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Abstract—In this paper, we propose an efficient implemen-
tation of the augmented belief propagation (ABP) algorithm for
low-density parity-check codes over general memoryless channels.
ABP is a multistage BP based decoder that uses a backtracking
processing when decoding fails. The algorithm proceeds in two
main steps, namely a symbol selection step and an augmented
decoding step. The former is based on a criterion related both to
the stopping subgraph connectivity and to the input reliability,
while the latter can be either implemented using a list based or a
greedy approach. Compared to the original implementation, we
consider a different approach for both steps. First, the proposed
node selection is only based on the dynamic of sign changes of
the extrinsic messages at the variable nodes output. This enables
us to consider indifferently general memoryless channels, while
still taking into account the graph irregularity. Then, we propose
a simple yet efficient implementation of the augmented decoding
procedure based on pruning of the branching tree The proposed
algorithm shows near maximum likelihood decoding performance
while decreasing the overall complexity (computation and mem-
ory) of the original algorithm. Moreover, complexity-performance
trade-off is an built-in feature for this kind of algorithm.

I. INTRODUCTION

Belief propagation (BP) decoder of sparse graph codes
performs iterative message passing on a code graph. This
is a sub-optimal approach that assumes extrinsic messages
independence which is a good approximation only if the graph
is large enough, leading to near optimal detection. However, for
short codeword block lengths, the presence of cycles in low-
density parity-check (LDPC) code graphs can introduce a no-
ticeable loss in performance when compared to the maximum
likelihood (ML) decoding performance. One possible manner
to efficiently address this problem is to combine efficiently
iterative BP decoding with the reliability based ordered statistic
decoding algorithm [1]. However, despite of its very good
performance, it suffers from a heavy computational complexity
that makes this approach difficult to use in practice. [2], [3]
proposes a new method to improve the performance in the
error floor region. This approach, referred to as augmented
belief propagation (ABP), is a generalization of the approach
that has been proposed initially by [4]. ABP is a multistage BP
based decoder that uses a well-thought backtracking processing
when decoding fails. The algorithm iteratively proceeds in two
main steps, namely a symbol selection step and an augmented
decoding step. The former is mainly based on a criterion
related to both the stopping subgraph connectivity and to the
input reliability of the received information, while the latter can
be either implemented using a list based or a greedy decoding
approach. The main idea is very close in spirit to the Maxwell
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decoder used in [5]. Indeed, in these approaches, when the
decoding algorithm fails, the value of a bit is guessed and then
the decoding procedure continues until a new decoding failure.
By analyzing the different possible decoding trajectories, one
expect to finally converge to the right codeword when applying
a well-thought variable node selection strategy. There are
several other approaches (see for example [6] and references
therein) that can be related to ABP.

In this paper, we propose an efficient implementation of
the ABP algorithm for LDPC codes over general memoryless
channels. First, we consider a node selection that is only based
on the dynamic of sign changes of the extrinsic messages at
variable nodes output. This enables us to consider indifferently
general memoryless channels, while still taking into account
the influence of irregularity in the graph connectivity. Then,
we propose a simple yet efficient implementation of the
augmented procedure based on an efficient pruning of the
branching tree used for the decoding schedule with decoder
reinitialization. The proposed algorithm show near maximum
likelihood decoding performance while decreasing the overall
complexity (computation and memory) of the original algo-
rithm. Moreover complexity-performance trade-off is an built-
in feature for this kind of algorithm. The paper is organized as
follows. Section II gives some notations and definitions. Sec-
tion III introduces the ABP algorithm and section IV presents
our proposed implementation. Then, simulation results are
given in Section V and conclusions are drawn in Section VI.

II. NOTATIONS AND DEFINITIONS

Binary LDPC codes are linear block codes defined over
Fy. A LDPC code Cp; is usually defined by a sparse parity-
check matrix H of size M x N, where N is the codeword
length, M > N — K the number of parity check equations
and K is information length in bits. Using this LDPC code,
an information message vector u = [ug,--- ,ux_1] € F¥
is encoded into a codeword z = [z, - ,2zn_1] € F3' that
belongs to the null space of H, ie. Hz' = 0 where '
holds for transposition [7]. The parity-check matrix H can
be represented by its corresponding Tanner graph G [8]. A
Tanner graph is a bipartite graph consisting in two sets of
nodes: the variable nodes associated with the codeword bits
(columns of H) and the check nodes associated with the parity
check constraints (rows of H). An edge joins a variable nodes
(VN) v, to a check nodes (CN) ¢,, if H(m,n) = 1. For a
given parity H, denote the set of variable nodes by V, the set
of check nodes by C and the set of edges by £. Then, G is



completely described by the triple (V,C, E).

The codewords z are then sent over a binary memoryless
channel. Let y = [yo,- -+ ,yn—1] be the received vector at the
channel output. At the receiver, belief propagation decoding
(or one of its relatives) is used to perform iterative message
passing on the code graph assuming local independence of
the messages transiting on the edges of the graph. Without
loss of generality, we will consider log-likelihood ratio (LLR)
based BP decoding for the ease of exposition of the proposed
algorithm. The LLR-based BP decoding iteratively exchanges
LLR messages between variables and check nodes which are
processed locally at each node. From the observations y, we
can compute the expression of the initial LLR values from the
channel observations, noted as:

p(Zn = 1|yn)

Then, the following update rules are applied iteratively at
each iteration ¢ [7]:

e Iterations: computation of extrinsic messages from
variable node v,, (resp. check node ¢,,) to check node
¢y (resp. variable node vy,)
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Z Lm’—m
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4
Ln—)m

=L+

LY . =2tanh™' H tanh (Lf,_,,,/2)

n’€N(m)\n

where M(n)\ m (resp. N'(m)\n) is the set of check
nodes (resp. variable nodes) connected to vy, (resp. ¢, )
excluding the m-th check node (resp. the n-th variable
node) and L%,  (resp. LY, , ) is the extrinsic
message from the check node ¢,/ (resp. the variable

node v,,) to the variable node v,, (resp. the check node
Cim)-

e A posteriori LLR computation: Vn € [0, N — 1], V¢
Lt =L+ > Lh,.
m’eM(n)

The estimated codeword bit is then given as

1= sign(LoPpst)

Zn

2
At the first iteration, we have L% . = L Vm,n. The

above iterative procedure is run until a codeword has been
detected (ie HZ " = 0) or the maximum number of iterations,
noted Lo, has been reached. In this latter case, a decoding
failure is declared (ie. an error has been detected). In case
of decoding failure, denote Csy¢ the set of unsatisfied check
(SUC) nodes when evaluating the syndrome s = H:T, Vsye
the set of variable nodes that are connected to Csyr¢ by at least
one edge in G, and Egpr¢ the set of edges connecting the nodes
in Vsyc with nodes in Cspye [2]. The set Cspye induces an
extracted subgraph Gsyc = (Vsuce,Csue,Esue)- Note that
the variable node degree of v,, € Vsyc with respect to Gy
is less or equal to the variable node degree of v, € V with

respect to the original graph G. This type of structure is usually
the core of ABP decoders or BP decoder with backtracking [2].

As we will see in the following sections, another variable
of interest to track is the number of sign changes of extrinsic
messages (ie. extrinsic message oscillations) from variable
nodes to check nodes along iterations [9]. Let S%_, . be the
number of sign changes of the extrinsic message from variable
node v, to check node ¢,, up to iteration ¢ and SfL the total
sign changes of all extrinsic messages at the output of variable

node v, up to iteration £. Then, we have ¥n,m

St _ Srez_—}m if Sign(Lﬁ—m@) = Sign(Lfl:)lm)
n—m Sl +1 otherwise
go Y s 0

meM(n)

: [
By convention, we have S, _,,, = 0.

III. AUGMENTED BELIEF PROPAGATION
A. Main features

Augmented belief propagation is a multistage BP based
decoder that uses a well-thought backtracking processing when
decoding fails [2], [10]. The ABP algorithm relies first on
applying the classical BP algorithm for the first L iterations.
If decoding is successful, then the iterative decoding procedure
stops. However, if the BP decoding fails (ie. no codeword has
been decoded), the ABP procedure is used. The ABP decoding
procedure performs a multistage decoding using a two steps
process that can be summarized as follows: at each stage j a
variable node v,, that is likely to be in error is selected and
its initial message LS" is replaced by a saturated message,
ie. szh = +Smax. Then, a tentative BP decoding is applied
for L, additional iterations on both possible values +S,ax OF
—Smax, defining the augmented decoding procedure. Thus, the
two main features of this kind of algorithm are: (a) the node
selection process and (b) the augmented decoding procedure
that consists in an efficient binary testing based decoding
schedule.

B. ABP decoding procedure

The overall procedure can described as follows. In the
following, we present both a parallel and a sequential decoding
schedule as initially proposed in [2]. It can be represented by
a branching tree as given in Fig. 1 and Fig. 2 for a decoding
depth jiax = 3.

The following procedure can be used with both scheduling.
First, Ly BP decoding iterations are performed. If decoding
fails, a variable node v? is selected according to a selection
algorithm. Then, the first stage (j = 1) of the augmented
procedure is applied: two decoding attempts can be performed
at this stage by setting Lflh = —Shax Or Lgh = +Shax-
Then, L; iterations of BP decoding are performed for each
possible bit correction value. If the decoder finds a codeword,
it stores it and continues. In its original version, it is assumed
that the initial messages are stored before applying the two
step decoding testing (incoming messages from check nodes
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Fig. 1. Parallell Scheduling Fig. 2. Sequential Scheduling

to variable nodes). We can see that this augmented decoding
procedure aims to explore two possible decoding trajectories
with a guessed value of the variable node v, which is very
close in spirit to the Maxwell decoder used in [5]. At the next
stage 7 = 2, the same two-steps process is applied for the two
preceding decoding trajectories following the testing order as
given in Fig. 1. For example, for the decoding trajectory at
stage j = 1 considering v¥ with L = —S .., a new symbol
v} is selected and messages along the edges of the graph are
stored for this configuration. Then the same decoding testing
procedure is applied considering the two possible saturated
values for v} and running additional Lo iterations. The same
procedure is applied for the decoding trajectory with initial
message v) with L& = +S,... Thus at each stage, 27
additional decoding trajectories can be tested. The procedure
continues until the maximum number of allowed stages jmax
is reached.

In its original (and full complexity) version, ABP needs to
store at each step the selected nodes (to be saturated) and all
the messages along the edges in the graph (from check nodes
to variable nodes) that are required for a configuration to be
tested. However, lower memory complexity can be achieved by
restarting decoding after each node selection, avoiding storage
of messages in the graph. During the parallel testing procedure,
it is also assumed that all valid codewords are collected and
then list decoding is performed.

C. Implementation issues

Apart from the memory complexity, it clearly appears that
there are two main aspects for this kind of algorithm that can
be optimized: (a) the node selection strategy and (b) the testing
schedule and decoding strategy, ie. how to explore efficiently
the branching tree and what is the best decoding strategy. For
both aspects, several propositions have still been explored.
In [2], an improved version of the node selection initially
given in [4] is proposed. When decoding fails, the nodes are
selected from the graph Ggr¢ induced by non satisfied check
nodes. To select a variable node from Ggrc, they have shown
heuristically that the best candidate is among variables nodes
with highest degrees in Gsye and with the lowest channel
information reliability. To decrease the decoding complexity,

they have also proposed a greedy approach that terminates
exploration of the branching tree as soon as a valid codeword
is reached. To reduce the memory requirement, they have also
proposed a sequential testing schedule for the branching tree
(as given in Fig. 2) that corresponds to a depth-first search
while the parallel testing is a breadth first search approach.
The complexity-performance trade-off is addressed through
different parameters such as the number of allowed stages,
the number of initial iterations Ly and the number of allowed
additional iterations per stage.

By applying ABP on state of the art codes, [2] showed that
ABP is a very efficient method that can approach maximum
likelihood performance if sufficient complexity is allowed.
Moreover it can perform the same than other algorithm such
as BP combined with ordered statistic decoding but with a
reduced complexity [2]. For all these aspects, ABP is for sure
a very attractive decoding method.

However, the original method has some weaknesses :

e  First, the method can be only applied to channels
enabling information reliability that is computed from
channel observations. The proposed method cannot be
applied to channels like the binary symmetric channel
(BSC) due to the proposed node selection criterion;

e If memory requirement can be drastically softened
by enabling to restart the decoding (with, in some
cases, only a slight decrease in performance [2]), the
node selection process implies to extract dynamically
at each selection step the subgraph Ggy¢ that can
be different from a stage to another. So the need
for extracting information from local substructures
when decoding fails increases the complexity of the
selection step;

e  For the testing schedule and decoding step, it would
be interesting to see if some efficient pruning of
the branching tree could be performed and if some
stopping criterion could be found that would enable
to have an algorithm with performance close to the
full list decoding approach while being less complex.

IV. PROPOSED IMPLEMENTATION

In this section, we give a description of the proposed
implementation of an ABP procedure, which copes with the
previously stated weaknesses:

e it can be applied to general memoryless channels
including channel without considering extraction of
graph substructures for node selection;

e it implements a pruning method of the branching tree
while introducing an objective stopping criterion;

e it naturally takes into account irregularity in the Tanner
graph of the code.

A. Node selection

The main idea of the proposed implementation is as fol-
lows: we do not rely on channel observations for the node
selection process. A different approach is preferred that relies
on the dynamic of the extrinsic LLR messages at variable
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Fig. 3. Probability of variable node error wrt. number of extrinsic oscillations.

nodes output. As observed by [9], [11], oscillations in the sign
of LLR messages (both a priori and extrinsic) greatly influence
the behavior of the decoding trajectories both in the waterfall
and in the error floor regions. In [11] [9], it is shown that
observed oscillating messages are closely related to erroneous
bits. An “Oscillations” based ordered statistic decoder (OSD)
- BP algorithm is proposed where the codeword bit sorting
step of the OSD algorithm is performed based on the number
of sign oscillations of the a posteriori LLR messages. Direct
application of this criterion to the ABP node selection step has
been proposed in [10].

In this paper, we propose to use the total oscillations of the
extrinsic messages for a given variable node as a reliability
information (cf. equation (1)). The rationale behind is as
follows: an highly oscillating variable node will prevent the
decoder to converge due to the high induced dynamic during
the decoding process [12], [9]. By fixing the value of those
nodes, we expect to mitigate their influence on the decoding
process. Counting the sign changes on a edge perspective
allow us to take into account the degree of connectivity of
a variable node. This property is illustrated in Fig. 3 where
the error probability of a node is plotted versus the total
number of extrinsic message oscillations when BP decoding
is applied to the Tanner code (155,64) at E,/No = 2 dB. As
we can see, the probability to be in error is relatively high
if the extrinsic messages have often oscillated. As illustrated
latter, a node selection based only on the oscillation of the
a posteriori messages is only efficient for regular codes as
it is considered in [10]. The proposed criterion takes into
account two properties such as the degree of connectivity of a
variable node and an information of reliability based on total
oscillations of extrinsic messages. So at each node & of the
decoding tree, if the decoding fails, we select the variable
node having the highest number of oscillations for the extrinsic
messages, according to Eqn. (1), among variable nodes that
have not been selected up to that step.

B. Testing schedule and decoding algorithm

For the decoding/testing schedule, we propose to use the
sequential schedule as proposed in the original algorithm, ie.
performing a depth-first search in the branching tree to benefit
from a memory complexity decrease of a depth-first search
compared to a breadth-first search. However, we can still
improve the efficiency of the depth-first search by considering
the two following observations:

e  Observation 1: if, at a given stage j, a valid codeword
is found, we can store it and prune all the paths at
higher stages that can be explored from that branch
before continuing our search. For example, consid-
ering that the depth-first search has converged to a
codeword after stage j = 1 associated with a saturated
observation value — Sy, of the variable node vg, All
nodes in the branching tree from node 2 to node 7 can
be ignored and the search continues with node 8 (see
Fig. 2).

e  Observation 2: If we know the minimum distance
dmin of the LDPC code (or a rough estimate), we can
apply a bounded distance stopping criterion. Indeed,
if at a given stage, the decoder converges to a valid
codeword while having corrected less than |dmin —
1]/2 codeword positions, then we can stop the search
and output the corresponding codeword.

Based on these observations, we apply the sequential decoding
using a list based decoding algorithm and applying both the
pruning heuristic and the proposed stopping criterion. More-
over, to enable an efficient exploration of the decoding tree,
a branch selection is performed. At each node £, if decoding
fails and a node is selected, the subsequent branch of the tree to
be explored is based on the opposite sign of the APP decision
message of the selected node. At the end of the augmented
decoding procedure, if the list of codewords contains more
than one candidate, a maximum likelihood decoding rule is
applied. Thus, an efficient modified version of the list decoding
ABP algorithm A from [2] can be implemented.

V. SIMULATION RESULTS

To illustrate the influence of the choice of a node selec-
tion based on a posteriori oscillations or based on extrinsic
messages, we investigate the performance of our modified
ABP algorithm with irregular codes. To do so, we consider
a moderate and high rate SeIRA codes [7] on the fast fading
Rayleigh channel with 50 initial BP decoding iterations and 10
additional iterations per additional stage. As we can see in Fig
4 there is a significant improvement of the performance in the
error floor region. It has not been noted in [10] since the code
that have been used are regular codes. The rational behind
is that taking into account the total oscillations of extrinsic
messages enables us to take into account the irregularity of
a variable node in the selection node step. We now consider
the (155,64) Tanner code [2] on the AWGN channel. In Fig.
5, we compare our oscillations based ABP (OABP) with the
original ABP algorithm A (full complexity version) and B
(greedy version) from [2] with Ly = 100 and additional
iterations at each step L = 10. As shown in the figure, OABP
performs almost the same than the ABP algorithm B while
being very close to the ABP algorithm A performance for 11
layers and operating close to the ML performances. For less
layers, OABP seems more efficient than the ABP algorithm B
from [2]. The main advantage of our approach in this case is
the low complexity induced by systematic reset of the decoder
messages and the use of a more simple selection node criterion
(no need for subgraph extraction). Another strength of the
proposed approach is its ability to cope with non “soft” channel
such as the BSC, which is not the case when using the node
selection as in [2]. In Fig. 6, we compare the performance
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Fig. 5. Comparison of ABP algorithm A and B from [2] for Tanner code.

of our OABP on the BSC with the classical BP decoder. It
can be also compared to the results of the FAID decoder with
decoder diversity (9239 FAID decoders) in [13]. As a proof
of concept, to show that ML performance can be achieved,
we set Ly = 1000 and additional number of iterations is also
set to L = 1000 with 11 layers. The curves shown in Fig.
6 are very close to the ML bound given in [13] but with a
lower complexity than the FAID decoder diversity using 9239
decoders. The same behavior is observed for the N = 2640
R = 1/2 Margulis code as shown in Fig. 6. The number of
iterations is set to 100 with 10 additional iterations.

VI. CONCLUSION

In this paper, we have proposed an efficient implementation
of the augmented belief propagation algorithm for LDPC codes
over general memoryless channels. Compared to the original
implementation, we have considered a different approach for
both steps. First, we have shown that a good choice for the
node selection is to track the dynamic of sign changes of the
extrinsic messages at the output of the variable nodes. This en-
ables us to consider indifferently general memoryless channels,
such as the BSC or the AWGN channel, while still taking into
account the influence of irregularity in the graph connectivity.
Then, we propose a simple yet efficient implementation of

Frame Ertor Rete.
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Fig. 6. OABP versus BP on the BSC channel for the Tanner code.

the augmented decoding procedure based on a pruning of
the branching tree used for the sequential decoding schedule
with decoder reinitialization. The proposed algorithm shows
near ML decoding performance while decreasing the overall
complexity of the original algorithm. Moreover complexity-
performance trade-off is an built-in feature for this kind of
algorithm. Future works will consider the application to more
general message passing algorithms.
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