

up the terms that are usually recognized (except for the previously described pressure) as the stress tensor from
the Navier-Stokes system. Recalling that we have assumed slow variations of m1 (weakly compressible flow),
we have a first bulk viscosity (also known as shear or dynamic viscosity) which equals µ = λ∆x(1/s8 − 1/2)m1/3
(not linked µ in Assumptions 4.5) and a second bulk viscosity (also known as volume viscosity) given by κ =
λ∆x(3(1/s4 − 1/2)− (1/s8 − 1/2))m1/9. Hence, for this kind of system, the viscosity is modeled using numerical
diffusion and is proportional to ∆x, thus vanishing when going towards convergence. The same remarks hold for
the last equation.
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Theorem 4.10 (Diffusive scaling). Under Assumptions 4.1, Assumptions 4.5 and in the limit ∆x → 0, the corre-
sponding macroscopic Finite Difference schemes given by Proposition 3.5 or Proposition 3.5 bis are consistent with
the target PDEs

∂t m̃i +µ
q∑

j=N+1
j∈Ω

Gi j m̂eq
j (m̃1, . . . ,m̃N )−µ

q∑
j=N+1

(
1

s j
− 1

2

)
Gi j

( N∑
`=1

G j`m̃`+
q∑

`=N+1
`∉Ω

G j`meq
`

(m̃1, . . . ,m̃N )

)
= 0, (15)

for i ∈ [1 .. N ]. For smooth solutions m̃1, . . . ,m̃N :R+×R→R of (15), the truncation error is given by τi =O(∆x).

We can a posteriori explain the meaning of some Assumptions 4.5 which were less clear before stating The-
orem 4.10. The second assumption avoids to deal with terms which shall naturally appear at order O(∆x) but
which, since pertaining to the conserved moments, cannot be transformed into terms O(∆x2). Quite the opposite,
the third assumption allows to rise to O(∆x2) those terms which contributed to the leading order in Theorem 4.7.
This is achieved by a rescaling of the equilibria using m̂eq. We therefore see that lattice Boltzmann schemes can be
used to simulate non-linear transport/diffusion equations when using a diffusive scaling.

We also give two examples for specific lattice Boltzmann schemes considered under diffusive scaling.

Example 4.11 (D1Q3 with one conserved moment - diffusive scaling). We come back to the setting of Example 4.8
except that we consider a diffusive scaling. Thus we have to take meq

2 (m1) =∆xm̂eq
2 (m1) to comply with Assump-

tions 4.5. This yields the modified equation

∂t m1 +µ∂x1 m̂eq
2 (m1)−µ

(
1

s2
− 1

2

)
∂x1

(
2

3
∂x1 m1 + 1

3
∂x1 meq

3 (m1)

)
=O(∆x).

The scheme allows to simulate non-linear transport phenomena using m̂eq
2 as well as linear and non-linear diffu-

sion using meq
3 .

Example 4.12 (D2Q9 with one conserved moment - diffusive scaling). We consider the same scheme as Exam-
ple 4.9 except for the fact that only one conserved moment N = 1 is present and that the equilibria are general,
with meq

2 (m1) = ∆xm̂eq
2 (m1) and meq

3 (m1) = ∆xm̂eq
3 (m1), to fulfill Assumptions 4.5. This is the setting introduced

in [54]. The modified equation reads

∂t m1 +µ∂x1 m̂eq
2 (m1)+µ∂x2 m̂eq

3 (m1)− 2µ

3

(
1

s2
− 1

2

)
∂x1x1 m1 − 2µ

3

(
1

s3
− 1

2

)
∂x2x2 m1

− µ

6

((
1

s2
− 1

2

)
∂x1x1 +

(
1

s3
− 1

2

)
∂x2x2

)
meq

4 (m1)− µ

2

((
1

s2
− 1

2

)
∂x1x1 −

(
1

s3
− 1

2

)
∂x2x2

)
meq

8 (m1)

−µ
(

1

s2
+ 1

s3
−1

)
∂x1x2 meq

9 (m1) =O(∆x).

Therefore, the scheme allows to simulate non-linear transport phenomena using m̂eq
2 and m̂eq

3 as well as linear
and non-linear diffusion with crossed terms via meq

4 , meq
8 and meq

9 .

In this contribution, we have deliberately neglected the behavior of the schemes close to the initial time t =
0. It is dictated by the choice of initial datum for the non-conserved moments, which is not unique for lattice
Boltzmann schemes since q > N but one only knows the N conserved moments at t = 0, being the initial datum of
the target PDEs to be solved. The interested reader can consult [51, 44] for more information on this topic.

Let us sketch the main ideas of the proofs of Theorem 4.7 and Theorem 4.10:

• The result of Proposition 3.5 has allowed to eliminate the non-conserved moments from the discrete scheme,
thus has completed the step represented by a vertical arrow in Figure 1. Contrarily to the existing approaches,
we do not need (and we cannot, see Remark 3.7) to estimate the Taylor expansions of the non-conserved
moments.

• We benefit from the clever formulation from Proposition 3.5 bis instead of that of Proposition 3.5. Indeed,
considering ζI −Ai ³ zI −Ai , we are allowed to write, for every i ∈ [1 .. N ]

det(ζI −Ai )mi =
(
adj(ζI −Ai )A¦

i m
)

i +
(
adj(ζI −Ai )Bmeq)

i ,
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obtained applying the scheme to smooth functions m1, . . . ,mN : R+×R→ R and by replacing matrices with
entries in the ring R[z]⊗RD of discrete operators by their asymptotic equivalents in the ring S . Here, for
example, det(ζI −Ai ) ∈ S , and the expression perfectly makes sense because the determinant and the ad-
jugate are well-defined polynomial functions of any square matrix on a commutative ring, like S . Since
the determinant and the adjugate are non-linear functions and thus mix different orders in the expansion
ζI −Ai , if we want to recover a closed-form result at a given order of accuracy, we are compelled to utilize
the Taylor expansions of the determinant and the adjugate. However, these expansions are well-known and
can be computed at any order of accuracy.

Quite the opposite, if we want to exploit the formulation of [3] stated in Proposition 3.5, we should charac-
terize the asymptotic equivalents of any coefficient of the characteristic polynomial of Ai and then combine
them with the asymptotic equivalents of the time shifts z alone and the terms on the right hand side of (7).
Though this is actually feasible and we firstly did it, the computations are extremely involved3 and very hard
to generalize above second-order.

This justifies the use of the formulation from Proposition 3.5 bis to achieve the step denoted by an horizontal
arrow in Figure 1.

5 Detailed proofs

The vast majority of rest of this work is devoted to the detailed proof of Theorem 4.7 for the scalar case N = 1.
This choice has been adopted to keep the presentation and the involved notations as simple as possible. The
idea behind the generalization to N > 1 is eventually given in Section 6 and is straightforward except for the more
involved notations. The proof of Theorem 4.10 follows exactly the same path of Theorem 4.7 and is therefore
omitted.

Let us start by finding, for each shift operator from Definition 3.2, its asymptotically equivalent formal power
series in ∆x, see for instance [53, 17]. This is formalized by the following Lemma.

Lemma 5.1 (Series expansion of a shift operator in space). Let z ∈ Zd , then the associated shift operator in space
tz ∈R[z]⊗RD is asymptotically equivalent, in the limit of ∆x → 0, to the formal power series of differential operators
of the form

tz ³ ∑
|ν|≥0

(−∆x)|ν|zν

ν!
∂ν ∈S .

Proof. Let f :Rd →R be a smooth function of the spatial variable. Then performing a Taylor expansion for ∆x → 0
yields

(tz f )(x) = f (x − z∆x) = ∑
|ν|≥0

(−∆x)|ν|zν

ν!
∂ν f (x), x ∈Rd .

The extension of Lemma 5.1 to any Finite Difference operator in D according to Definition 3.2 is done by lin-
earity. With this in mind, recalling the definition of T ∈ Mq (D), the moments-stream matrix and using Assump-
tions 4.1, we have that

T := Mdiag(tc1 , . . . ,tcq )M−1 ³ M
( ∑
|ν|≥0

(−∆x)|ν|

ν!
diag

(
cν1 , . . . ,cνq

)
∂ν

)
M−1 =:T ∈Mq (S ). (16)

Accordingly, we introduce A := T (I −S) ∈ Mq (S ) and B := T S ∈ Mq (S ) such that A ³A and B ³B. The tight
bond between the momentum-velocity operator matrix G ∈ Mq (D) from [17] and our moments-stream matrix
T ∈Mq (D) and its asymptotic equivalent matrix T ∈Mq (S ) is given by the following Lemma.

Lemma 5.2 (Link between G and T (r )). For any order r ∈N, the matrix T (r ) ∈Mq (D) is linked to G ∈Mq (D) by

T (r ) = (−1)r

r !
Gr .

3Probably, a deeper mastery of the elementary symmetric polynomials, the Newton’s identities, the Bell polynomials and the Feddeev-
Leverrier algorithm could simplify many reasonings.
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Moreover, using the Assumptions 4.1, we also have

A(r ) = (−1)r

r !
Gr (I −S), B(r ) = (−1)r

r !
Gr S.

Proof. By (21) in [17], we have that T ³ T = exp(−∆xG). The expansion of the exponential function yields the
result. Using Assumptions 4.1, one obtains that I −S and S do not perturb the orders of the expansion.

As far as the time variable is concerned, we can complete by the development of the time shift operator z in
order to provide the overall expansion of the inverse of the resolvent zI −A ∈Mq (R[z]⊗RD).

Lemma 5.3 (Expansion of the inverse of the resolvent). Under Assumptions 4.1, Assumptions 4.4 and in the limit of
∆x → 0, the inverse of the resolvent zI −A ∈Mq (R[z]⊗RD) is asymptotically equivalent to ζI −A ∈Mq (S ), where

ζI −A=
+∞∑
r=0

∆xr

r !

(
1

λr ∂
r
t I − (−1)rGr (I −S)

)
= S +∆x

(
1

λ
∂t I +G(I −S)

)
+ ∆x2

2

(
1

λ2 ∂t t I −G2(I −S)

)
+O(∆x3). (17)

Proof. The standard Taylor expansion of z, using the assumption on the acoustic scaling, gives the claim.

The consistency analysis of the Finite Difference schemes from Proposition 3.5 bis could be carried on infinite
formal power series of differential operators S on the formulation

det(ζI −Ai )mi =
(
adj(ζI −Ai )A¦

i m
)

i +
(
adj(ζI −Ai )Bmeq)

i , (18)

for each i ∈ [1 .. N ], because the determinant and the adjugate perfectly make sense for any square matrix on a
commutative ring, like S . However, in order to prove Theorem 4.7, where formal power series are truncated at
a certain order, we shall need (17) from Lemma 5.3 as well as the Taylor expansions of the determinant and the
adjugate matrix around a given matrix. Indeed, these are non-linear functions and thus mix different orders in the
expansions ζI −A ∈Mq (S ). Since the product of the relaxation parameters for the non-conserved moments is a
quantity which shall frequently appear in the computations to come, we fix a special notation for it, namely setting

Π :=∏i=q
i=2 si 6= 0.

5.1 Determinant

We start by studying the expansion of the determinant up to second-order in the perturbation. For this, we need
to characterize its derivatives. The expansion can be carried at higher order by employing the very same strategy.

Lemma 5.4 (Derivatives and expansion of the determinant function). Let C ∈ GLq (R) and D ,E ∈Mq (R), where R
is a commutative ring. Then the determinant function

det : Mq (R) →R

C 7→ det(C ),

has the following derivatives.

DC (det(C )) (D) = det(C )tr(C−1D), (19)

DCC (det(C )) (D)(E ) = det(C )
(
tr(C−1E )tr(C−1D)− tr(C−1EC−1D)

)
, (20)

where tr(·) indicates the trace, i.e. the sum of the diagonal entries. (19) is known as Jacobi formula. Moreover, the
second-order Taylor expansion of the determinant function reads

det(C +D) = det(C )+DC (det(C )) (D)+ 1

2
DCC (det(C )) (D)(D)+O(‖D‖3),

where the derivatives are given by (19) and (20).
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Proof. The Jacobi formula (19) is a standard result, see Chapter 0 in [27] or Chapter 5 in [56]. Let us prove (20).

DCC (det(C )) (D)(E ) := DC (DC (det(C )) (D)) (E ) = DC
(
det(C )tr(C−1D)

)
(E ),

= DC (det(C )) (E )tr(C−1D)+det(C )DC
(
tr(C−1D)

)
(E ),

= det(C )tr(C−1E )tr(C−1D)+det(C )tr(DC
(
C−1D

)
(E )),

= det(C )tr(C−1E )tr(C−1D)−det(C )tr(C−1EC−1D),

where we have used, in this order, the product rule for derivatives, the Jacobi formula (19), the linearity of the trace
and the fact that DC

(
C−1

)
(D) =−C−1DC−1, see Chapter 5 in [56].

Remark 5.5 (On the invertibility assumption). There exists a form of the Jacobi formula (19) for general C ∈Mq (R)
without assuming invertibility, under the form DC (det(C )) (D) = tr(adj(C )D). This is equivalent to (19), since (10)
holds. Nevertheless, we decided to state Lemma 5.4 using the invertibility assumption. This is done, as we shall
see, without loss of generality by taking advantage of some invertible approximation of real matrices and allows to
easily find the formulæ for higher order derivatives and expansions via basic differential calculus, as illustrated in
the previous proof.

In the sequel, we shall take R = S and C = S ∈ GLq (R) ⊂ GLq (S ) and D = O(∆x) ∈ Mq (S ). To simplify the
computations and relying on the findings of Section 3.4, we can consider S singular by having s1 = 0. To avoid
the difficulties linked with singular matrices, in the spirit of Remark 5.5, we take advantage of the fact that the
derivatives of the determinant (and the determinant itself) around C are smooth (indeed, polynomial) functions
of C . Thus, we introduce the non-singular approximation S where s1 6= 0, which is such that S → S|s1=0 as s1 → 0
for any matricial topology.

We are now ready to use the expansion given by Lemma 5.3 into the terms stemming from Lemma 5.4 to find
the leading order terms of the left hand side of (9), namely of det(ζI −A) ∈S . This is nothing but computing the
Taylor series of composite functions (see the Faà di Bruno’s formulæ[29]) or the composition of formal series

det(ζI −A) = det(S)+∆xDS (det(S)) ((ζI −A)(1))

+∆x2(DS (det(S)) ((ζI −A)(2))+ 1

2
DSS (det(S)) ((ζI −A)(1))((ζI −A)(1))

)+O(∆x3).

• One clearly has det(S) = s1Π, because the matrix S is diagonal. Thus, the Taylor expansion of det(ζI −A)
does not contain zero-order terms if s1 = 0.

• Let C = S ∈ GLq (R) ⊂ GLq (S ) and D =∆x
( 1
λ∂t I +G(I −S)

)+∆x2

2

(
1
λ2 ∂t t I −G2(I −S)

)
+O(∆x3) ∈Mq (S ) from

Lemma 5.3. Using (19) from Lemma 5.4 and performing elementary computations, we have

DC (det(C )) (D) =∆xΠ

(
1

λ
∂t + (1− s1)G11 + s1

q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))
(21)

+ ∆x2

2
Π

(
1

λ2 ∂t t − (1− s1)G11G11 − (1− s1)
q∑
`=2

G1`G`1 + s1

q∑
i=2

1

si

(
1

λ2 ∂t t − (1− si )
q∑
`=1

Gi`G`i

))
+O(∆x3).

We keep this expression without taking the limit in s1, for future use. Taking the limit for s1 → 0 yields the
derivative around the singular matrix S|s1=0 instead of S ∈ GLq (R) for s1 6= 0.

lim
s1→0

DC (det(C )) (D) =∆xΠ
( 1

λ
∂t +G11

)
+ ∆x2

2
Π

(
1

λ2 ∂t t −G11G11 −
q∑
`=2

G1`G`1

)
+O(∆x3). (22)

This gives all the first-order term and part of the second-order term in the series det(ζI −A).

• Let C = S ∈ GLq (R) ⊂ GLq (S ) and D = ∆x
( 1
λ∂t I +G(I −S)

)+O(∆x2) ∈ Mq (S ) from Lemma 5.3. Using (20)
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from Lemma 5.4, we have, after some algebra

DCC (det(C )) (D)(D) =∆x2Π

(
2
( 1

λ
∂t + (1− s1)G11

) q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

)
+ s1

( q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))2

−2(1− s1)
q∑
`=2

(
1

s`
−1

)
G1`G`1 − s1

q∑
i=2

1

s2
i

( 1

λ
∂t + (1− si )Gi i

)2

−s1

q∑
i=2

q∑
`=2
6̀=i

(
1

si
−1

)(
1

s`
−1

)
Gi`G`i

)
+O(∆x3). (23)

Once more, we take the limit for s1 → 0 in order to find the desired result on the remaining second-order
terms in the development det(ζI −A)

lim
s1→0

DCC (det(C )) (D)(D) = 2∆x2Π

(
1

λ2 ∂t t

q∑
`=2

1

s`
+ 1

λ
G11∂t

q∑
`=2

1

s`
+ 1

λ
∂t

q∑
i=2

(
1

si
−1

)
Gi i

+G11

q∑
i=2

(
1

si
−1

)
Gi i −

q∑
`=2

(
1

s`
−1

)
G1`G`1

)
+O(∆x3). (24)

Putting (22) and (24) together in Lemma 5.4, with expansion around S, allows to write det(ζI −A) up to third order.
This is

lim
s1→0

det(ζI −A) =∆xΠ
( 1

λ
∂t +G11

)
+∆x2Π

(
1

λ2

(
1

2
+

q∑
`=2

1

s`

)
∂t t + 1

λ
G11∂t

q∑
`=2

1

s`
+ 1

λ
∂t

q∑
i=2

(
1

si
−1

)
Gi i (25)

− 1

2
G11G11 −

q∑
`=2

(
1

s`
− 1

2

)
G1`G`1 +G11

q∑
i=2

(
1

si
−1

)
Gi i

)
+O(∆x3).

5.2 Adjugate

We now switch to the formal power series of the adjugate function of the inverse of the resolvent, in order to deal
with the right hand side of the corresponding Finite Difference scheme given by (9). Let us start by characterizing
its derivatives.

Lemma 5.6 (Derivatives and expansion of the adjugate function). Let C ∈ GLq (R) and D ,E ∈Mq (R), where R is a
commutative ring. Then the adjugate function

adj : Mq (R) →Mq (R)

C 7→ adj(C ),

has the following derivatives.

DC
(
adj(C )

)
(D) = det(C )

(
tr(C−1D)I −C−1D

)
C−1, (26)

DCC
(
adj(C )

)
(D)(E ) = det(C )

((
tr(C−1E )tr(C−1D)− tr(C−1EC−1D)

)
C−1

+C−1 (
EC−1D +DC−1E − tr(C−1E )D − tr(C−1D)E

)
C−1

)
. (27)

Moreover, the second-order Taylor expansion of the adjugate function reads

adj(C +D) = adj(C )+DC
(
adj(C )

)
(D)+ 1

2
DCC

(
adj(C )

)
(D)(D)+O(‖D‖3),

where the derivatives are given by (26) and (27).

Proof. Since (10) holds and C is invertible, we have that adj(C ) = det(C )C−1. Therefore

DC
(
adj(C )

)
(D) = DC

(
det(C )C−1) (D) = DC (det(C )) (D)C−1 +det(C )DC

(
C−1) (D),

= det(C )tr(C−1D)C−1 −det(C )C−1DC−1,
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where we have used the rule for the derivative of a product, the Jacobi formula (19) and the identity DC
(
C−1

)
(D) =

−C−1DC−1. For the second derivative, we have

DCC
(
adj(C )

)
(D)(E ) := DC

(
DC

(
adj(C )

)
(D)

)
(E ) = DC

(
det(C )

(
tr(C−1D)I −C−1D

)
C−1) (E ),

= DC (det(C )) (E )
(
tr(C−1D)I −C−1D

)
C−1 +det(C )DC

((
tr(C−1D)I −C−1D

)
C−1) (E ),

= det(C )tr(C−1E )
(
tr(C−1D)I −C−1D

)
C−1 +det(C )DC

(
tr(C−1D)I −C−1D

)
(E )C−1

+det(C )
(
tr(C−1D)I −C−1D

)
DC

(
C−1) (E ),

= det(C )tr(C−1E )
(
tr(C−1D)I −C−1D

)
C−1

+det(C )
(
tr

(
DC

(
C−1) (E )D

)
I −DC

(
C−1) (E )D

)
C−1

−det(C )
(
tr(C−1D)I −C−1D

)
C−1EC−1,

= det(C )tr(C−1E )
(
tr(C−1D)I −C−1D

)
C−1 −det(C )

(
tr

(
C−1EC−1D

)
I −C−1EC−1D

)
C−1

−det(C )
(
tr(C−1D)I −C−1D

)
C−1EC−1,

where we have used the rule for the derivative of a product, the Jacobi formula (19), the linearity of the derivative
and the trace and the identity DC

(
C−1

)
(D) =−C−1DC−1. Upon rearrangement, this yields the result.

Remark 5.7. We observe that, looking at (26) and (27) compared to (19) and (20), we have that

DC
(
adj(C )

)
(D) = DC (det(C )) (D)C−1 −det(C )C−1DC−1,

DCC
(
adj(C )

)
(D)(E ) = DCC (det(C )) (D)(E )C−1 +det(C )C−1 (

EC−1D +DC−1E − tr(C−1E )D − tr(C−1D)E
)

C−1.

This implies that we can reuse the computations we did for the determinant in the current treatment of the adju-
gate, as far as the first terms on the right hand sides are concerned. However, one must be careful that now they
are multiplied by C−1.

If we had stopped the developments at first order, we could have used the first-order perturbation theory of the
adjugate matrix as provided by Theorem 2.1 from [47]. However, to the best of our knowledge, no second-order
perturbation theory for this matrix is available in the literature, thus we have been compelled to independently de-
velop it using differential calculus. Lemma 5.6 is thus a generalization of the results from [47] and can therefore be
used – beyond the application presented in this contribution – by researchers needing a second-order perturbation
theory for the adjugate matrix.

Since we are ultimately interested, as one can notice from (9), in multiplying the formal power series adj(ζI −
A) ∈Mq (S ) by B ∈Mq (S ) in a Cauchy-like fashion (the standard product of formal power series) and select the
first row, see Proposition 3.4 bis, we perform the computations only for the first row of adj(ζI −A).

• Using the definition of the adjugate matrix in combination with the Laplace formula or using the explicit
formula for the adjugate of an upper triangular matrix, see [27], we have

adj(S) =Πdiag

(
1,

s1

s2
, . . . ,

s1

sq

)
, thus lim

s1→0
adj(S) =Πe1 ⊗e1.

Hence, contrarily to the determinant, the zero-order term in adj(ζI −A) is not zero for s1 = 0 but a singular
one-rank diagonal matrix.

• Let C = S ∈ GLq (R) ⊂ GLq (S ) and D =∆x
( 1
λ∂t I +G(I −S)

)+∆x2

2

(
1
λ2 ∂t t I −G2(I −S)

)
+O(∆x3) ∈Mq (S ) from

Lemma 5.3. We utilize the previous computations from (21), as suggested in Remark 5.7, into (26).

DC
(
adj(C )

)
(D) =

(
∆xΠ

(
1

λ
∂t + (1− s1)G11 + s1

q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))
+ ∆x2

2
Π

(
1

λ2 ∂t t − (1− s1)G11G11 − (1− s1)
q∑
`=2

G1`G`1 + s1

q∑
i=2

1

si

(
1

λ2 ∂t t − (1− si )
q∑
`=1

Gi`G`i

)))
diag

(
1

s1
,

1

s2
, . . . ,

1

sq

)
−diag

(
1

s1
,

1

s2
, . . . ,

1

sq

)
Ddiag

(
1

s1
,

1

s2
, . . . ,

1

sq

))
+O(∆x3).
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In this case, we do not even have to take the limit for s1 → 0, since all the terms in s1 cancel. Therefore, for
the very first component, we get(
DC

(
adj(C )

)
(D)

)
11 =∆xΠ

(
1

λ
∂t

q∑
`=2

1

s`
+

q∑
i=2

(
1

si
−1

)
Gi i

)
+ ∆x

2
Π

(
1

λ2 ∂t t

q∑
`=2

1

s`
−

q∑
i=2

(
1

si
−1

) q∑
`=1

Gi`G`i

)
+O(∆x3).

(28)

Now consider j ∈ [2 .. q], then(
DC

(
adj(C )

)
(D)

)
1 j =−∆xΠ

(
1

s j
−1

)
G1 j + ∆x2

2
Π

(
1

s j
−1

)(
G11G1 j +

q∑
`=2

G1`G` j

)
+O(∆x3). (29)

This gives all the first-order terms on the first row of adj(ζI −A) and part of the second-order terms.

• Let C = S ∈ GLq (R) ⊂ GLq (S ) and D = ∆x
( 1
λ∂t I +G(I −S)

)+O(∆x2) ∈ Mq (S ) from Lemma 5.3. We reuse
computations from (23) as well as (27).

DCC
(
adj(C )

)
(D)(D) =

(
∆x2Π

(
2
( 1

λ
∂t + (1− s1)G11

) q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

)
+ s1

( q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))2

−2(1− s1)
q∑
`=2

(
1

s`
−1

)
G1`G`1 − s1

q∑
i=2

1

s2
i

( 1

λ
∂t + (1− si )Gi i

)2

−s1

q∑
i=2

q∑
`=2
6̀=i

(
1

si
−1

)(
1

s`
−1

)
Gi`G`i

))
diag

(
1

s1
,

1

s2
, . . . ,

1

sq

)

+2s1Πdiag

(
1

s1
,

1

s2
, . . . ,

1

sq

)(
DS−1D − tr(S−1D)D

)
diag

(
1

s1
,

1

s2
, . . . ,

1

sq

)
+O(∆x3).

Then we have, for the first matrix entry(
DCC

(
adj(C )

)
(D)(D)

)
11 =∆x2Π

(( q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))2

−
q∑

i=2

1

s2
i

( 1

λ
∂t + (1− si )Gi i

)2
(30)

−
q∑

i=2

(
1

si
−1

) q∑
`=2
6̀=i

(
1

s`
−1

)
Gi`G`i

)
+O(∆x3),

independent from s1. For j ∈ [2 .. q](
DCC

(
adj(C )

)
(D)(D)

)
1 j = 2∆x2Π

(
1

s j
−1

)(
1

s j
G1 j

( 1

λ
∂t + (1− s j )G j j

)
+

q∑
`=2
6̀= j

(
1

s`
−1

)
G1`G` j

−G1 j

q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))
+O(∆x3). (31)

Using (28) and (30), we have that the first entry on the first row of adj(ζI −A) is

lim
s1→0

(adj(ζI −A))11 =Π+∆xΠ

(
1

λ
∂t

q∑
`=2

1

s`
+

q∑
i=2

(
1

si
−1

)
Gi i

)
+ ∆x2

2
Π

(
1

λ2 ∂t t

q∑
`=2

1

s`
−

q∑
i=2

(
1

si
−1

) q∑
`=1

Gi`G`i

+
( q∑

i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))2

−
q∑

i=2

1

s2
i

( 1

λ
∂t + (1− si )Gi i

)2 −
q∑

i=2

(
1

si
−1

) q∑
`=2
6̀=i

(
1

s`
−1

)
Gi`G`i

)
+O(∆x3). (32)

Using (29) and (31), for any j ∈ [2 .. q], we write

lim
s1→0

(adj(ζI −A))1 j =−∆xΠ

(
1

s j
−1

)
G1 j + ∆x2

2
Π

(
1

s j
−1

)(
G11G1 j +

q∑
`=2

G1`G` j +
2

s j
G1 j

( 1

λ
∂t + (1− s j )G j j

)
+2

q∑
`=2
6̀= j

(
1

s`
−1

)
G1`G` j −2G1 j

q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))
+O(∆x3). (33)
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In general, we have written, for the first row, the leading terms in adj(ζI −A). We shall take its product with B.
Thus, one has

adj(ζI −A)B= adj(ζI −A)(0)B(0) +∆x
(
adj(ζI −A)(0)B(1) +adj(ζI −A)(1)B(0)) , (34)

+∆x2 (
adj(ζI −A)(0)B(2) +adj(ζI −A)(1)B(1) +adj(ζI −A)(2)B(0))+O(∆x3),

generating products of terms in the fashion of the Cauchy product. This completes the preliminary results needed
to prove Theorem 4.7.

5.3 Overall computation

We now put all the previous calculations together to prove Theorem 4.7. As previously pointed out, we can assume,
without loss of generality, that s1 = 0, passing to the limit. This allows to deal with simpler expressions with less
terms.

5.3.1 First-order equations

To find the target PDE, it is sufficient to truncate all the formal power series at O(∆x2). In particular, using the fact
that the first column of B is zero for s1 = 0, we have that lims1→0(adj(ζI −A)B)11 = 0. Observe that if the relaxation
parameter corresponding to the conserved moment were not equal to zero, we would have (adj(ζI−A)B)11 =O(1).
Still the matrix S would not be singular, thus we would have some non vanishing zero-order term in det(ζI −A) to
compensate the one from the adjugate.

For any j ∈ [2 .. q], using (33), Lemma 5.2 and (34), entails

lim
s1→0

(adj(ζI −A)B)1 j = lim
s1→0

∆x
((

adj(ζI −A)(0)B(1))
1 j +

(
adj(ζI −A)(1)B(0))

1 j

)
+O(∆x2) =−∆xΠG1 j +O(∆x2).

(25) directly yields

lim
s1→0

det(ζI −A) =∆xΠ
( 1

λ
∂t +G11

)
+O(∆x2),

thus we obtain the modified equation (whatever the choice of s1 ∈R)

∆x
Π

λ

(
∂t m1 +λG11m1 +λ

q∑
j=2

G1 j meq
j

)
=O(∆x2),

giving the desired result for N = 1 upon dividing by the constant Π. We explicitly see the target PDE. Observe
that the term Π is never present in the computations by [17] because they are done on the original lattice Boltz-
mann scheme (5) or (8) which has only one time step. For instance, in [17], the multi-step nature of the problem,
generated by the non-conserved moments relaxing away from the equilibrium, is damped at the very beginning
of the procedure by performing the Taylor expansions of the scheme on the non-conserved variables and then
plugging them into the expansions for the conserved moments.

Before clarifying the terms at the next order in the modified equation (for any m1) or equivalently, finding
the precise expression of the truncation error (for m1 ≡ m̃1 solution of the target PDE), let us utilize the previous
equation to get rid of the time derivatives in the second order terms. This can be rigorously done if m1 ≡ m̃1, where
m̃1 is the smooth solution of the target PDE and yields the truncation error. For any m1, this is formal because one
assumes that differentiation preserves the asymptotic relations from the symbol O(·). This process constitutes the
policy by [15, 17] and is common to all the approaches (Chapman-Enskog, equivalent equation, Maxwell iteration,
etc.) in order to find the value of the diffusion coefficients from the second-order terms. Moreover, this is classical
for Finite Difference schemes, see [52, 8]. Notice that in this case, where N = 1, γ1,· is a scalar, here denoted γ1 for

20



brevity.

∂t m1 =−λG11m1 −λ
q∑

j=2
G1 j meq

j +O(∆x) =−γ1 +O(∆x), (35)

∂t meq = dmeq

dm1
∂t m1 =−dmeq

dm1

(
λG11m1 +λ

q∑
j=2

G1 j meq
j

)
+O(∆x) =−dmeq

dm1
γ1 +O(∆x), (36)

∂t t m1 =−∂t

(
λG11m1 +λ

q∑
j=2

G1 j meq
j

)
+O(∆x) =−λG11∂t m1 −λ

q∑
j=2

G1 j∂t meq
j +O(∆x), (37)

=λG11γ1 +λ
q∑

j=2
G1 j

dmeq
j

dm1
γ1 +O(∆x) =λ2G11G11m1 +λ2G11

q∑
j=2

G1 j meq
j +λ

q∑
j=2

G1 j

dmeq
j

dm1
γ1 +O(∆x). (38)

These formal equalities are obtained by taking advantage either of the chain rule, since the moments at equilib-
rium are functions of the conserved moments, or of the re-injection of (35) by assuming that the differentiation
preserves the asymptotic relations from the symbol O(·). These equalities become rigorous and lack of the O(∆x)
term if m1 ≡ m̃1, the smooth solution of the target PDE.

5.3.2 Second-order equations

We can now go to the computation of the truncation error in Theorem 4.7, which is more involved due to the
presence of more terms to estimate. To make the link with the findings of [17], the increased complexity comes
from the more intricate and entangled block structure of G2. We have to treat the second-order term in (34), made
up of three products. For any j ∈ [2 .. q] (once again, the first component vanishes for s1 = 0)

• Using Lemma 5.2 and the zero-order expansion of the adjugate gives

lim
s1→0

(
adj(ζI −A)(0)B(2))

1 j =
s jΠ

2

(
G11G1 j +

q∑
`=2

G1`G` j

)
.

• Using Lemma 5.2 with (32) and (33)

lim
s1→0

(
adj(ζI −A)(1)B(1))

1 j =−s jΠ

(
1

λ
G1 j∂t

q∑
`=2

1

s`
+G1 j

q∑
`=2

(
1

s`
−1

)
G``−

q∑
`=2

(
1

s`
−1

)
G1`G` j

)
.

• Using Lemma 5.2 and (33)

lim
s1→0

(
adj(ζI −A)(2)B(0))

1 j =Π(1− s j )

(
1

2
G11G1 j +

q∑
`=2

(
1

s`
− 1

2

)
G1`G` j −

(
1

s j
−1

)
G1 j G j j

+ 1

s j
G1 j

( 1

λ
∂t + (1− s j )G j j

)
−G1 j

q∑
i=2

1

si

( 1

λ
∂t + (1− si )Gi i

))
.

Summing these three contributions and after some straightforward but tedious computations, the second-order
term in (34) is given by

lim
s1→0

(
(adj(ζI −A)B)(2))

1 j =Π
(

1

2
G11G1 j +

q∑
`=2

(
1

s`
− 1

2

)
G1`G` j −

1

λ

(
1+

q∑
`=2
6̀= j

1

s`

)
G1 j∂t −G1 j

q∑
`=2

(
1

s`
−1

)
G``

)
.

Hence, using (36) to get rid of the time derivative of the equilibria, we have

lim
s1→0

q∑
j=2

(
(adj(ζI −A)B)(2))

1 j meq
j =Π

q∑
j=2

(
1

2
G11G1 j meq

j +
q∑
`=2

(
1

s`
− 1

2

)
G1`G` j meq

j

+ 1

λ

(
1+

q∑
`=2
6̀= j

1

s`

)
G1 j

dmeq
j

dm1
γ1 −G1 j

q∑
`=2

(
1

s`
−1

)
G``meq

j

)
+O(∆x).
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Notice that in this result, a reminder of order O(∆x) appears. Once again, if m1 ≡ m̃1, this reminder is not present
and we would find part of the truncation error. Once more, using (35) and (38) to eliminate the time derivatives in
the second-order terms from (25) gives

lim
s1→0

(det(ζI −A))(2)m1 =Π
(

1

λ2

(
1

2
+

q∑
`=2

1

s`

)
∂t t m1 + 1

λ
G11∂t

q∑
`=2

1

s`
+ 1

λ

q∑
i=2

(
1

si
−1

)
Gi i∂t m1

− 1

2
G11G11m1 −

q∑
`=2

(
1

s`
− 1

2

)
G1`G`1m1 +G11

q∑
i=2

(
1

si
−1

)
Gi i m1

)

=Π
((

1

2
+

q∑
`=2

1

s`

)(
G11G11m1 +G11

q∑
j=2

G1 j meq
j + 1

λ

q∑
j=2

G1 j

dmeq
j

dm1
γ1

)

−G11

(
G11m1 +

q∑
j=2

G1 j meq
j

) q∑
`=2

1

s`
−

( q∑
i=2

(
1

si
−1

)
Gi i

)(
G11m1 +

q∑
j=2

G1 j meq
j

)

− 1

2
G11G11m1 −

q∑
`=2

(
1

s`
− 1

2

)
G1`G`1m1 +G11

q∑
i=2

(
1

si
−1

)
Gi i m1

)
+O(∆x).

With this, after simplifications, we obtain the remaining term to master the second-order contributions in the
modified equation of the Finite Difference scheme (9).

(det(ζI −A))(2)m1 −
q∑

j=2

(
(adj(ζI −A)B)(2))

1 j meq
j

=−Π
( q∑

j=2

(
1

s j
− 1

2

)
G1 j G j 1m1 +

q∑
j=2

q∑
`=2

(
1

s`
− 1

2

)
G1`G` j meq

j − 1

λ

q∑
j=2

(
1

s j
− 1

2

)
G1 j

dmeq
j

dm1
γ1

)
+O(∆x).

To wrap up, these computations yield, together with the ones from Section 5.3.1, the expected result for N = 1,
which reads

∆x
Π

λ

(
∂t m1 +γ1 −λ∆x

q∑
j=2

(
1

s j
− 1

2

)
G1 j

(
G j 1m1 +

q∑
`=2

G j`meq
`

− 1

λ

dmeq
j

dm1
γ1

))
=O(∆x3),

and thus proves Theorem 4.7.

6 Extension of the proofs to several conserved moments: key ideas

In this Section, we sketch the demonstration of Theorem 4.7 for any N ≥ 1. For the sake of providing a quick and
effective presentation of this matter, we limit ourselves to first-order in ∆x. Select a conserved moment, which
shall be indexed by i ∈ [1 .. N ].

Remark 6.1. The operation selecting rows and columns to yield Ai and A¦
i from Proposition 3.5 bis does not

change the orders of the expansions. This is, let C ∈ Mq (R[z]⊗RD) and C = ∑r=+∞
r=0 ∆xrC(r ) ∈ Mq (S ) such that

C³C and I ⊂ [1 .. q] a set of indices, then

CI ³
(+∞∑

r=0
∆xrC(r )

)
I

=
+∞∑
r=0

∆xr (
C(r ))

I .

Thus we have the analogous of Lemma 5.3, where zI −Ai ³ ζI −Ai , with

ζI −Ai =
+∞∑
r=0

∆xr

r !

(
1

λr ∂
r
t I − (−1)r (

Gr (I −S)
)

{i }∪[N+1.. q]

)
.

The first two term in the expansion of the inverse of the resolvent are

(ζI −Ai )(0) = diag(1, . . . ,1, si ,1, . . . ,1, sN+1, . . . , sq ).
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In the spirit of Remark 5.5 and the computations developed in Section 5, for the case si = 0, we introduce a regu-
larization with si 6= 0 and then we pass to the limit. Moreover

(ζI −Ai )(1) = 1

λ
∂t I +



0 · · · 0 0 0 · · · 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 · · · 0
0 · · · 0 (1− si )Gi i 0 · · · 0 (1− sN+1)Gi (N+1) · · · (1− sq )Gi q

0 · · · 0 0 0 · · · 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 · · · 0

0 · · · 0 (1− si )G(N+1)i 0 · · · 0 (1− sN+1)G(N+1)(N+1) · · · (1− sq )G(N+1)q
...

. . .
...

...
...

. . .
...

...
. . .

...
0 · · · 0 (1− si )Gqi 0 · · · 0 (1− sN+1)Gq(N+1) · · · (1− sq )Gqq



.

We thus have

• As for the case N = 1 treated in detail, we have that limsi→0 det((ζI −Ai )(0)) = 0. Using the formula for the
adjugate of an upper triangular matrix, see [27], we have limsi→0 adj((ζI −Ai )(0)) = Πei ⊗ ei , where in this

SectionΠ :=∏`=q
`=N+1 s`.

• Taking C = (ζI −Ai )(0) ∈ GLq (R) ⊂ GLq (S ) and D =∆x(ζI −Ai )(1) +O(∆x2) ∈Mq (S ) in the Jacobi formula
(19)

lim
si→0

DC (det(C )) (D) = lim
si→0

∆xΠ

(
si (N −1)

λ
∂t + 1

λ
∂t + (1− si )Gi i +

q∑
`=N+1

1

s`

( 1

λ
∂t + (1− s`)G``

))
+O(∆x2)

=∆xΠ
( 1

λ
∂t +Gi i

)
+O(∆x2).

To handle the term with the adjugate, observe that the first-order term is made up of the terms

(adj(ζI −Ai )A¦
i )(1) = (adj(ζI −Ai ))(0)(A¦

i )(1) + (adj(ζI −Ai ))(1)(A¦
i )(0), (39)

and in particular, we are interested in the i -th line of this matrix. Because of the fact that (A¦
i )(0) = diag(1−

s1, . . . ,1− si−1,0,1− si+1, . . . ,1− sN ,0, . . . ,0), the i -th line of the second term on the right hand side of (39) is
zero, thus we do not have do study it. For the remaining term, it can be easily seen that

(A¦
i )(1) =−(I −S)



G11 · · · G1(i−1) G1i G1(i+1) · · · G1N G1(N+1) · · · G1q

...
. . .

...
...

...
. . .

...
...

. . .
...

G(i−1)1 · · · G(i−1)(i−1) G(i−1)i G(i−1)(i+1) · · · G(i−1)N G(i−1)(N+1) · · · G(i−1)q

Gi 1 · · · Gi (i−1) 0 Gi (i+1) · · · Gi N 0 · · · 0

G(i+1)1 · · · G(i+1)(i−1) G(i+1)i G(i+1)(i+1) · · · G(i+1)N G(i+1)(N+1) · · · G(i+1)q

...
. . .

...
...

...
. . .

...
...

. . .
...

GN 1 · · · GN (i−1) GNi GN (i+1) · · · GN N GN (N+1) · · · GN q

G(N+1)1 · · · G(N+1)(i−1) 0 G(N+1)(i+1) · · · G(N+1)N 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...

Gq1 · · · Gq(i−1) 0 Gq(i+1) · · · GqN 0 · · · 0



,

thus we deduce that(
(adj(ζI −Ai )A¦

i )(1))
i ,· =−Π(

(1− s1)Gi 1, . . . , (1− si−1)Gi (i−1),0, (1− si+1)Gi (i+1), . . . , (1− sN )Gi N ,0, . . . ,0
)

.
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Dealing with the zero and first order term in adj(ζI −Ai )B works the same than N = 1, thus we do not repeat
it. Moreover, these terms allow for the compensation of the dependence on the choice of the relaxation
parameter of the other conserved moments s1, · · · , si−1, si+1, . . . , sN in the previous equation, as claimed in
Section 3.4, thanks to (1).

Putting all the previously discussed facts together into the truncated (18) yields

∆x
Π

λ

(
∂t mi +λGi i mi +λ

N∑
j=1
j 6=i

Gi j m j +λ
q∑

j=N+1
Gi j meq

j

)
=O(∆x2),

which is the result from Theorem 4.7 for N ≥ 1 at dominant order. The next order is demonstrated in the same way.

7 Link with the existing approaches

To finish our contribution, we briefly sketch the links with previous works on the target PDEs and modified equa-
tions like [53] and [15, 17]. A more complete study shall be the object of future investigations.

7.1 Equivalent equations

Our result Theorem 4.7 coincides with the analogous result in [17] up to second order. The substantial difference is
that we apply the Taylor expansions to the solution of the corresponding Finite Difference scheme given either by
Proposition 3.4 bis or Proposition 3.5 bis, where non-conserved moments have been removed. We therefore rea-
sonably conjecture that the obtained macroscopic equations coincide at any order. The mathematical justification
of this conjecture shall be the object of future investigations.

The quasi-equilibrium, which is extensively used in [17] can be somehow recovered in our previous discussion.
Let N = 1 to fix ideas. In the proof of Proposition 3.4 bis, nothing prevents us from selecting, instead of the first
row, the i ∈ [2 .. q] row, corresponding to a non-conserved moment. This is

det(zI −A)mi =
(
adj(zI −A)Bmeq)

i . (40)

Let us stress that even if this could seem to be a viable Finite Difference scheme for the non-conserved variable mi ,
it is not independent from the conserved moment m1 the equilibria depend on and furthermore, this formulation
certainly depends on the choice of s1, the relaxation parameter of the conserved moment. This is somehow un-
wanted since s1 is in fine not present in the original lattice Boltzmann scheme. From the computations of Section 5,
we see that

det(ζI −A) = s1Π+O(∆x), adj(ζI −A) =Πdiag

(
1,

s1

s2
, . . . ,

s1

sq

)
+O(∆x), B= S +O(∆x).

Using the asymptotic equivalents truncated at leading order in (40) thus provides

s1Πmi +O(∆x) = s1Πmeq
i +O(∆x), hence also mi = meq

i +O(∆x),

provided that s1 6= 0. This is the quasi-equilibrium of the non-conserved moments, which is re-injected in the
lattice Boltzmann schemes to eliminate them in the procedure by [17]. The previous procedure is formal because
there is no guarantee that the discrete non-conserved moments mi for i ∈ [2 .. q] in the scheme originate from the
point-wise values of a smooth function.

7.2 Maxwell iteration

In [53], the computations have been carried only for the D2Q9 scheme by [36] with N = 3, which we have presented
in Example 4.9. In this part of our work, we are first going to develop the computations until third-order for any
lattice Boltzmann scheme under acoustic scaling, i.e. Assumptions 4.4. Then, we are going to demonstrate that
the modified equations obtained by the Maxwell iteration [53] and the one from the corresponding Finite Differ-
ence schemes are the same at any order, regardless of the time-space scaling. In this Section, it is crucial to assume
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that S ∈ GLq (R). Observe that this assumption ensures that det(ζI −A) is a unit (invertible) in the ring S or equiv-
alently that ζI −A belongs to GLq (S ). The Maxwell iteration [53] at step k ∈N reads, after simple computations

m[k] =
( k∑

r=0
(−S−1(ζT − I ))r

)
meq, (41)

where the quasi-equilibrium is encoded in the choice m[0] = meq and where we have taken, as for (16)

T := Mdiag(t−c1 , . . . ,t−cq )M−1 ³ M
( ∑
|ν|≥0

∆x |ν|

ν!
diag

(
cν1 , . . . ,cνq

)
∂ν

)
M−1 =:T ∈Mq (S ).

It is easy to see that T T =T T = I and moreover, in analogy with Lemma 5.3

ζT − I =∆x
( 1

λ
∂t I +G

)
+ ∆x2

2

( 1

λ2 ∂t t I + 2

λ
G∂t +G2

)
+O(∆x3). (42)

The Maxwell iteration works by assuming that m = m[k] +O(∆xk+1). Taking k = 1 in (41) and using (42), we have

m = meq −S−1∆x
( 1

λ
∂t I +G

)
meq +O(∆x2).

Let i ∈ [1 .. N ], then taking advantage of (1)

mi = mi −∆x
1

si

(
1

λ
∂t mi +

N∑
j=1

Gi j m j +
q∑

j=N+1
G1 j meq

j

)
+O(∆x2),

which upon division, is the same result than Theorem 4.7. Going up to order two considering k = 2, we have

m = meq −S−1∆x
( 1

λ
∂t I +G

)
meq

+ ∆x2

2
S−1

(
1

λ2 (2S−1 − I )∂t t + 2

λ
(S−1G+GS−1 −G)∂t +G(2S−1 − I )G

)
meq +O(∆x3).

Once more, selecting the i -th row provides

mi = mi −∆x
1

si

(
1

λ
∂t mi + 1

λ
γ1,i

)
+∆x2 1

si

(
1

λ2

(
1

si
− 1

2

)
∂t t mi + 1

λ

q∑
j=1

(
1

si
+ 1

s j
−1

)
Gi j∂t meq

j +
q∑

j=1

q∑
`=1

(
1

s`
− 1

2

)
Gi`G` j meq

j

))
+O(∆x3).

Using relations analogous to (35), (36) and (38) for N ≥ 1, formally obtained by differentiating the result at the
previous order , we finally obtain, after tedious but elementary computations

mi = mi − ∆x

λsi

(
∂t mi +γ1,i −λ∆x

q∑
j=N+1

(
1

s j
− 1

2

)
Gi j

( N∑
`=1

G j`m`+
q∑

`=N+1
G j`meq

`
− 1

λ

N∑
`=1

dmeq
j

dm`
γ1,`

))
+O(∆x3),

which coincides with the result from Theorem 4.7. Therefore, up to order two, our approach yields results consis-
tent with those from the procedure by [53].

To demonstrate that we recover the same result at any order for any scaling between time and space discretiza-
tions, let us assume N = 1. Then we have, using that S ∈ GLq (R), T T = T T = I , the rule for the inverse of a
product of matrix and the identity relative to geometric series in the context of formal power series, that

0 = det(ζI −A)m −adj(ζI −A)Bmeq = det(ζI −A)
(
m − (ζI −T (I −S))−1T Smeq)

,

= det(ζI −A)
(
m − (S−1T (ζI −T (I −S)))−1meq

)
= det(ζI −A)

(
m − (I +S−1(ζT − I ))−1meq

)
,

= det(ζI −A)

(
m −

(+∞∑
r=0

(−S−1(ζT − I ))r
)

meq
)
= det(ζI −A)

(
m − lim

k→+∞
m[k]

)
.
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Therefore the expansion of the Finite Difference scheme from Proposition 3.4 bis and the non-truncated Maxwell
iteration method on the lattice Boltzmann scheme coincide up to a multiplication by a formal power series of time-
space differential operators, i.e. det(ζI −A) ∈ S . A priori, the resulting modified equations are not the same, but
since det(ζI−A) = det(S)+O(∆x) = s1Π+O(∆x), thus we “pay” only a constant factor we can divide by at dominant
order, the modified equations at leading order are the same. Then, at each order, the result must be the same
because we re-inject, in a recursive fashion, the solution truncated at the previous order to eliminate the higher-
order time derivatives, see for instance (36) and (38). The fact that the modified equations recovered by the Maxwell
iteration are the same than the ones from the corresponding Finite Difference scheme at any order provides an a
posteriori justification of the Maxwell iteration. We also emphasize that using the Maxwell iteration to compute
these equations is generally less involved in terms of computations than doing the same on the corresponding
Finite Difference schemes.

8 Conclusions and perspectives

In this paper, we have rigorously derived the target PDEs for any lattice Boltzmann scheme under acoustic and
diffusive scalings by restating it as a multi-step macroscopic Finite Difference scheme on the conserved moments
[3]. Moreover, the modified equations – which the schemes are “more consistent” with – have been found up to
second order. These findings allow to utilize – upon studying the stability [3] of the lattice Boltzmann scheme at
hand – the Lax equivalence theorem [38] to conclude on its convergence and order of convergence towards the
solution of the target PDEs. Since the passage from the kinetic to the macroscopic standpoint is fully discrete, our
analysis can handle any type of time-space scaling and be pushed forward to reach higher orders in the discretiza-
tion parameters. Contrarily to the existing techniques, the quasi-equilibrium of the non-conserved moments in
the limit of small discretization parameters or the introduction of several time scales in the problem are not the
keys to eliminate the non-conserved variables from the macroscopic equations. The obtained results confirm, go-
ing beyond empirical evidence, that the formal Taylor expansion by [15, 17] and the Maxwell iteration by [53] are
well-grounded from the perspective of numerical analysts and traditional numerical methods for PDEs, such as
Finite Difference. In particular, we have extended the Maxwell iteration [53] to any lattice Boltzmann scheme and
shown that the modified equations found by this procedure are the same than the ones from the corresponding
Finite Difference schemes, at any order. The general results that we have presented allow to immediately recover
the modified equations without need for computing the corresponding Finite Difference schemes, which would be
time consuming. This allows – for example – to easily consider families of schemes depending on some parameters
and investigate the dependence of the modified equations on these factors.

An improvement of the present work could be the establishment of the equivalence between different analyses
[10, 43, 36, 15, 17, 32, 30, 31] for higher orders and ideally for any order. Even if more involved from the standpoint of
computations, the extension can be easily done by considering derivatives of higher order for the determinant and
adjugate functions, in the spirit of Lemma 5.4 and Lemma 5.6. In this work, all the computations have been done by
hand but one could envision to seek some help from symbolic computations. This is a current path of investigation
which final aim is to provide the computation – inside the package pylbm4 – of the modified equations of any lattice
Boltzmann scheme either by the corresponding Finite Difference scheme or using the Maxwell iteration.
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