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Abstract: There is an increasing interest in implementing data warehouses with 

NoSQL document-oriented systems. In the ideal case, data can be analysed on 

different dimensions and dimensions follow strict hierarchies that we can use to 

roll-up and drill-down on analysis axes. In this paper, we deal with non-strict 

and non-covering hierarchies, common issues in data warehousing a.k.a. sum-

marizability issues. We show how to model these hierarchies in document-

oriented systems and we propose an algorithm that can deal with summarizabil-

ity issues. The new approach is tested and compared to existing approaches. 

Keywords: data warehouses, document-oriented systems, NoSQL, summariza-

bility 

1! Introduction 

There is an increasing interest in implementing data warehouses with NoSQL systems 

[19] including document-oriented systems such as MongoDB [5]. NoSQL systems are 

an interesting alternative to relational databases (RDBMS), because they offer inter-

esting scaling, replication and flexibility features. Until now, the different studies 

have focused on modelling issues, instantiation and OLAP cuboids. The management 

of complex hierarchies [6,12] is an important issue in data warehousing. We introduce 

in this paper the management of complex hierarchies and summarizability issues with 

document-oriented data warehouses.  

 

In OLAP settings, it is common to analyse data on different dimension combina-

tions. During analysis, we can drill-down or roll-up at different levels of detail using 

the hierarchy of dimensions. It is common to have irregularities in these hierarchies 

such as non-strict hierarchies and non-covering hierarchies. The latter are also the 

cause of summarizability issues i.e. we cannot drill-down or roll-up in data. Several 

solutions have been proposed for summarizability issues, but these solutions are 

adapted to the relational model [6, 7,8,11,18] With these solutions, it is necessary to 

alter original schemas and to override attribute values to act as arrays. NoSQL sys-



tems have interesting features that can useful for dealing with complex hierarchies. 

This is the scope of this paper.  

In particular, document-oriented systems are an interesting case study for manag-

ing complex hierarchies. They support atomic attributes as well as the complex attrib-

utes (nested records, arrays, …) for storing the data. Document-oriented systems are 

one of the most popular classes of NoSQL approaches [5]. Data is stored in docu-

ments and documents are grouped in collections [5,3]. Documents have a flexible 

schema. They contain key-value pairs where keys act as metadata (they represent the 

data structure). Values can be of simple data type (strings, numbers, dates…), but they 

can also be arrays or sub-documents. Documents within the same collection can have 

different schemas. Document-oriented systems have been shown to work well for 

implementing data warehouses. They can scale horizontally and exploit parallel com-

putation for faster querying. However, until now, the management of complex hierar-

chies and summarizability issues have not been treated with NoSQL systems in an 

OLAP setting.  

In this context, we extend our previous work on data warehouses implementation 

with document-oriented systems. We introduce support for storing complex hierar-

chies and support for data summarization on the complex hierarchies. Our new con-

tribution can be summarized as follows:  

we show how we can easily store complex hierarchies in documents  

We propose an algorithm for summarizability issues in document-oriented data ware-

houses. We compare our algorithm to other state-of-the-art algorithms 

The rest of this paper is structured as follows. In the next section, we introduce the 

data warehouse basic notions, the multidimensional data model and the complex hier-

archies issues. Then, we propose our approach for modelling, storing and dealing with 

complex hierarchies. In the following section, we propose experimental work to vali-

date our work. We summarize related work and we end with conclusions.  

Data warehouses and complex hierarchies 

2! Data warehouses, the multidimensional model, cuboids 

To ease data analysis and decision making, it is common to centralize them in data 

warehouses [4]. These latter are suitable for on-line analysis called OLAP (On-Line 

Analytical Processing [9]). In this setting, data is modelled with a multidimensional 

model composed of measurable facts and analysis dimensions. Several analysis topics 

(called facts) regroup a set of indicators (called measures). The values of these indica-

tors are observed by different analytical axes, also called dimensions. These dimen-

sions are composed by attributes, which represent different levels of detail, which are 

themselves organized into hierarchies.  

The traditional example in data warehouses concerns sales as the fact and dimen-

sions like customer, date, supplier. For the sake of change, we will use another exam-

ple from social media OLAP, more precisely the analysis of the tweets (microblogs). 

In figure 1, we show the multidimensional schema. The tweet is analysed according to 

three dimensions: Time, User and Subject. One of the analysis measures is the popu-



larity of a tweet (the number of times a tweet has been retweeted). At different analy-

sis levels, we may wish to have the total amount of retweets grouped by topic or by 

category or by month or year. The measures can be observed, for example based on 

the “time” dimension with three detail levels (day, month, year) organized in a hierar-

chy with “day” the lower detail level, “month” at a higher level and so on. The hierar-

chies are useful structures that are employed to ease the pre-calculation of induced 

agglomeration (for example, calculate the annual sales from the weekly values). Gen-

erally, the situations in the real world are modelled according to the simple hierar-

chies.  The associations between the different levels of one simple hierarchy are the 

type “one-to-many”, e.g. one category many sub-categories.  

Below, we provide some formalization on the multidimensional data model and 

OLAP cuboids:  

A multidimensional schema, namely E, is defined by (F
E
, D

E
, Star

E
) where:  

F
E
={F1,…, Fn} is a finite set of facts, D

E
={D1,…, Dm} is a finite set of dimensions, 

Star
E
: F

E
 →!"

#
 is a function that associates facts of F

E
 to sets of dimensions along 

which it can be analyzed (!"
#

is the power set of D
E
).  

A fact, F∈F
E
, is defined by (N

F
, M

F
) where: N

F
 is the name of the fact, 

M
F
={f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation func-

tion fi.  

A dimension, denoted Di∈D
E
 (abusively noted as D), is defined by (N

D
, A

D
, H

D
) 

where: N
D
 is the name of the dimension, A

D
={$%

",…,$&
"}∪{id

D
, All

D
} is a set of di-

mension attributes, H
D
={'%

",…,()
"} is a set hierarchies.  

A hierarchy of the dimension D, denoted Hi∈H
D
, is defined by (N

Hi
, Param

Hi
, 

Weak
Hi

) where: N
Hi

 is the name of the hierarchy; *+,+-./ 01

2345 6%
./ 5 7 5 68/

./ 5 9::4 ;is an ordered set of vi+2 attributes which are called parame-

ters of the relevant graduation scale of the hierarchy, ∀k∈[1..vi], <=
>? ∈A

D
; 

Weak
Hi

: Param
Hi

 →!@
ABCDEDFG?

 is a function associating with each parameter possi-

bly one or more weak attributes. 

An OLAP cuboid O is derived from E, O = (F
O
,D

O
) such that: F

O
 is a fact derived 

from F (F∈F
E
) with a subset of measures, M

O
⊆M

F
; D

O
⊆!HIDE

#JKL⊆D
E
 is a subset of 

dimensions of D
E
. More precisely, D

O
 is one of the combinations of the dimensions 

associated to the fact F (Star
E
(F)).  

If we generate OLAP cuboids using all dimension combinations of one fact, we have 

an OLAP cuboid lattice  (also called a pre-computed aggregate lattice or cube).  

 



  

Fig 1 A multidimensional conceptual schema allowing the analysis of Tweets 

2.1! Complex hierarchies 

In the real world, it is often the case when hierarchies are irregular. We say that the 

hierarchy is complex when it is a non-strict hierarchy and/or a non-covering hierarchy 

[6]. We will illustrate and define the above.  

In figure 2, we show an example of complex hierarchy. The example is taken from 

an OLAP application on Twitter. The subject is one of the analysis dimensions and its 

attributes form a hierarchy id-topic-category-all.  We can see that the tweet “P1” has 

two topics “Foot” and “Tennis”; the topic “Tennis” falls within two categories 

“Sport” and “Activity”. This corresponds to a many-to-many relationship on tweet-

topic and topic-category. This is called non-strict hierarchy.  

The tweet P3 has no topic, but it falls within the category “Activity”. This corresponds 

to a one-to-any relationship ([1..0-*]) on tweet-topic. This is called non-covering 

hierarchy. Now, we can define:  

•! A hierarchy is said to be non-strict when a child of a given level can have 

more than a parent of the superior level [11,15].  

•! A hierarchy is said to be non-covering if a dimension value can have no di-

rect upper parent [11,15].  

The complex hierarchies cause summarizability issues [13, 10] i.e. it is not easy to 

perform drill-down and roll-up analysis on data, because of potential missing or re-

dundant information. One element can be considered several times or none when 

computing a pre-aggregate (for example the sum of measures by category when a 

product appears in multiple categories).  

Let us illustrate the summarizability issues with our example from figure 2. If we 

count re-tweets by topic (Figure 2), we obtain a total of 110 while the exact total is 

62. The tweets P1 and P2 have been counted several times (twice each) which distorts 

the calculation of aggregates. If we wish to have the amount of re-tweets by category 

for the aggregate results at the level of topics (Figure 2), we obtain a result of 162 in 

place of 62. The topic Tennis is attached to two categories. Furthermore, the errone-

ous aggregate results at the level of topics are reflected in the superior hierarchical 
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levels. 

 

Fig 2 Example of non-strict and non-covering hierarchy and summarizability issues 

3! Complex hierarchies and document-oriented systems 

3.1! Document-oriented data model formalism 

Document-oriented systems store documents in collections and are key-value stores. 

A unique key identifies every document (the value) that will be called identifier. The 

document is itself a set of key-value pairs. Keys define the structure of the document 

and act as meta-data. Each value can be an atomic value (number, string, date…), a 

sub-document or an array. Documents within documents are called sub-documents or 

nested documents. We distinguish the document instance from the document struc-

ture/schema. The document structure/schema corresponds to a generic document 

without atomic values i.e. only keys. A document instance belongs to a collection C 

and has an identifier, id. We refer to this document as C(id). We use the following 

symbols: “:” separates keys from values, “[ ]” denotes arrays, “{ }” denotes docu-

ments and a comma “,” is used to separate key-value pairs from each other. Using this 

notation, we provide an example of a document instance:  

User (30001): {  

name: “John Smith”,  

addresses: [{city: “London”, country: “UK”},  

      {city: “Paris”, country: “France”}],  

phone: {prefix: “0033”, number: “61234567”}}  



 

This example document belongs to the “User” collection, it has 30001 as identifier 

and it contains keys such as “name”, “addresses”, “phone”. The addresses value is an 

array of sub documents and the phone value is a sub-document. 

3.2! Mapping the multidimensional model and complex hierarchies  

The formalism that we have defined earlier allows us to define a mapping from the 

conceptual multidimensional model to each of the logical models defined above.  

The data model that we will propose is inspired by our previous work [3]. It takes into 

account that document-oriented implementations of data warehouses work better with 

flat models i.e. one fact and its dimensions are stored in one collection. This is differ-

ent from RDBMS where we normalize data and we have one table for the fact and 

one table per dimension.  

Our mapping can be explained in two steps:  

(i) For a given fact, all dimension attributes are nested under the respective attrib-

ute name and all measures are nested in a subdocument with key “measures”.  This 

model is inspired from our work. This corresponds to the following mapping:  

•! Each conceptual star schema (one F
i
 and their dimensions Star

E
(F

i
)) is 

translated in a collection C. !

•! The fact Fi is translated in a compound attribute Att
CF

. Each measure mi is 

translated into a simple attribute Att
SM

. !

•! Each dimension Di ∈ Star
E
(F

i
) is converted into a compound attribute 

Att
CD

 (i.e. a nested document). Each attribute Ai ∈ A
D
 (parameters and 

weak attributes) of the dimension Di is converted into a simple attribute 

Att
A
 contained in Att

CD
. !

!

(ii) For attributes within complex hierarchies, we use arrays. There are three cases:  

In this case, the attribute can have no values (non-strict hierarchy) 

•! The attribute value has no value i.e. non-covering hierarchy !

•! The attribute value has one value i.e. normal behavior !

•! The attribute value has many values i.e. non-strict hierarchy!

Below, there is an example from the Twitter case study. A combination of fact 

and dimensions will be stored in one document that looks as the following:  

{ 

"User": { 

"user_id": "1704005545", 
"user_screen_name": "ann2thingelse", 

"user_friends_count": "150", 

"user_utc_offset": "28800", 

"user_time_zone": "Irkutsk", 
"user_created_at": "Tue Aug 27 07:16:41 +0000 2013", 

"user_lang": "ko", 

"user_location": "" 



}, 

"Time": { 

"id": "619883842770370560", 
"created": "Sat Jul 11 14:59:59 +0000 2015", 

"timestamp": "1436626799658", 

"day": "11",  

"month": "6", 
"year": "2015" 

}, 

"Subject": [{"topic": "football", "category":[ "football", "Activity]"}, 

     {"topic": "senat", "category": ["Politycs"]}], 

Fact": { 
"Retweet_c": "15" 

} 

} 

3.3! Algorithm for managing complex hierarchies 

In this section, we propose an algorithm that can deal with non-strict and non-

covering hierarchies.  

Let C be a collection corresponding to an OLAP cuboids or detailed data. We will 

interest to one dimension d and a potentially complex hierarchy H. The data in C is 

described at some level of granularity; we suppose the lowest level of granularity 

corresponds to some attribute a. Our goal is to group data on another dimension at-

tribute from H that stands higher in the hierarchy, say attribute b.  

Furing aggregation, we suppose we want to apply sum(m) an aggregation function on 

one measure m.  

We suppose data is modelled with the mapping we have defined earlier i.e. dimen-

sion attribute values within  complex hierarchies will be stored with arrays.  

To preserve summarizability, we propose on the data model we have proposed the 

following:  

Non-strict hierarchies resolution: The problem with non-strict hierarchies is that 

we aggregate measures multiple times when we have multiple values in the groub_by 

dimension attribute. To deal with this issue we propose the use of two varia-

bles/fields:   

 – The real value, which will be displayed for analysis. The real aggregation 

value is obtained, while aggregating all the measures m from the parent attributes of 

a
H
 in b

H
. This value is calculated without taking into account the number of parents 

for each child attribute. 

 – The aggregate value: which, it, will be used uniquely for calculating the 

superior hierarchical level. The aggregate value is calculated differently. For each 

attribute a, the algorithm calculates the number of parents it has in b
H
 that we call 

parents(a). If the child attribute has a single parent (|parents(a)|=1) the measure will 

be aggregated one time. If the attribute has several parents (|parents(a)|>1), the algo-

rithm will count the number of parents P (the number of elements in the array) then 

add the measure aggregated value sum(m) will be divided by the number of parents 

|parents(a)|. In this way the measure will not be aggregated as many times as that of 

the parents. 

 



Non-covering hierarchies: For treating non-covering hierarchies, we use  classical 

approach, that regroup all the orphan values in an artificial value called others. For 

example, for an aggregation hierarchical level b
H
 a others value is created and con-

tains all the orphan values of the hierarchical level a
H
. This solution is used already in 

the relational model [7, 8].  

 

Algorithm SCHS: Algorithm pseudocode for aggregating data (summing) on a 

measure groupig by a dimension attribute of potential complex hiearchy  
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4! Experiments 

4.1! Experimental setup 

We propose two sets of experiments.  

The first set is about instantiating a data warehouse with the data model we pro-

posed. We use for this purpose data from the Twitter case study. We load data and we 

study performance on a set of OLAP queries.  

The second set of experiments is about validating our algorithm for data summariza-

tion with complex hierarchies. We also compare our approach to two approaches from 

state-of-the-art namely:  

─!The approach of Pederson and al [12]: an approach that is considered as a reference 

approach for the summarizability issues 

─!The approach of Hachicha and al [6]; that also uses a correction strategy when 

aggregating.  

These two approaches are meant for the relational model; we have adapted them 

for document-oriented systems.  

Hardware: The experiments are done on a cluster composed of 6 PCs, (4 core-i5, 

8GB RAM, 2TB disks, 1Gb/s network), each being a worker node and one node acts 

as dispatcher.  



Dataset: The data is obtained with the Twitter API for data streaming. Tweets are 

returned in JSON data format with each tweet having 67 data fields. We process 

tweets to follow the data model we have defined earlier. We also add a dimension 

called subject that has as attributes topic and category. These extra data is fictional 

and we introduce here arbitrarily non-strict hierarchy issues and non-covering hierar-

chy issues.  

Queries: We test our approach to implemente the conceptuel model to logical 

model, on 3 query sets. Three query sets are created with 3 queries per set. The query 

complexity increases from Q1 to Q3. Q1 involves 1 dimension, Q2 involves 2 

dimensions and Q3 involves 3 dimensions.  

4.2! Experimental results: Data warehouse instantiation and validation 

In the first set of experiments, we have concentrated in transforming and loading data 

into MongoDB with the pre-defined model of data.  

After loading data, we focus on interrogation. In the following table, we show query 

execution times on 9 queries on 5 different settings: 1 shard, 2 shards, 3 shards, 4, 

shards, 5 shards. We can observe that augmenting the number of shards reduces the 

query time. This is easy to explain. The query is executed in parallel across shards.  

 

Table 1 Query execution times at different configuration with 400 millions documents, in se-

conds 

#shards/query 1 shard 2 shards 3 shards 4 shards 5 shards 

Q1.1 1070 1042 824 598 497 

Q1.2  702 658 433 402 326 

Q1.3  697 655 433 408 324 

Q2.1  687 656 433 351 286 

Q2.2  687 656 433 351 286 

Q2.3  687 656 433 352 285 

Q3.1  695 676 433 360 285 

Q3.2  693 675 433 352 285 

Q3.3  693 676 432 353 285 

4.3! Experimental results 2: Data summarization with complex hierarchies 

In this section, we show results on data summarization (aggregation) using algorithms 

that fix summarizability issues on complex hierarchies. We compare our approach to 

the approaches of Hachicha and Pedersen. Results are shown in  Table  2 and Table  

3. We use two different settings. In the first setting, we consider one configuration 

server and one data shard (Table  2). In the second setting, we consider one configura-

tion server and 5 data shards (Table  3).  

 



We show in the tables, the execution time to compute a pre-aggregate (OLAP cuboid) 

on given dimension combinations. We build cuboids on top of each other i.e. we will 

compute a cuboid from another existing cuboid that is closer to its granularity of data.  

 

We observe the following results. In the average case, our approach works faster 

than the other approaches from state-of-the-art. We also observe that it is faster to 

compute top-level cuboids i.e. cuboids that group on few dimensions and top-level 

attributes. This is easy to explain, because there is less data.  In this case, our ap-

proach performance is comparable with state-of-the-art approaches. 

The above observations are true on both settings: single shard and multiple shards. 

We can confirm once again that sharding makes computation faster.  

Table  2 Cuboids computation times (in seconds) compared on different approaches on single 

shard setting with 400 millions documents  

Aggregate Pedersen Hachicha SCHC 

topic-day-location 21070 19070 18892 

topic-month 12067 12067 11857 

category-month-location 167 63 64 

year-category 109 48 51 

avg 33143 31248 30864 

Table  3 Cuboids computation times (in seconds) compared on different approaches on 5 shards 

setting with 400 millions documents 

Aggregate Pedersen Hachicha SCHC 

topic-day-location 903 808 604 

topic-month 597 534 486 

category-month-location 36 23 12 

year-category 34 15 10 

avg 1570 1308 1112 

5! Related Work 

In 1997, the summarizability has studied for the first time on multidimensional data 

by Lenz and Shoshani [10]. Since then, three approaches for treating the complex 

hierarchies have been proposed.  

The first approach involves schema normalization. In this solution, two solutions 

are proposed. For the first, the authors propose to resolve the problem at the concep-

tual level while defining the rules of constraint and of implementation of the concep-

tual model towards the logic model [7]. In the second solution of normalization, the 

principle is to separate the correct hierarchies from the hierarchies susceptible to 

cause aggregate calculation errors. In this context, [11] propose to put the non-strict 

hierarchies in the new tables, called joint tables also called separated tables by Mali-



nowski and Zimanyi [11]. In 2008, Mazon and al, proposed a conceptual model nor-

malized UML, separating the different associations [13]. 

In the second approach, data is transformed for treatment of the complex hierar-

chies. This approach requires the modification of the fact-dimension instances. Peder-

son and al were the first to propose a solution for this perspective [15] . Three algo-

rithms were thus proposed, Makecover which is responsible for making the covered 

data. Makestrict, is responsible for transforming the multiple hierarchies to the simple 

hierarchies. For each element having multiple parents, a parent composed from the 

fusion of its parents is created and inserted between the two. The last algorithm 

Makeonto is used to manage onto hierarchies [11] In similar work based on the solu-

tion from Pederson, Mansmann and Scholl [10] present a visual tool OLAP which 

allows for normalizing, browsing and visualizing the different levels of a hierarchy . 

In their graphic structure, each level of the hierarchy is modeled by a directory.  

The third solution has to detect the non-strict hierarchies and non-covering hierar-

chies, and resolve them at the moment of aggregate computation. These solutions are 

often accompanied by implementation of operators. In 2005, Horner and Song [7] 

suggest a script to detect the measures already computed but without ever implement-

ing them. Hachicha and Darmont [6], consider the managing of the summarazibility 

issues in the documents XML and propose a projection operator which returns a zero 

result in the case of non-strict hierarchies. In a similar way, Hachicha and Darmont, 

while drawing from the work of Pederson, propose an operator which operates in 

multidimensional data XML, by grouping the parents of an element for a single hy-

brid parent. 

The representation of complex hierarchies in conventional relational DBMS turns 

out to be very complicated, even more so with the explosion of massive data, the ba-

ses of relational data shows the benefits of difficulty in management of such massive 

data. This is why, in this article, we take an interest in a new solution, the systems 

NoSQL, which seems to respond to the problem of massive data [19] in particular the 

system document-oriented. 

6! Conclusions 

In this paper, we have studied complex hierarchies and summarization issues in the 

context of document-oriented implementations of data warehouses.  

First, we have proposed a set of rules to automatically translate the conceptual mul-

tidimensional schema at the level of logic NoSQL document oriented systems. Fur-

thermore we have conducted a set of experiments to study the loading processes and 

interrogation. Then, we have tested our approach on datasets with Twitter tweets. 

Different volumes have been used. We have used MongoDB as the data base NoSQL. 

The first results show that our approach offers the best results and the best analysis.  

As for future work we hope to conduct investigations at the level of columns ori-

ented models. These two latter use the versioned values a very interesting point for 

updating data warehouses. 
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