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Abstract

We propose a new strategy for the reconstruction of curves in an image through an off-
the-grid variational framework, inspired by the reconstruction of spikes in the literature. We
introduce a new functional CROC on the space of 2-dimensional Radon measures with finite
divergence denoted V , and we establish several theoretical tools through the definition of a
certificate. Our main contribution lies in the sharp characterisation of the extreme points of the
unit ball of the V -norm: there are exactly measures supported on 1-rectifiable oriented simple
Lipschitz curves, thus enabling a precise characterisation of our functional minimisers and
further opening a promising avenue for the algorithmic implementation.

1 Introduction
This work focuses on the definition of a functional designed to recover curves in an off-the-grid
fashion, by considering the space of vector Radon measures with finite divergence, namely that
their divergence in the distributional sense is a Radon measure. Such choice of space is motivated
by multiple works [24, 23, 2] pertaining to Jordan curve or at least Radon measure absolutely
continuous with respect to H1. However, the literature nowadays does not offer a tractable
off-the-grid framework for open and closed curves.

Yet such situations arise in several domains such as biomedical imaging (blood vessels,
filaments structures), in magnetic imaging through observation of the magnetic field (Scanning
Magnetic Microscopy), etc. An example of curves encountered in a natural and practical setting
is presented in the Figure 1. In the following, we propose a method referred to as Atomic based
Method for Gridless (AMG), designed for curves reconstruction through off-the-grid variational
optimisation. To the best knowledge of the authors, this is the first attempt to recover curves in
an off-the-grid manner and one of the few papers to characterise the space of divergence vector
field.

1.1 Contributions
Our main contributions in this article are listed below:
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1.2 Paper outline 2

Figure 1: Curves arise genuinely in several biological structures, such as (on the left) blood
vessels [1] (on the right) Ostreopsis protein samples on the right.

• Propose a new space V for off-the-grid curve variational analysis, and qualify several of its
properties;

• Develop a new functional (Qα(y)) for curves reconstruction in an off-the-grid variational
context called CROC;

• Establish the main results, such as the certificate outlining, for theoretical off-the-grid
analysis and future numerical implementation;

• Characterise precisely the extreme points of the V -norm unit ball as 1-rectifiable simple ori-
ented Lipschitz curves, thereby describing the structure of the minimisers of our functional
and thus proving the interest of AMG.

1.2 Paper outline
The paper is organized as follows. We present the main definitions and tools in section 2, we
propose a functional in 3, our main theorem lies in 4 while the conclusions and the outlook
follow in 5.

1.3 Notations
In the following, X denotes the ambient space where the positions of the curves/spikes live.
We suppose X is a compact subset of Rd such that its interior X̊ is a non-empty submanifold of
dimension d ∈ N∗.

Note that this paper makes extensive use of the notion of measure, through both functional and
set definition: remember that thanks to Riesz-Markov representation theorem and X compact,
these two notions are strictly equivalent. A comprehensive characterisation of measure from a
functional standpoint is given in the 2. The interested reader can explore the set point-of-view
in several celebrated work such as [21]. Let ρ be a measure, ρ A denotes the restriction of the

measure ρ to the set A, namely for all measurable sets B: ρ A(B) def.
= ρ(A ∩ B). The support of

ρ denoted by spt(ρ) is the smallest measurable set B ⊂ X such that ρ(X\B) = 0. Let us denote
by H1 the 1-dimensional Hausdorff measure (see [13] for a definition). We say that E ⊂ Rd is
p-rectifiable if it is the countable union of Lipschitz function images from Rp to Rd, up to a set of
null H p-measure [18].
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2 Off-the-grid framework
This section is divided into two parts: a recall of the classic off-the-grid framework for spike
reconstruction, and the new notions needed for curve reconstruction.

2.1 Classical scalar off-the-grid framework
We recall some definitions and handy properties stemming from the off-the-grid literature, the
interested reader may take a deeper look in the review [17] for more insights. In this case, the
aim is to reconstruct spikes, i.e. dots localised in the space X with some amplitude information
encoded. This problem is encountered in many fields such as astronomy for stars imaging
enhancement, fluorescence microscopy where one locates dyes, contrast enhanced ultrasound
when one performs the tracking of small air bubbles, etc.

2.1.1 Quick digest of measure theory

A spike, not constrained to a finite set of positions, can be accurately modelled by a Dirac measure.
Loosely speaking, this object allows us to encode both amplitude and spatial information in
the same object. However, since the Dirac measure is not a classic continuous function, one
needs to consider a more general class of maps called the Radon measures. From a distributional
standpoint, it is a subset of the distribution space D ′(X ); the latter being the space of linear
forms over the space of test functions C ∞

0 (X ) i.e. smooth functions (continuous derivatives of all
orders) compactly supported. This functional approach1 is based on the definition of a measure
as a linear form on a function space, namely:

Definition 1 (Evanescent continuous function on X ). We call C0 (X ,Y) the set of evanescent
continuous functions, namely all the continuous map ψ : X → Y such that :

∀ε > 0, ∃K ⊂ X compact, sup
x∈X\K

∥ψ(x)∥Y ≤ ε.

We write C0 (X ) when Y = R. Then we can introduce:

Definition 2 (Set of Radon measures). We denote by M (X ) the set of real signed Radon measures
on X of finite masses. It is the topological dual of C0 (X ) with supremum norm ∥·∥∞,X by the Riesz-
Markov representation theorem [13]. Thus, a Radon measure m is a continuous linear form on functions
f ∈ C0 (X ), with the duality bracket for m ∈ M (X ) denoted by ⟨ f , m⟩M =

∫
X f dm.

A ’signed’ measure entails that the quantity ⟨ f , m⟩M can be negative, further generalising
the notion of probability (positive) measure. While m is a measure, also remember that it can be
evaluated on all measurable sets A ⊂ X through:

|m| (A)
def.
= sup

(∫
A

f dm, f ∈ C0(A), ∥ f ∥∞,X ≤ 1
)

.

1One can then define equivalently the space of Radon measures, either by a set-related approach or by functional
analysis approach (thanks to Riesz–Markov theorem). In the more set-related [21] insight, a measure is an object which
takes sets as an input. A Borel measure is a measure defined on all open sets of X , and a Radon measure is a Borel measure
such that it is finite on all compact sets of X (by an isomorphism). The functional and the set point-of-views are different
approaches to describe the same object.
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Classic examples of Radon measures are the Lebesgue measure, the celebrated Dirac measure
δz centred in z ∈ X namely for all f ∈ C0 (X ) one has ⟨ f , δz⟩M = f (z), etc. Eventually, since
C0 (X ) is a Banach space, M (X ) is complete [6] if endowed with its dual norm called the total
variation (TV) norm, defined for m ∈ M (X ) by:

∥m∥TV
def.
= |m|(X ) = sup

(∫
X

f dm, f ∈ C0 (X ) , ∥ f ∥∞,X ≤ 1
)

.

2.1.2 Observation model

Let us introduce H the Hilbert space containing the acquired data. For the instance of images we

use a finite dimensional space of acquisition H = Hn
def.
= Rn, for n ∈ N. Let m ∈ M (X ) be a

source measure, we call acquisition y ∈ H the result of the forward/acquisition map Φ : M (X ) → H
evaluated on m, with measurement kernel φ : X → H continuous and bounded [8, 10]:

y def.
= Φm =

∫
X

φ(x)dm(x). (1)

Also note that the forward operator Φ incorporates a sampling operation, hence H = Hn. In
the following, we impose φ ∈ C 2(X ,H). Let us also define the adjoint operator of Φ : M (X ) →
H in the weak-∗ topology, namely the map Φ∗ : H → C0 (X ), defined for all x ∈ X and p ∈ H by
Φ∗(p)(x) = ⟨p, φ(x)⟩H. The choice of φ and H is dictated by the physical process of acquisition,
with generic measurement kernels such as convolution, Fourier, Laplace, etc [17].

2.1.3 An off-the-grid functional: the BLASSO

Consider the source measure ma0,x0
def.
= ∑N

i=1 a0,iδx0,i with amplitudes a0 ∈ RN and positions

x0 ∈ X N , the sparse spike problem aims to recover this measure from the acquisition y def.
=

Φma0,x0 + w where w ∈ H is an additive noise. In order to tackle this inverse problem, let us
introduce the following convex functional called BLASSO [6, 9], standing for Beurling-LASSO:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2
∥y − Φ(m)∥2

H + λ|m|(X ) (Pλ(y))

where λ > 0 is the regularisation parameter accounting for the trade-off between fidelity and
sparsity of the reconstruction. The BLASSO in a noiseless setting writes down:

argmin
Φm=y0

|m|(X ) with y0 = Φma0,x0 . (P0(y0))

BLASSO is genuinely linked with its discrete counterpart, the LASSO [11]: one can formally
see BLASSO as the functional limit of LASSO on a finer and finer grid. If the LASSO problem
exhibits existence and uniqueness of the solution, is it extendable to its off-the-grid counterpart?
Foremost, let us observe that:

• m 7→ |m|(X ) is lower semi-continuous w.r.t. the weak-∗ convergence;

• Φ is continuous from the weak-∗ topology of M (X ) to the H weak topology.
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Then thanks to convex analysis results, one can establish the existence of solutions to (Pλ(y))
as proved in [6]. The difficulties also lie in the question of uniqueness of the solution and correct
support recovery: in order to tackle these concerns, let us introduce several notions of convex
analysis in the following subsection.

2.1.4 Dual problems and certificates

The BLASSO problem (Pλ(y)) above is convex, thus one can define its dual problem [6, 17]
which writes down for p ∈ H:

argmax
∥ϕ∗p∥∞,X≤1

⟨y, p⟩H − λ

2
∥p∥2

H (Dλ(y))

Strong duality between (Pλ(y)) and (Dλ(y)) is proved in [6]. Hence, any solution mλ of
(Pλ(y)) is linked [11] to the unique solution pλ of (Dλ(y)) by the extremality conditions:

 Φ∗pλ ∈ ∂|mλ|(X ),

−pλ =
1
λ
(Φmλ − y)

(2)

where ∂|·|(X ) is the sub-differential of the TV norm. Indeed and similarly to the ℓ1 norm, the
total variation is not differentiable but lower semi-continuous w.r.t. the weak-∗-topology. Thus,
we use its sub-differential [11] which identifies to, for m ∈ M (X ):

∂|m|(X ) =

{
η ∈ C0 (X ) ; ∥η∥∞,X ≤ 1 and

∫
X

η dm = |m|(X )

}
. (3)

Elements of this subgradient are called certificate: then thanks to strong duality, let us define
peculiar certificates named the dual certificates [7].

Definition 3. We call ηλ
def.
= Φ∗pλ a dual certificate of mλ, where pλ satisfies (2).

ηλ is a certificate since Φ∗pλ ∈ ∂|mλ|(X ), it is called dual since it verifies the second extremal-
ity (2) condition: indeed it is defined by the dual solution pλ. Loosely speaking, a dual certificate
ηλ is associated to a measure mλ and it certifies that the measure mλ is a minimum of the BLASSO.

If there exist for instance solutions of (Pλ(y)) of the form mλ
def.
= ∑N

i=1 aiδxi , the support satisfies
[11] for all 0 ≤ i ≤ N : |ηλ|(xi) = 1. The interested reader can take a glance at [11] for uniqueness
and support recovery guarantees.

We now extend this classical scalar off-the-grid formulation to the vector case, and present
the space of divergence vector field.

2.2 The space of divergence vector field/charges
Consider the space of vector Radon measures:

Definition 4. We define the set of vector Radon measures M (X )2 as the topological dual of the space

of continuous vector functions C0(X )2 def.
= C 0(X , R2). The properties of the scalar case hold for the

vector one, indeed M (X )2 has a natural TV-norm denoted by ∥·∥TV2 , a duality bracket ⟨·, ·⟩M2 , etc.



2.2 The space of divergence vector field/charges 6

We only carry out d = 2, since some (wild) pathological cases appear when d > 2, see [24,
Section 1.3]. Let us denote by div the divergence operator, which ought to be understood in the
distributional sense. Indeed, for all m ∈ M (X )2:

∀ξ ∈ C ∞
0 (X ), ⟨div m, ξ⟩D ′(X )×C ∞

0 (X ) = −⟨m,∇ξ⟩M2 .

We say that a measure m is of finite divergence if div(m) ∈ M (X ). Let us now introduce the
following useful space [24, 23].

Definition 5. We denote by V the space of divergence vector fields or charges, namely the space of
vector Radon measures with finite divergence:

V def.
=

{
m ∈ M (X )2, div(m) ∈ M (X )

}
.

It is a Banach space with respect to the norm ∥·∥V
def.
= ∥·∥TV2 + ∥div(·)∥TV (see Appendix A). A charge

with null divergence is called a solenoid.

Obviously this topology is not adequate for convergence statement, indeed it does not provide
any property for bounded set or sequence. Therefore, the idea is to choose a topology with fewer
open sets but more compact sets, thus enabling compactness properties:

Definition 6 (Weak-∗ convergence). V can be endowed with the weak-∗ topology of the distributions;
we say that a sequence of charges (mn)n∈N weakly-∗ converges to m ∈ V , denoted by mn

∗
⇀ m, if:

∀g ∈ C ∞
0 (X ),

∫
X

g dmn −−−−→
n→+∞

∫
X

g dm.

Note that we could equivalently define the weak-∗ convergence with g ∈ C0 (X ), since
C ∞

0 (X ) is dense in C0 (X ). While we have investigated several algebraic facts concerning V , let
us precise which maps live in this space.

Claim 1. The vector Dirac measure δ = (δ, δ) does not belong to V , an interesting observation since
Dirac measures are extreme points of the TV-norm unit ball.

Proof. Indeed, let ξ ∈ C ∞
0 (X ) such that ∂1ξ(0) = ∂2ξ(0) = 1 and the sequence:

∀n ∈ N∗, ∀x ∈ X , ξn(x) =
1
n

ξ(xn).

Then, by the dominated convergence theorem, for all measure µ ∈ M (X ) one yield
limn→∞

∫
X ξn dµ = 0. However, for all n ∈ N∗ one has:∫

X
ξn d(div δ) = −

∫
X
∇ξn dδ = −∂1ξ(0)− ∂2ξ(0) = −2

thus reaching a contradiction.

Here is now an example of an element of V , namely the curve measure i.e. a measure supported
on a curve and defined through integration:
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Definition 7 (Curve measure). Let γ : [0, 1] → X a parametrised 1-rectifiable Lipschitz curve, we say
that µγ ∈ V is a measure supported on the curve γ if:

∀g ∈ C0(X )2, ⟨µγ , g⟩M2
def.
=

∫ 1

0
g(γ(t)) · γ̇(t)dt.

We denote by Γ def.
= γ([0, 1]) the support of the curve.

Loosely speaking, the braket w.r.t. to a curve measure is the circulation [24] of a test vector
field function along the curve γ. The rectifiability hypothesis can be understood as a finite length
enforcement, indeed it is equivalent to H1(Γ) < +∞. Please note that for the sake of conciseness,
we indifferently refer to the curve measure µγ , or to the curve γ the measure is supported on.
Let us introduce some properties that a curve might enjoy:

Definition 8 (Several characterisation of curves). A curve is called simple if γ is an injective mapping.
A curve is closed if γ(0) = γ(1), it is called a loop if it is simple and closed (it is then homotopic to the
unit circle of R2).

By Sard’s theorem for Lipschitz function, one can show that µγ is independent of the curve
parametrisation [2]; thus we assume that γ has a constant speed parametrisation (unless stated
otherwise). Let us precise that a curve measure can either be seen through a rather functional
standpoint (in the latter section), or through a set angle [2]. Indeed, for every measurable set
B ⊂ X , one has:

µγ(B) =
∫

Γ∩B

 ∑
t∈γ−1(x)

γ̇(t)

 d H1(x) (4)

Eventually, here is the simple expression of the divergence of a curve.

Proposition 1 (Curve divergence). Let µγ be a measure supported on a curve γ, then div(µγ) =
δγ(0) − δγ(1). In particular, div(µγ) = 0 if γ is a closed curve.

Proof. Let ξ ∈ C ∞
0 (X ), then:

⟨div µγ , ξ⟩
D ′(X )×C ∞

0 (X )
= − ⟨µγ ,∇ξ⟩M

=
∫ 1

0
∇ξ(γ(t)) · γ̇(t)dt

=
∫ 1

0

d
dt

(ξ(γ(t)))

= ξ(γ(0))− ξ(γ(1))

= ⟨δγ(0) − δγ(1), ξ⟩
D ′(X )×C ∞

0 (X )
.

Thus div(µγ) = δγ(0) − δγ(1) in the sense of distributions.

Remark (A further insight). A natural question would be: ’is a measure supported on a curve
always defined through integration, such as Definition (7)?’. This concern arises also in the De Rham
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theory, where one considers a generalisation of measure supported on some submanifold of X called a
rectifiable current: the total variation of a charge is the mass of the associated current, and its divergence
amounts to the current manifold boundary [24]. In the same fashion, does a rectifiable current admit a
definition by integration? Since we consider charges, so currents whose boundaries are still rectifiable
currents, we bring more regularity and in some sense information to the considered measure: the current
associated to a charge is then necessarily an integrable rectifiable current [18]. Shorthand: a charge of V
supported on a curve is necessarily representable (up to a multiplicative factor) through integration, such
as Definition 7.

3 A variational problem on the space of charges
Similarly to the scalar case, one would want to define a BLASSO on V . Let α > 0, we present the
following functional we coined CROC (standing for Curves Represented On Charges):

argmin
m∈V

Tα(m)
def.
=

1
2
∥y − Φ m∥2

H + α∥m∥V . (Qα(y))

Φ : V → H is linear and maps the divergence vector field to the acquisition space H. We

recall that ∥m∥V
def.
= ∥m∥TV2 + ∥div m∥TV, the several terms of our energy may be interpreted in

the following sense:

• 1
2∥y − Φ m∥2

H is the data term;

• ∥m∥TV2 amounts to the length of the curve, indeed it is valued H1(Γ) with Γ the image
of the map γ. It may discard high frequency oscillating behaviour and smooth over the
curvature of γ;

• ∥div m∥TV is the curve’s counting term, thus enforcing sparsity of the solution.

A convenient improvement for (Qα(y)) would be the penalisation of curves length and curves
count with different weights, such as α, β > 0 and the regularisation α∥m∥TV2 + β∥div m∥TV.
This enhancement is out of the scope of this article, but it may be handy for future numerical
implementation.

Remark. Authors believe that there is a connection between the Beckman’s problem [22, Section 4.2] in
optimal transport theory and the latter optimisation problem. Indeed, the Beckman’s problem as well is
formulated over the space of Radon measures with a constraint on the divergence. Its solution reads as a
transport map from a measure to another: in the case of scalar Dirac measures transport, the transport
map is precisely a vector measure supported on a curve.

Theorem 1. The problem (Qα(y)) admits solutions.

Proof. The functional Tα is proper and coercive on V . Let (un)n∈N be a minimising sequence
of Tα. Since Tα is coercive, (un)n∈N is bounded in V so it converges in the weak-∗ topology to
some u ∈ V , up to a subsequence. Observe also that:

• ∥·∥V is lower semi-continuous w.r.t. the weak-∗ convergence;

• Φ is continuous from M (X )2 weak-∗ topology to H weak topology.
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Hence, by the direct method of the calculus of variations, it is clear that u is a minimiser of Tα,
thus proving the existence of a minimiser.

Remark. The problem (Qα(y)) enjoys uniqueness if Φ is injective, since it compels Tα strictly convex.
Note that this constitutes a rather strong hypothesis, hardly fulfilled in applications, such as for instance
super-resolution.

We have then proved the existence of a minimiser. Also consider:

Theorem 2. Let m be a minimiser of (Qα(y)). There exists a dual problem with minimiser q∗ ∈ C0 (X )
optimal, and extremality conditions read:{

−∇q∗ ∈ ∂∥m∥TV2 + 1
2∥y − Φ m∥2

H
−q∗ ∈ ∂∥div m∥TV.

(5)

Proof. Consider the Ekeland-Temam duality from [12, Remark 4.2], with a little caveat: the
Banach space V has to be reflexive, which is clearly not the case here. However, the reflexive
hypothesis is only needed for the sake of the existence proof. Since we already proved the
solution existence, this reflexivity hypothesis is not required in our case. Back to the Remark 4.2
of [12] stating, for Λ : V → Y linear, F : V → R and G : Y → R convex, that the primal problem:

inf
u∈V

F(u) + G(Λu)

has a dual problem which writes down:

sup
p∗∈Y∗

−F∗(Λ∗p∗)− G∗(−p∗). (6)

If m and p∗ are respectively solutions of the primal and dual problem, the extremality
conditions are:

{
Λ∗p∗ ∈ ∂F(m)

−p∗ ∈ ∂G(Λm).

Here we set the map:

Λ : V −→ M (X )
u 7−→ div u

and its dual

Λ∗ : C0 (X ) −→ V ∗

p∗ 7−→ −∇p∗.

We also set for u ∈ V , F(u) def.
= ∥u∥TV2 + 1

2∥y − Φ u∥2
H, and G(q) def.

= ∥q∥TV for q ∈ M (X ).
Then the dual problem writes down:
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argmax
q∗∈C0(X )

−F∗(−∇q∗)− G∗(−q∗)

Extremality conditions then boils down to q∗ solution of the dual problem (6):{
Λ∗q∗ ∈ ∂F(m)
−q∗ ∈ ∂G(Λm).

In the off-the-grid literature [11, 6, 10], the dual problem (Dλ(y)) of the BLASSO (Pλ(y)) is
useful to establish both the existence of the solutions and to characterise the so-called certificate.
The latter is crucial for the sake of numerical implementation, since it is involved in both measure
support estimation step and stopping condition of state-of-the-art greedy algorithms [6, 10].

Corollary 1. Let m be a minimiser of (Qα(y)). Then, there exist certificates η1 ∈ ∂∥m∥TV2 and
η2 ∈ ∂∥µ∥TV

∣∣
µ=div m with η1, η2 ∈ C0(X )2 such that:

⟨m, η1 + η2⟩M2 = ∥m∥V .

Proof. Let us investigate the two optimality conditions by probing a bit more the extremality
conditions:

• let us consider the former optimality condition −∇q∗ ∈ ∂F(m). In this case the sub-
differential of the sum is the sum of the sub-differential, meaning:

∂F(m) = ∂∥y − Φ(·)∥2
H(m) + ∂∥·∥TV2(m)

by [12]. We reach, using the closed form of the least square norm:

∂∥y − Φ(·)∥2
H(m) = {−Φ∗(y − Φ m)}

Then : {
−∇q∗ = η1 − Φ∗(y − Φ m)
η1 ∈ ∂∥m∥TV2 .

The latter η1 ∈ ∂∥m∥TV2 , with the result in equation (3) adapted to the vector case, amounts
to:

{
∥η1∥∞,X ≤ 1
∥m∥TV2 = ⟨m, η1⟩M2 .



11

• let us consider the latter optimality condition −q∗ ∈ ∂G(div m). We note ν
def.
= div m. Then,

as stated before in equation (3) and since G def.
= ∥·∥TV:

−q∗ ∈ ∂G(ν) ⇐⇒


q∗ ∈ C0 (X )
∥q∗∥∞,X ≤ 1
⟨−q∗, ν⟩M = ∥ν∥TV.

But, while denoting η2
def.
= ∇q∗:

∥div m∥TV = ⟨−q∗, div m⟩M = ⟨∇q∗, m⟩M2 = ⟨η2, m⟩M2 .

Finally, if we merge these two results, we yield:

∥m∥TV2 + ∥div m∥TV2 = ⟨m, η1⟩M2 + ⟨η2, m⟩M2

= ⟨m, η1 + η2⟩M2 ,

thus ensuring ∥m∥V = ⟨m, η1 + η2⟩M2 .

We have then specified the optimality conditions and defined the certificate ηα = η1 +
η2 ∈ C0(X )2. This vector map has several applications from both theoretical and numerical
standpoint: indeed, as one works out an algorithm based on the Frank-Wolfe algorithm [14], one
needs for instance a stopping condition based on the criterion ∥ηα∥∞,X ≤ 1.

However, we still lack a more precise description of (Qα(y)) minimisers. To tackle this issue,
let us introduce the following representation theorem.

We strongly advise the reader to notice that the choice of F and G in the further section will
be different. Indeed, the choice in the latter section was only made for the sake of easing the
dual problem computation. Let n ∈ N∗, Hn be the finite dimensional n space of acquisitions,
G : Hn → R an arbitrary data fitting term; suppose that Λ : V → Hn is linear and F : V → R is
convex. Consider the general setting for m ∈ V :

J(m)
def.
= G(Λm) + F(m) (7)

The unit ball of F is denoted BF
def.
= {u ∈ V , F(u) ≤ 1} of the regulariser F. The following

theorem, due to [4, 5], establish (up to some hypothesis) the link between the minimisers of the
functional J in (7) and the extreme points (see 4 and Definition 9) of BF denoted Ext(BF):

Theorem 3 (Representer theorem). If F is semi-norm, there exists u ∈ V , a minimiser of (7) with the
representation:

u =
p

∑
i=1

αiui

where p ≤ dimHn, ui ∈ Ext(BF) and αi > 0 with ∑
p
i=1 αi = F(u).

It amounts to the characterisation of minimisers’ structural properties, without actually need-
ing to solve the problem [4]. Moreover, the description of the extreme points of the regulariser’s
unit ball is fundamental for the numerical implementation: indeed, the Frank-Wolfe algorithm
recovers a solution by iteratively adding F unit ball extreme points to the reconstructed measure.
In the following, it rather makes sense to consider F : m 7→ ∥m∥V , and obviously the data term
G : p 7→ ∥y − p∥2

H and Λ = Φ.
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4 Extreme points of the V -norm’s unit ball are curves
First, we recall some definitions and convenient results concerning the extreme points.

Definition 9. Let X be a topological vector space and K ⊂ X. An extreme point x of K is a point such
that ∀y, z ∈ K:

∀λ ∈ (0, 1), x = λy + (1 − λ)z =⇒ x = y = z

The set of extreme points of K is denoted by Ext K.

We further introduce the celebrated Krein-Milman theorem, stating that if K convex and
compact, the closed convex hull of the set of the extreme points of K coincides with K.

Theorem 4 (Krein-Milman theorem). If K ⊂ X is a non-empty, compact and convex set, then
K = co(Ext(K)).

Also note the following refinement of Krein-Milman, stating the decomposition of any point
of the space onto a ’combination’ of extreme points, through a concept [19] called the Choquet
integral:

Theorem 5 (Choquet theorem). Let X be a metrisable topological vector space and K a non-empty,
convex and compact subset. Then for any x ∈ K there exists a Borel measure ρ on X, concentrated on
Ext K and satisfying:

x =
∫

Ext K
y dρ(y)

namely for every ω : X → R linear and continuous, ω(x) =
∫

Ext K ω(y)dρ(y)

These notions lie in a very general framework, let us precise some theoretical tools pertaining
to the space of charges for our main theorem. Consider the following [24]:

Definition 10. Let T ∈ V and J ⊂ V , we say that T decomposes into charges lying in J if there exists
a finite Borel measure ρ on J such that:

T =
∫

J
R dρ(R)

∥T∥TV2 =
∫

J
∥R∥TV2 dρ(R)

We say that T completely decomposes into charges lying in J if the latter conditions hold and
moreover if:

∥div T∥TV =
∫

J
∥div R∥TV dρ(R)

In our case we can use the following sets:
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Definition 11 (Curve measures set). We denote by S the space of curve measures, supported on either
open or closed simple ones, endowed with weak-∗ topology:

S =

 µγ∥∥∥µγ

∥∥∥
V

, γ is a 1-rectifiable simple oriented Lipschitz curve

 .

It is a metric (non-complete) space for the weak-∗ topology. We also denote by Sloop the space of curve
measures, supported on loops:

Sloop =

 µγ∥∥∥µγ

∥∥∥
V

, γ is a 1-rectifiable simple closed oriented Lipschitz curve

 .

Eventually we note Sopen
def.
= S\Sloop the space of open curves.

We now recall the following fundamental results of [24, 16]. Remember that a solenoid is a
charge of V with null divergence:

Theorem 6 (Solenoid decomposition theorem [16, Remark 1.17]). Any solenoid T ∈ V can be
decomposed into elements of Sloop.

Let us stress out that this latter theorem only holds in the d = 2 case; indeed there exists
several counterexamples for d > 2, see [24] for various illustrations. The following theorem
holds in any dimension:

Theorem 7 (Smirnov’s Theorem C [24]). Any charge T ∈ V is a sum of two charges P and Q such that
div P = 0 (Theorem (6) can then be applied) and Q is completely decomposable into measures supported
on simple oriented curves.

We now present the main result of this paper, namely the theorem establishing a link between
curve measures and extreme points of the unit ball of the regulariser (i.e. the V -norm).

Theorem 8 (Main result). Let us denote by B1
V

def.
= {m ∈ V , ∥m∥V ≤ 1} the unit ball of the norm of

V , weakly-∗ compact. Then one has:

Ext(B1
V ) = S =

 µγ∥∥∥µγ

∥∥∥
V

, γ is a 1-rectifiable simple oriented Lipschitz curve

 .

Proof. We start by proving

Ext(B1
V ) ⊃

 µγ∥∥∥µγ

∥∥∥
V

, γ is a 1-rectifiable simple oriented Lipschitz curve

 .

Let γ : [0, 1] → X be a Lipschitz 1-rectifiable simple oriented curve of length ℓ > 0, with
image Γ = γ([0, 1]), and µγ the measure supported on this curve. Note that it is either an open
curve or a closed curve. By contradiction, let us suppose that there exists u1, u2 ∈ V such that
∥u1∥V ≤ 1, ∥u2∥V ≤ 1 and for λ ∈ (0, 1):
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µγ∥∥∥µγ

∥∥∥
V

= λu1 + (1 − λ)u2. (8)

For every A ⊂ X measurable, while denoting |·|V
def.
= |·|(A) + |div ·|(A), one has:

1∥∥∥µγ

∥∥∥
V

∣∣∣µγ

∣∣∣
V
(A) = λ|u1|V(A) + (1 − λ)|u2|V(A). (9)

Indeed, following a proof from [5, Theorem 4.7], if there exists A ⊂ X such that λ|u1|V(A) +

(1 − λ)|u2|V(A) >
|µγ |V(A)

∥µγ∥V
then we get

1 =

∣∣∣µγ

∣∣∣
V
(X )∥∥∥µγ

∥∥∥
V

=

∣∣∣µγ

∣∣∣
V
(A)∥∥∥µγ

∥∥∥
V

+

∣∣∣µγ

∣∣∣
V
(Ac)∥∥∥µγ

∥∥∥
V

< λ|u1|V(A) + (1 − λ)|u2|V(A) +

∣∣∣µγ

∣∣∣
V
(Ac)∥∥∥µγ

∥∥∥
V

≤ λ|u1|V(A) + (1 − λ)|u2|V(A) + λ|u1|V(Ac) + (1 − λ)|u2|V(Ac)

≤ 1.

So we reach 1 < 1 which yields a contradiction, then:

λ|u1|V(A) + (1 − λ)|u2|V(A) ≤ 1∥∥∥µγ

∥∥∥
V

∣∣∣µγ

∣∣∣
V
(A).

Since we always have the opposite inequality, we get (9). We further deduce from equation
(9) that:

∥u1∥V = ∥u2∥V = 1. (10)

Now let A ⊂ X be a Borel set such that A ∩ Γ = ∅, then from (9) we deduce:

0 = λ|u1|V (A) + (1 − λ)|u2|V (A) =⇒ u1(A) = u2(A) = 0.

Let i ∈ {1, 2}, then if Ai = spt(ui) it follows Ai ∩ Γ ̸= ∅.
Let us study the case of partly disjoint support between ui and µγ . Consider, as illustrated in

the Figure 2:



15

Figure 2: Illustration of AΓ
i

def.
= Ai ∩ Γ and its counterpart Ac

i
def.
= Ai\AΓ

i .

AΓ
i = Ai ∩ Γ

Ac
i = Ai\AΓ

i .

Suppose that Ac
i ̸= ∅. Let A = Ac

i in (9), then:

0 = λ∥u1∥V (Ac
i ) + (1 − λ)∥u2∥V (Ac

i ).

Then in the case i = 1,

0 = λ ∥u1∥V (Ac
i )︸ ︷︷ ︸

>0

+(1 − λ) ∥u2∥V (Ac
i )︸ ︷︷ ︸

≥0

thus reaching a contradiction. Exactly the same applies to i = 2, then we deduce that Ai ⊂ Γ,
i.e. spt(ui) ⊂ Γ. Let us now study the cases where spt(ui) ⊊ Γ. We give in the Figure 3 the
several cases encountered in the following proof.

Let us now discuss each case:

(a) Suppose that A1 ∪ A2 ⊊ Γ; and A1, A2 are disjoint, i.e. A1 ∩ A2 = ∅. Set A = Γ\(A1 ∪ A2)
and by (9):

0 <

∥∥∥∥∥∥ µγ∥∥∥µγ

∥∥∥
V

∥∥∥∥∥∥
V

(A) = 0 + 0

thus reaching a contradiction. Then, A1 ∩ A2 ̸= ∅. Consider now the cases where A1 and
A2 are not disjoint.

(b) Overlap between A1 and A2, but A1 ∪ A2 ⊊ Γ. As before, let us choose A = Γ\(A1 ∪ A2).
Then the same contradiction is yielded:
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A

B

C A

B

D

C

(a)

(c)

(b)

(d)

Figure 3: (a) A1 ∪ A2 ̸= Γ and no overlap (b) A1 ∪ A2 ̸= Γ and overlap (c) A1 ∪ A2 = Γ and no
overlap (d) A1 ∪ A2 = Γ and overlap.

0 <

∥∥∥∥∥∥ µγ∥∥∥µγ

∥∥∥
V

∥∥∥∥∥∥
V

(A) = 0 + 0.

It follows that A1 ∪ A2 = Γ.

(c) No overlap between A1 and A2 and A1 ∪ A2 = Γ. Suppose that γ is an open curve, let us
recall that

∥∥∥µγ

∥∥∥
V
= ℓ(γ) + 2. Now set A = A1 then A = A2 to reach:

∣∣∣∣∣∣ µγ∥∥∥µγ

∥∥∥
V

∣∣∣∣∣∣
V

(A1) =
H1(A1) + 2

ℓ+ 2
= λ|u1|V (A1) = λ

∣∣∣∣∣∣ µγ∥∥∥µγ

∥∥∥
V

∣∣∣∣∣∣
V

(A2) =
H1(A2) + 2

ℓ+ 2
= (1 − λ)|u2|V (A2) = 1 − λ.

Thus,
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λ + 1 − λ =
(H1(A1) + 2)

ℓ+ 2
+

H1(A2) + 2
ℓ+ 2

=⇒ 1 =
H1(A1) +H1(A2) + 4

ℓ+ 2
=⇒ ℓ = H1(A1) +H1(A2)︸ ︷︷ ︸

= ℓ

+2.

Thus yielding a contradiction. The same apply for u1, u2 closed or u1 open and u2 closed.
Suppose now that µγ is closed. One can easily conclude if one of the curves is open, or if
both are open, thanks to (9). Suppose now that u1 and u2 are closed. Then we conclude,
since µγ is simple, thus not allowing self-intersection and thus yielding a contradiction.

(d) Overlap between A1 and A2 and A1 ∪ A2 = Γ. Let Γ1
def.
=

⌢
AC, Γ2

def.
=

⌢
CD respectively be

the support of u1, u2; for A, B, C and D ∈ X . Let us evaluate (9) at Γ1 then Γ2 to get:

∣∣∣∣∣∣ µγ∥∥∥µγ

∥∥∥
V

∣∣∣∣∣∣
V

(Γ1) = λ|u1|V (Γ1) + 0 < λ|u1|V (X ) = λ

∣∣∣∣∣∣ µγ∥∥∥µγ

∥∥∥
V

∣∣∣∣∣∣
V

(Γ2) = (1 − λ)|u2|V (Γ2) + 0 < (1 − λ)|u2|V (X ) = 1 − λ

and by summing up we reach 1 = λ|u1|V (Γ1) + (1 − λ)|u2|V (Γ2) < 1, thus reaching a
contradiction.

Since all these cases are not possible, one has spt(u1) = spt(u2) = Γ. One would now prove
that u1 = u2 = µγ , quite a non-trivial step: indeed think of u1 = 2µγ ; while the support is
common, one clearly has u1 ̸= µγ . Consider u1 and u2, each with the same support as µγ .

Suppose that either u1 ̸= µγ

∥µγ∥V
or u2 ̸= µγ

∥µγ∥V
. Then, consider both cases:

• Let us suppose that µγ ∈ Sopen. Since spt(ui) = Γ, one has the decomposition of ui

through simple open curves, namely ui =
∫
Sopen

R dρi(R) with ρi zeroing out if evaluated
on curves with support not included in Γ. Then look out on the following, deduced by
linearity of the divergence:

∥div(λu1 + (1 − λ)u2)∥TV =
∫
Sopen

∥div R∥TV (λdρ1(R) + (1 − λ)dρ2(R)). (11)

Since R ∈ Sopen, we deduce ∥div R∥TV = 2. Then one has by application of divergence on
both sides of equation (8):

2
2 + ℓ

= 2
∫
Sopen

(λdρ1 + (1 − λ)dρ2)(R) = 2



18

since ρi are probability measures2, thus yielding a contradiction.

• Let us suppose that µγ ∈ Sloop. In the same fashion, (11) boils down to:

0 = 2 ×
∫
Sloop

(λ dρ1(R) + (1 − λ)dρ2(R))

+ 0 ×
∫
Sopen

(λ dρ1(R) + (1 − λ)dρ2(R)) > 0

since Sopen is not a ρ1-negligible (resp. ρ2-negligible) set of V , thus reaching a contradiction.

It ensues that λ = 0 or λ = 1, then yielding u1 = u2 =
µγ

∥µγ∥V
, and thus concluding this part.

We now prove the converse, namely:

Ext(B1
V ) ⊂

 µγ∥∥∥µγ

∥∥∥
V

, γ is a 1-rectifiable simple oriented Lipschitz curve

 .

Let T ∈ Ext(B1
V ) be an extreme point of the unit ball norm of V , one has ∥T∥V = 1 and there

exists3 a finite Borel measure ρ such that

T =
∫
S

R dρ(R)

by Smirnov’s decomposition in Theorem (7) [24, 16, 3]. Let us observe that:

∥T∥V =
∫
S
∥R∥V︸ ︷︷ ︸
=1

dρ(R) = ρ(S).

Since T ∈ Ext(B1
V ), one has ∥T∥V = 1 thus reaching ρ(S) = 1. If ρ is an atomic measure,

then it is supported on a singleton of S [15, Theorem 2] and the proof would be achieved: there
would exist a 1-rectifiable simple Lipschitz curve γ such that

µγ

∥µγ∥V
∈ S and ρ = δµγ /∥µγ∥V

hence T =
µγ

∥µγ∥V
. By contradiction, let us suppose that ρ is a non-atomic measure. Then, there

exists a measurable set A ⊂ S such that 0 < ρ(A) < 1 [20, Proposition A.1] and:

ρ = |ρ| (A)

(
1

|ρ| (A)
ρ A

)
+ |ρ| (Ac)

(
1

|ρ| (Ac)
ρ Ac

)
.

We recall that ρ A denotes the restriction of the measure ρ to the set A, namely for all

measurable set B: ρ A(B) def.
= ρ(A ∩ B). Hence,

2Without loss of generality, we can suppose for i ∈ {1, 2} that ρi(Sopen) = 1.
3Actually, this is allowed by the decomposition T = P + Q from Theorem 7 and d = 2. Hence, both P and Q

decompose on S and their respective Borel measures can be summed up to reach a unique Borel measure ρ concentrated
on S.
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T = |ρ| (A)

[∫
S

1
|ρ| (A)

R d(ρ A)(R)

]
︸ ︷︷ ︸

def.
= u1

+|ρ| (Ac)

[∫
S

1
|ρ| (Ac)

R d(ρ Ac)(R)

]
︸ ︷︷ ︸

def.
= u2

.

Consider now, thanks to Smirnov’s decomposition:

∥u1∥V =
∫
S

1
|ρ| (A)

∥R∥V︸ ︷︷ ︸
=1

d(ρ A)(R)

=
1

|ρ| (A)
×

∫
S

d(ρ A)(R)

=
|ρ| (A)

|ρ| (A)
= 1.

Exactly the same applies to u2, thus ensuring that u1, u2 ∈ B1
V . By setting λ

def.
= |ρ| (A) = ρ(A)

since ρ is a probability measure, and noting that |ρ| (Ac) = 1 − |ρ| (A), we yield a non-trivial
convex-combination of T through:

T = λu1 + (1 − λ)u2,

thus reaching a contradiction, and therefore concluding the proof.

Remark. One can see Smirnov’s theorems A and C of [24] as a refined Choquet integral result. Indeed,
the article yields the same conclusions (with some extensions) as the application of Choquet theorem, i.e.
every charge decomposes as a weighted average of the set of extreme points S.

We have then successfully established a result on extreme points, thus enabling a promising
avenue for numerical implementation. Indeed, the state-of-the-art algorithms in the off-the-grid
literature boil down to the iterative reconstruction of a linear sum of extreme points of the energy
regulariser.

5 Outlook
This article performed the analysis of the space of divergence vector fields V , and proposed a
new optimisation problem (Qα(y)) based on an off-the-grid functional called CROC. Existence
of CROC minimisers and characterisation of the associated certificates have been established.
Moreover, the extreme point theorem 8, coupled with the representer theorem 3, allows a precise
analysis of the structure of (Qα(y)) minimisers.

In further works, we plan to exploit this theoretical result through an adaptation of the (Slid-
ing) Frank-Wolfe algorithm [6, 10] suited for curves. Indeed, this greedy algorithm reconstructs
an iterated linear combination of extreme points, hence offering a tractable approach for curves
reconstruction in an off-the-grid fashion.
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A V is a Banach space
Let (un)n∈N be a Cauchy sequence in V . By definition, it is also a Cauchy sequence in M (X )2,
which is complete therefore it admits a limit u ∈ M (X )2. Since (un)n∈N is bounded (as a
Cauchy sequence) for the TV-topology in V and by lower semi-continuity of ∥div(·)∥TV, then:

∥div u∥TV ≤ lim inf
n→+∞

∥div un∥TV < +∞

and since u ∈ M (X )2, one has ∥u∥V = ∥div u∥TV + ∥u∥TV2 < +∞. Hence u ∈ V , thus
ensuring that V is a Banach space.
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