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A KC Map for Variants of Nondeterministic PDDL

Nous étudions différents langages permettant de représenter des actions non-déterministes pour la planification automatique, du point de vue de la compilation de connaissances. Précisément, nous considérons la question de la concision des langages (quelle est la taille de la description d'une action dans chaque langage ?) et des questions de complexité (traitabilité ou dureté de plusieurs requêtes et transformations qui surviennent naturellement dans la planification et le suivi des croyances). Nous étudions une version abstraite et nondéterministe de PDDL, STRIPS conditionnel nondéterministe, et les langages NPDDL seq et NPDDL not obtenus en ajoutant séquence et négation à PDDL nondéterministe. Nous montrons que ces langages ont une concision et complexité différente pour les requêtes les plus naturelles.

Introduction

In automated planning, a central aspect of the description of problems is the formal representation of actions. Such representations are indeed needed for specifying the actions available to the agent (PDDL [START_REF] Mcdermott | PDDL-the planning domain definition language[END_REF] is a standard language for this), and also for planners to operate on them while searching for a plan.

In this paper, we consider different representation languages within the formal framework of the knowledge compilation map [START_REF] Darwiche | A knowledge compilation map[END_REF]. This framework deals with the study of formal languages under the point of view of queries (how efficient is it to answer various queries, depending on the language ?), transformations (how efficient is it to transform or combine different representations in a given language ?), and succinctness (how concise is it to represent knowledge in each language ?).

The knowledge compilation map has been introduced for representations of Boolean functions [START_REF] Darwiche | A knowledge compilation map[END_REF]. As far as we know there has been no systematic study of languages for representing actions per themselves. This is however an important problem, as planners need to query action representations again and again while searching for a plan (e.g., to find out which actions are applicable at the current node of the search tree), and many of them start by transforming the action specifications into some representation suited for this [START_REF] Hoey | SPUDD : stochastic planning using decision diagrams[END_REF][START_REF] To | A generic approach to planning in the presence of incomplete information : Theory and implementation[END_REF][START_REF] Benthem | Symbolic Model Checking for Dynamic Epistemic Logic -S5 and Beyond[END_REF][START_REF] Speck | Symbolic Planning with Edge-Valued Multi-Valued Decision Diagrams[END_REF]. Hence having a clear picture of the properties of languages is of interest for developing such planners.

This paper is an attempt at a systematic study of various action languages from the point of view of knowledge compilation. Works with related objectives do exist, but the focus has been on other aspects of planning, like the representation of plans [START_REF] Bäckström | Algorithms and Limits for Compact Plan Representations[END_REF], axioms [START_REF] Thiébaux | In defense of PDDL axioms[END_REF], or action costs [START_REF] Speck | On the Compilability and Expressive Power of State-Dependent Action Costs[END_REF].

The only studies about action languages which we are aware of are those pioneered by Bäckström, but they essentially consider the representation of actions up to preservation of plan length [START_REF] Bäckström | Expressive Equivalence of Planning Formalisms[END_REF][START_REF] Nebel | On the compilability and expressive power of propositional planning formalisms[END_REF][START_REF] Rintanen | Expressive Equivalence of Formalisms for Planning with Sensing[END_REF], while we are interested in a stricter notion whereby the semantics is precisely preserved, hence preserving more aspects of the planning tasks (like the number of plans, relationships between variables, etc.).

We are interested here in (purely) nondeterministic actions, which lie at the core of fully observable nondeterministic planning and of conformant planning [START_REF] Rintanen | Complexity of Planning with Partial Observability[END_REF][START_REF] Palacios | Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width[END_REF][START_REF] Geffner | A Concise Introduction to Models and Methods for Automated Planning[END_REF][START_REF] Muise | Vaishak Belle: Non-Deterministic Planning With Conditional Effects[END_REF][START_REF] To | A generic approach to planning in the presence of incomplete information : Theory and implementation[END_REF]8]. We also focus on propositional domains, in which states are assignments to a given set of propositions.

Our mid-term goal is to give a systematic picture of languages arising from combinations of allowed constructs among the ones introduced in the literature (like nondeterministic choice, iteration, persistency by default, etc.), and in this work we consider abstract languages which resemble variants and extensions of the well-known STRIPS and PDDL. Orthogonally, we also study two concrete representations of expressions, as syntactic trees or as more compact circuits, where identical subexpressions are not repeated. The former representation gives a natural measure of the size of action specifications, while the latter is more compact and is the one typically used in knowledge compilation literature [START_REF] Darwiche | A knowledge compilation map[END_REF].

The paper is structured as follows. We first give background about actions and logic (Section 2), then formally define the action languages which we consider (Section 3). Then we give our results : results about the complexity of queries (Section 4) ; separation results, which allow us to determine the relative succinctness of the languages (Section 5), and results about the complexity of transformations (Section 6). Finally we conclude, discussing some open problems and perspectives of this work (Section 7).

Preliminaries

We consider a countable set of propositional state variables P := {p i | i ∈ N}. Let P ⊂ P be a nonempty finite set of state variables ; a subset of P is called a P-state, or simply a state. The intended interpretation of a state s ∈ 2 P is the assignment to P in which all variables in s are true, and all variables in P \ s are false. For instance, for P := {p 1 , p 2 , p 3 }, s := {p 1 , p 3 } denotes the state in which p 1 , p 3 are true and p 2 is false. We write V(ϕ) for the set of variables occuring in an expression ϕ.

Actions

We consider (purely) nondeterministic actions, which map states to sets of states. Hence a single state may have several successors through the same action, in contrast with deterministic actions (which map states to states), and no relative likelihood is encoded between the successors of a state, in contrast with stochastic actions (which map states to probability distributions over states).

Definition 1 (action). Let P ⊂ P be a finite set of variables. A P-action is a mapping a from 2 P to 2 (2 P ) . The states in a(s) are called a-successors of s and P is called the scope of a.

Note that a(s) is defined for all states s. For our results explicit preconditions are not important ; we will consider a to be applicable in s if and only if a(s) = / 0. Every action a can be identified with a binary transition relation a on states which is defined via a := {(s, s ) | s ∈ a(s)}. Elements of a are called state transitions.

In this article, we are interested in the properties of representations of actions in various langugages.

Definition 2. [action language]

An action language is an ordered pair L, I , where L is a set of expressions and I is a partial function from L × 2 P to the set of all actions such that, when defined on α ∈ L and P ⊂ P, I(α, P) is a P-action. If L, I is an action language and L ⊆ L then we call L , I| L ×2 P a sublanguage of L, I .

We call the expressions in L action descriptions, and call I the interpretation function of the language. In this article I(α, P) will be defined if and only if V(α) ⊆ P.

If the language L, I and the set P are fixed or clear from the context, then we write α(s) instead of I(α, P)(s) for the set of all α-successors of s. We might also say "action α", meaning the action described by the action description α, and write α for I(α, P) .

Translations

In this article, we are interested in the existence of translations between languages which preserve the scope of action descriptions, i.e., which do not add new state variables to the scope in the destination language. Definition 3 (translation). A translation from an action language L 1 , I 1 to another language L 2 , I 2 is a function f : L 1 × 2 P → L 2 such that I 1 (α, P) = I 2 ( f (α, P), P) holds for all α ∈ L 1 and P ⊂ P such that I 1 (α, P) is defined.

In words, this means that the L 1 -expression α and the L 2 -expression f (α, P) describe the same P-action.

Here, a translation is not allowed to introduce auxiliary variables. This is in contrast with many studies of compilation for planning. The reason why we focus on this setting is that we are interested in translating the actions, and not only the solutions to a planning problem. Our strict notion guarantees that translating the actions of a domain will preserve all properties : the existence of solution plans of course, but also their length, their number, and measures of complexity like many notions of width [17, 12, for instance].

The translation f is said to be polynomial-time if it can be computed in time polynomial in the size of α and P, and polynomial-size if the size of f (α, P) is bounded by a fixed polynomial in the size of α and P. Clearly, a polynomialtime translation is necessarily also a polynomial-size one, but the converse is not true in general.

Negation Normal Form A Boolean formula ϕ over a set Q of variables is said to be in negation normal form (NNF) if it is built up from literals using conjunctions and disjunctions, i.e., if it is generated by the following grammar (where q ranges over Q) :

ϕ ::= q | ¬q | ϕ ∧ ϕ | ϕ ∨ ϕ

Action Languages

We first define the semantics for operators which then will be combined to obtain the languages we study. Applying a nondeterministic action a in state s can be seen as choosing nondeterministically which groups of variables to assign from a set of possible combinations. This motivates the following definition. Definition 4 (effect). An effect over a set of variables P ⊂ P is an ordered pair

Q + , Q -with Q + , Q -⊆ P and Q + ∩ Q -= / 0. The set Q + (resp. Q -) is called a positive (resp. negative) effect.
In the following we are going to define the set E(α, P, s) of explicit effects of α in s for action descriptions α, but we already use it to define the interpretation function, which simply formalizes the fact that variables not explicitly set by the action retain their value. For all action descriptions α and sets of variables P with V(α) ⊆ P ⊂ P, ∀s ⊆ P : I(α, P)(s)

:= {(s∪Q + )\Q -| Q + , Q -∈ E(α, P, s)} An effect Q + , Q -is said to witness a transition (s, s ) if (s ∪ Q + ) \ Q -= s .
We emphasize that for a transition (s, s ) there may exist several effects witnessing it. For example, given P := {p 1 , p 2 }, both effects {p 2 }, / 0 and {p 1 , p 2 }, / 0 } cause the same transition from s := {p 1 } to s := {p 1 , p 2 }.

We say that two effects e

1 := Q + 1 , Q - 1 , e 2 := Q + 2 , Q - 2 are consistent if Q + 1 ∩ Q - 2 = Q + 2 ∩ Q - 1 = / 0
; in other words, if one effect assigns to a variable, the other does not assign ⊥ to it. Then the combination of e 1 and e 2 is defined to be the effect

Q + 1 ∪ Q + 2 , Q - 1 ∪ Q - 2 .
It can be interpreted as simultaneously executing the assignments of e 1 and e 2 . Definition 5. Our action languages will be defined as various combinations of constructs from the grammar

α ::= ε | +p | -p | ϕ α | (α ∪ α) | α α | α ; α | ¬ min α
Intuitively, ε describes the action with no effect (∀s : ε(s) = {s}), +p (resp. -p) is the action which sets p true (resp. false), denotes conditional execution, ∪ denotes (exclusive) nondeterministic choice, denotes simultaneous execution, ; denotes sequential execution, and ¬ min describes the negation, and, importantly, variables not explicitly set by the action are assumed to keep their value. Also observe that auxiliary variables are not allowedonly variables in P can occur. Definition 6. Now we can define the effects E(α, P, s) of action descriptions, and thus the semantics of all action languages in this article :

1. E(ε, P, s) := { / 0, / 0 }, 

:= { Q + α ∪ Q + β , Q - α ∪ Q - β | Q + α , Q - α ∈ E(α, P, s), Q + β , Q - β ∈ E(β , P, s), Q + α ∩ Q - β = Q - α ∩ Q + β = / 0}, 6. E(α ; β , P, s) := { Q + β ∪ (Q + α \ Q - β ), Q - β ∪ (Q - α \ Q + β ) | Q + α , Q - α ∈ E(α, P, s),t := (s ∪ Q + α ) \ Q - α , Q + β , Q - β ∈ E(β , P,t)}, 7. E(¬ min α, P, s) := { s \ s, s \ s | s / ∈ α(s)}
The item 5 says that the effects of α β in s are all possible combinations of effects of α and β in s.

As an example, for α := (+p 1 ∪ (-p 2 +p 3 )) (-p 2 ∪ +p 2 ), P := {p 1 , p 2 , p 3 }, and any s, we have

E(α, P, s) = { {p 1 }, {p 2 } , {p 1 , p 2 }, / 0 , {p 3 }, {p 2 } }
, since in the last combination, -p 2 +p 3 and +p 2 are not consistent. 1

Item 6 says that if a variable is assigned by both α and β , then it appears in the effects of α ; β with the same polarity as in the effects of β . For example, for α := +p 1 +p 2 and β := -p 1 , the only effect of α ; β in the state s := / 0 is {p 2 }, {p 1 } , because the -p 1 in β "beats" the +p 1 in α.

And item 7 says that ¬ min α defines the transition from s to exactly all the states which were not accessible via α, with the witnessing effect being the one that assigns only the variables which change their value during this transition. For example, if

P := {p 1 , p 2 , p 3 }, s := {p 1 } and α := +p 2 ∪ (-p 1 +p 3 ), then (¬ min α)(s) = { / 0, {p 1 }, {p 2 }, {p 1 , p 3 }, {p 2 , p 3 }, {p 1 , p 2 , p 3 
}}, and the effect of ¬ min α witnessing the transition from {p 1 } to {p 1 , p 3 } is {p 3 }, / 0 . We emphasize that explicit effects (of subactions) matter only for , in the sense that for other constructs, the transition relation α of α only depends on the transition relation of its subactions.

Note that the expression +p -p (for an arbitrary p ∈ P) defines an action with no successor (which can be interpreted as an execution failing). We use ⊥ as a shorthand for it (hence I(⊥, P)(s) = / 0 for all P ⊂ P, s ⊆ P). We also highlight that is not necessarily expressing a precondition. If ϕ is not satisfied in a state s then ϕ α simply modifies no variable in s. If we want to express that ϕ is a precondition for α being applicable we need to write (ϕ α) (¬ϕ ⊥).

Being given the grammar from Definition 5 and the interpretation from Definition 6 we can now define our action languages. In the following definitions p ranges over P and ϕ over formulas in NNF over P.

Definition 7 (NPDDL). An NPDDL action description is an expression α generated by the grammar

α ::= ε | +p | -p | ϕ α | (α ∪ α) | α α
NPDDL can be seen as an abstract version of grounded PDDL extended to nondeterminism (in the sense of [START_REF] Bertoli | Extending PDDL to nondeterminism, limited sensing and iterative conditional plans[END_REF]).

The next language can be seen as a nondeterministic extension of STRIPS [START_REF] Fikes | STRIPS : A new approach to the application of theorem proving to problem solving[END_REF] with arbitrary boolean NNF conditions. Definition 8 (conditional STRIPS). An NSTRIPS action description is an NPDDL expression of the form

n i=0 ϕ i ( 1,1 i . . . 1, j 1 i ) ∪ . . . ∪ ( k i ,1 i . . . k i , j k i i )
where each k, j i is either ε, +p or -p for some p ∈ P. In words, an NSTRIPS action description specifies a set of conditions so that, when the action is applied in a state s, for each condition satisfied by s exactly one of the corresponding effects occurs.

The last two languages can be seen as extensions of NPDDL via the sequence or the negation operator.

Definition 9 (NPDDL seq , NPDDL not ). An NPDDL seq action description α is generated by the grammar

α ::= ε | +p | -p | ϕ α | (α ∪ α) | α α | α ; α
An NPDDL not action description α is generated by the grammar

α ::= ε | +p | -p | ϕ α | (α ∪ α) | α α | ¬ min α
Obviously NSTRIPS is a sublanguage of NPDDL in the sense of Definition 2, and NPDDL is a sublanguage of NPDDL not and NPDDL seq . NSTRIPS is complete, since any action a can at least be represented by one condition for each state s (satisfied only by s), associated to either (1) a choice (∪) between some "conjunctions" of atoms, one conjunction per a-successor s of s (setting all variables as in s ), or (2) to the degenerate choice of conjunctions ⊥, when a(s) is empty. Therefore all languages in this article are complete.

While the choice ∪ is a natural construct to allow for expressing nondeterminism, and ±p, and are abstractions of the natural properties of PDDL and STRIPS, the sequence and the negation operators require an illustration of their possible use.

Example 10. The sequence operator is particularly useful for describing actions featuring an intermediate nondeterministic process whose outcome influences the final result.

For example, the NPDDL seq expression + p even ; + p 1 (p even -p even ) (¬p even +p even ) ∪ -p 1 ;

. . . + p n (p even -p even ) (¬p even +p even ) ∪ -p n ; ¬p even ⊥ describes an action which maps any state to the set of all states with an even number of p i 's, and p even , set to true. An action description without the sequence connective would need to enumerate all possible combinations directly, resulting in an exponential tree.

Example 11. Imagine a self-driving car on a road where there might be an obstacle. Then a possible scenario could be a collision, with the following NPDDL description over the state variables P = {high_speed, obstacle, tire_flat, tank_leaking, bumper_dented, door_blocked, traffic_barrier, upside_down} :

β := obstacle       (+tire_flat ∪ ε) (-high_speed ∪ ε) high_speed   (+tank_leaking ∪ ε) bumper_dented door_blocked   ¬traffic_barrier +upside_down ∪ ε      
This "action" describes the effect of the collision, hence ¬ min β describes that the effects of the collision do not occur. As a consequence, if α otherwise describes the effects of one of the actions of the car, action α ∧ ¬ min β describes the same action but taking into account the fact that the car has a built-in collision avoidance system.

Representations Since we are interested in the succinctness of languages, it is crucial to define the size of action descriptions. For this we consider two variants of each language. The first variant corresponds to a representation of the expressions α in the language by their syntactic tree (including the Boolean formulas occuring in the expression, if any). The second variant corresponds to the representation of these expressions α by the directed acyclic graph, or circuit, obtained from the syntactic tree of α by iteratively identifying the roots of two isomorphic subexpressions to each other, until no more reduction is possible. Clearly, for all expressions α, the circuit associated to α in this manner is unique, and it can be computed in polynomial time from the tree or from a nonreduced circuit. We write T-NPDDL, T-NPDDL seq and T-NPDDL not for those languages with expressions represented as trees, and C-NNFAT, C-NPDDL, C-NPDDL seq and C-NPDDL not for those languages with expressions represented as reduced circuits. Since NSTRIPS is flat (the depth of the underlying graph is bounded), there is no difference between the circuit and the tree versions up to polynomialtime transformations, except for the representation of conditions ϕ ; since, as it turns out, the representation of conditions does not affect the complexity results in this paper, we only write NSTRIPS without specifying the representation.

Complexity of Queries

We now turn to studying the complexity of queries on action descriptions. We concentrate on three natural queries for planning, corresponding to checking the existence of a transition, deciding applicability of an action, and deciding whether a (sequential) plan reaches a goal. Definition 12 (queries). Let L, I be a fixed action language, α, α 1 , . . . , α k be action descriptions in L, P ⊂ P be a set of variables such that I(α, P) and I(α 1 , P), . . . , I(α k , P) are defined, and s, s be P-states. We consider the following decision problems.

-I -S : given α, P, s, s , decide whether s is an α-successor of s. -I -A : given α, P, s, decide whether α(s) is non-empty.

-E : given α 1 , . . . , α k , P, s, and an NNF formula ϕ over P, decide whether s |= ϕ for all s ∈ (α 1 ; . . . ; α k )(s). 2

Note that if α 1 ; . . . ; α k has no successors for s, then it automatically entails any formula ϕ, especially any unsatisfiable formula, say ϕ := p ∧ ¬p.

I -S is the most basic query which corresponds to model checking for Boolean formulas. We will see later that it is usually enough to know the complexity of I -S to conclude about the other queries.

The first result is a technical one and will be used later in succinctness proofs. It can be easily deduced from the fact that for a bounded number of variables the number of possible effects is bounded, too. Lemma 13. Let k ∈ N be fixed, and assume |P| ≤ k (i.e. the size of the scope of the described actions is fixed). Then I -S can be solved in polynomial time for all languages which we consider.

The next two statements were proven in [START_REF] Scheck | Knowledge Compilation for Nondeterministic Action Languages[END_REF]. In order to prove the theorem about I -S in NPDDL not , we require a notation and a lemma. Notation 16. Let n ∈ N, and let X n := {x 1 , . . . , x n } be a set of variables. Observe that there are a cubic number N n of clauses of length 3 over X n (any choice of 3 variables with a polarity for each). We fix an arbitrary enumeration γ 1 , γ 2 , . . . , γ N n of all these clauses, and we define P n ⊂ P to be the set of state variables {p 1 , p 2 , . . . , p N n }. Then to any 3-CNF formula ϕ we associate the P n -state s(ϕ) = {p i | i ∈ {1, . . . , N n }, γ i ∈ ϕ}, and dually, to any P n -state s, we associate the 3-CNF formula over X n , written ϕ(s), which contains exactly those clauses γ i for which p i ∈ s holds. [START_REF] Bäckström | Algorithms and Limits for Compact Plan Representations[END_REF]. By s ∈ (α 1 ; . . . ; α k )(s) we mean that there are s 0 , s 1 , . . . , s k with s = s 0 , s i ∈ α i (s i-1 ) for i = 1, . . . , k, and s k = s .

Example 17.

Let n := 2, and consider an enumeration of all clauses over X 2 := {x 1 , x 2 } which starts with γ

1 := (x 1 ∨ x 1 ∨ x 2 ), γ 2 := (x 1 ∨ x 1 ∨ ¬x 2 ), γ 3 := (x 1 ∨ ¬x 1 ∨ x 2 ), γ 4 := (x 1 ∨ ¬x 1 ∨ ¬x 2 ), γ 5 := (¬x 1 ∨ ¬x 1 ∨ x 2 ), . . .. Then the 3-CNF ϕ := (x 1 ∨ x 1 ∨ x 2 ) ∧ (¬x 1 ∨ ¬x 1 ∨ x 2 ) is encoded by the state s(ϕ) = {p 1 , p 5 }.
The statement of the lemma can be shown by an easy induction.

Lemma 18. Let ϕ, ψ be 3-CNF formulas, let s(ϕ) and s(ψ) be as in Notation 16, and define the QBF Ψ n ϕ := ∃x 1 : ¬(∃x 2 : ¬(. . . ¬(∃x n : ϕ) . . . )). Then the following hold :

1. If n is odd : if Ψ n ϕ is true and s(ψ) ⊆ s(ϕ) then Ψ n ψ is true dually : if Ψ n ϕ is false and s(ψ) ⊇ s(ϕ) then Ψ n ψ is false 2. If n is even : if Ψ n ϕ is true and s(ψ) ⊇ s(ϕ) then Ψ n ψ is true dually : if Ψ n
ϕ is false and s(ψ) ⊆ s(ϕ) then Ψ n ψ is false Notation 19. Using Notation 16, for all n ∈ N we define the T-NPDDL action description α sat n :

α sat n := x∈X n   γ i : x∈γ i (+p i ∪ ε) ∪ γ i : ¬x∈γ i (+p i ∪ ε)  
Intuitively, α sat n chooses an assignment (true or false) to each variable in X n (outermost ∪). Whenever it chooses an assignment for x, for each possible clause which is satisfied by this assignment (innermost ), it chooses whether to include this clause into the result, or not (innermost ∪). Hence it builds a formula which is satisfied at least by its choices, and clearly, any satisfiable 3-CNF formula can be built in this manner. Lemma 20. Let n ∈ N, and let ϕ be a 3-CNF formula over X n . Then ϕ is satisfiable if and only if s(ϕ) is an α sat nsuccessor of the state / 0.

Proposition 21. I -S

is PSPACE-complete for T-NPDDL not and C-NPDDL not .

P

. For membership observe that every execution of the circuit can be simulated in polynomial space and we can do it until we find a witness for the transition (s, s ), if any.

Not let the sets P n , X n and clauses γ i be as in Notation 16. For hardness, we show that a quantified Boolean formula Φ := ∃x 1 : ¬(∃x 2 : ¬(. . . (∃x n : ϕ))), with ϕ a 3-CNF, is true if and only if s(ϕ) ∈ α n 1 ( / 0) with

1. α n n := χ n n 2. α n k := χ n k ¬ min ¬ min (ρ n k (¬ min α n k+1 )) with -χ n k := γ i : x k ∈γ i (+p i ∪ ε) ∪ γ i : ¬x k ∈γ i (+p i ∪ ε) -ρ n k := ( γ i : x k ∈γ i -p i ) ∪ ( γ i : ¬x k ∈γ i -p i )
In the following we give an intuition for what these (sub)actions do in s := / 0. ρ n k chooses an assignment to x k and explicitly prohibits to add any of the clauses that contain a literal which is true under this assignment (i.e. is satisfied by this assignment). χ n k chooses an assignment to x k and then produces nondeterministically any possible set of clauses which are satisfied by this assignment. Recall that for all actions δ we have δ = ¬ min ¬ min δ ; the double negation here serves to make sure that transitions are witnessed by minimal effects.

Throughout the proof we use the following notation : ν =k refers to an assignment to x k and ν ≤ to an assignment to x 1 , . . . , x . If ν ≤k-1 and ν =k are clear from the context, then ν ≤k refers to the induced joint assignment to x 1 , . . . , x k . Finally, for an assignment ν we denote by t(ν) the encodings (via Notation 16) of 3-clauses which are satisfied by ν.

We denote by Φ ν ≤k the formula ∃x k+1 : ¬(∃x k+2 : ¬(. . . ¬(∃x n : ϕ |ν ≤k ))). Now we prove the claim that for every 0 ≤ k ≤ n -1 we have :

for all ν ≤k : [Φ ν ≤k true ⇐⇒ s(ϕ) \ t(ν ≤k ) ∈ α n k+1 ( / 0)]
After having shown the claim for k = 0 we are done with showing the main claim because Φ ν≤0 = Φand t(ν ≤0 ) = / 0 (since ν ≤0 is the empty assignement). . We start with k := n -1. In this case, Φ ν ≤k is just an existentially quantified 3-CNF which is true (being already conditioned by an assignment ν ≤k to x 1 , . . . , x n-1 ) if and only if the clauses which have not yet been satisfied by ν ≤k (i.e. s(ϕ) \ t(ν ≤k )) can be satisfied by an assignment to x n , which is equivalent to s(ϕ) \ t(ν ≤k ) being an α n nsuccessor of / 0 (the statement is analogous to the statement of Lemma 20). Now we assume that the claim has already been shown for k, and we want to show it for k -1 : we consider an assignment ν ≤k-1 to x 1 , . . . , x k-1 , and we prove that Φ ν ≤k-1 is true if and only if s(ϕ

) \ t(ν ≤k-1 ) ∈ α n k ( / 0) = χ n k ¬ min ¬ min (ρ n k (¬ min α n k+1
)) ( / 0). " =⇒ :" Suppose that Φ ν ≤k-1 is true. Then there exists an assignment ν =k to x k such that Φ ν ≤k is false. By the induction hypothesis this means that T := s(ϕ)\t(ν ≤k ) / ∈ α n k+1 ( / 0) and thus T ∈ ¬ min α n k+1 ( / 0). Since t(ν =k ) ⊆ t(ν ≤k ), we have t(ν =k ) ∩ T = / 0, therefore the execution of ρ n k (re)assigning variables in t(ν =k ) to ⊥ is consistent with the effect of ¬ min α n k+1 leading to T . Hence T ∈ (ρ n k ¬ min α n k+1 )( / 0), and adding the double negation we have T ∈ ¬ min ¬ min (ρ n k ¬ min α n k+1 )( / 0) with the guarantee that the effect e T witnessing this transition is minimal -and thus, since the transition starts from / 0, that e T has no negative effects. Now observe that, by construction of χ n k , any subset U of t(ν =k ) is a successor of / 0 via χ n k and the transition is witnessed by a purely positive effect e U . This applies to the subset U := (s(ϕ) \ t(ν ≤k-1 )) ∩ t(ν =k ). All in all, combining e T and e U (which are necessarily consistent since both contain only positive effects), we get that

U ∪ T ∈ χ n k ¬ min ¬ min (ρ n k ¬ min α n k+1 ) ( / 0) = α n k ( / 0). Gi- ven that t(ν ≤k )) = t(ν ≤k-1 ) ∪ t(ν =k ), it is not hard to see that U ∪ T = s(ϕ) \ t(ν ≤k-1
), which proves the claim.

" ⇐= :" Now assume that s(ϕ

) \ t(ν ≤k-1 ) ∈ α k ( / 0) = χ n k ¬ min ¬ min (ρ n k ¬ min α n k+1 ) ( / 0).
We first consider the case when nk is odd. From the assumption we get that there exist U, T such that s(ϕ

) \ t(ν ≤k-1 ) = U ∪ T with U ∈ χ n k ( / 0) and T ∈ ¬ min ¬ min (ρ n k ¬ min α n k+1 )( / 0). So T ⊆ s(ϕ) \ t(ν ≤k-1 ) so there exists a V such that (s(ϕ) \ t(ν ≤k-1 )) \ V ∈ ¬ min ¬ min (ρ n k ¬ min α n k+1 )( / 0), and therefore (s(ϕ) \ t(ν ≤k-1 )) \V ∈ (ρ n k ¬ min α n k+1 )( / 0). Let Q + , Q -be the effect of ρ n k ¬ min α n k+1
witnessing this transition. By definition of ρ n k (which is responsible for Q -since ¬ min α n k+1 has only positive effects in / 0) there exists an assignment

ν =k to x k such that t(ν =k ) = Q -. Since Q + ∩ Q -= / 0, it holds that Q + ⊆ (s(ϕ) \t(ν ≤k-1 )) \t(ν =k ) = s(ϕ) \t(ν ≤k ). It also holds that Q + ∈ ¬ min α n k+1 ( / 0
) because ρ n k has only negative effects. Thus Q + is a set of clauses which encodes a 3-CNF formula ψ with s(ψ) ⊆ s(ϕ) \t(ν ≤k ) ⊆ s(ϕ) and by the inductive assumption ∃x k+1 : ¬(∃x k+2 : ¬ . . . ¬(∃x n : ψ |ν ≤k ) . . .) is false. With the first statement of Lemma 18 (recall that nk and hence the number of quantifiers was odd) it follows that ∃x k+1 : ¬(∃x k+2 : ¬ . . . ¬(∃x n : ϕ |ν ≤k ) . . .) is false, too, so Φ ν ≤k-1 is true. We now consider the case that nk is even. For the effect Q + , Q -witnessing the transition from / 0 to s(ϕ) \ t(ν ≤k-1 ) there must be an effect U + , / 0 of χ n k with U + ⊆ Q + and by construction of χ n k there exists an assignment ν =k with U + ⊆ t(ν =k ). Therefore there must exist an effect T, / 0 of ¬ min ¬ min (ρ

n k ¬ min α n k+1 ) in / 0 with T ⊇ Q + \ U + ⊇ (s(ϕ) \ t(ν ≤k-1 )) \ t(ν =k ) = s(ϕ) \ t(ν ≤k ). It follows that T ∈ ¬ min ¬ min (ρ n k ¬ min α n k+1 )( / 0) and therefore T ∈ (ρ n k ¬ min α n k+1 )( / 0
) and thus T ∈ ¬ min α n k+1 ( / 0) since ρ n k does not have positive effects. T encodes a 3-CNF formula ψ such that s(ψ) \ t(ν ≤k ) ⊇ s(ϕ) \ t(ν ≤k ) and by the inductive assumption ∃x k+1 : ¬(∃x k+2 : ¬ . . . ¬(∃x n : ψ |ν ≤k ) . . .) is false. Since nk is even we apply the second statement of Lemma 18 and conclude that ∃x k+1 : ¬(∃x k+2 : ¬ . . . ¬(∃x n : ϕ |ν ≤k ) . . .) is false, too. Therefore Φ ν ≤k-1 is true.

Lemma 22. I -S is polynomial-time reducible to I -A

for T-NPDDL seq , C-NPDDL seq , T-NPDDL not and C-NPDDL not .

P

. For a state s let ψ s denote the formula ( p∈s p) ∧ ( p / ∈s ¬p). Let α be a (tree-or circuit) NPDDL seq action. For all states s, s it is easy to see that we have s ∈ α(s) if and only if the action (α ; (¬ψ s ⊥)) is applicable in s. Now let β be a (tree-or circuit) NPDDL not action description and s, s be P-states. We define ρ s := ( p∈s +p) ( p / ∈s -p) , the deterministic action leading from all states to s . Then we have s ∈ β (s) if and only if the action γ := ¬ min (¬ min β ∪ ¬ min ρ s ) is applicable in s because it is easy to see that γ satisfies γ(s) = β (s) ∩ ρ s (s). 

P

. For NPDDL seq and NPDDL not hardness follows from Lemma 22 together with the previous hardness results about I -S (Propositions 15 and 21). For NSTRIPS the result has been proven in [START_REF] Scheck | Knowledge Compilation for Nondeterministic Action Languages[END_REF]. Membership is clear because applicability can be witnessed by giving a successor and verifying successorship.

Lemma 24. The complement of I -A is polynomialtime reducible to E

for all languages.

P . An action described by α is non-applicable in s (i.e. it has no successors in s) if and only if all α-successors s of s satisfy p ∧ ¬p for an arbitrary p, i.e. if and only if α entails ϕ := p ∧ ¬p in s. 

P

. We first recall that PSPACE = coPSPACE. Then hardness follows for all the languages from the reduction of non-applicability to entailment together with the hardness results about I -A (Lemma 22). Membership has been shown in [START_REF] Scheck | Knowledge Compilation for Nondeterministic Action Languages[END_REF].

Succinctness

We now give negative results about the existence of polynomial-size translations, hence about the relative succinctness of languages [START_REF] Darwiche | A knowledge compilation map[END_REF]. Recall that all the languages which we study are complete, thus our definition is a bit simpler than the usual one.

Definition 26 (succinctness). A complete action language

L 1 is at least as succinct as a complete action language L 2 if there exists a polynomial-size translation from L 2 into L 1 .

Clearly, if L 2 is a sublanguage of L 1 then L 1 is at least as succinct as L 2 .

Our succinctness separation results rely on assumptions about the nonuniform complexity classes P/poly and NP/poly. Recall that P/poly is the class of all decision problems such that for all n ∈ N, there is a polynomialtime algorithm which decides the problem for all inputs of size n, NP/poly is defined analogously. The assumptions NP ⊆ P/poly, coNP ⊆ NP/poly and PSPACE ⊆ NP/poly which we use are standard ones.

Given two disjoint sets of variables P, Q a (P ∪ Q)-action a, and an assignment t ⊆ Q to the variables in Q, we define the t-conditioning of a to be the P-action a |t satisfying ∀s ⊆ P : a |t (s) = {s | (s ∪ t) ∈ α(s ∪ t)}. The next lemma will be used to partially separate NPDDL seq from NPDDL not .

Lemma 27. Let P and Q be disjoint sets of variables, α be a T-NPDDL not (resp. C-NPDDL not ) expression for a (P ∪ Q)-action, and t ⊆ Q be an assignment to the variables in Q. Then we can compute a T-NPDDL not (resp. C-NPDDL not ) expression f (α) for the t-conditioning of α in time polynomial in |α|.

P

. Simply replace all leaves of the form +q with q ∈ Q ∩ t by ε, all leaves of the form +q with q ∈ Q \ t by ⊥ (failure), and dually for -q, and for all subexpressions ϕ β , simplify ϕ by the assignment t to Q. Proposition 28. If NP ⊆ P/poly then there is no polynomial-size translation from T-NPDDL seq to T-NPDDL not , nor from C-NPDDL seq to C-NPDDL not .

P

. Let n ∈ N, and let ϕ be a 3-CNF formula over a set of variables X n := {x 1 , . . . , x n }. Recall from Notation 16 that we can encode ϕ over a set P n ⊆ P. Finally, let p sat ∈ P be a fresh variable. We define γ sat n to be the following action :

n i=1 (+x i ∪ -x i ); (ψ n +p sat ) (¬ψ n -p sat ); n i=1 -x i
where ψ n is the NNF N n i=1 (¬p i ∨ ∈γ i ), which is satisfied if and only if each clause γ i which is in ϕ (as witnessed by p i being true) is also satisfied. In words, γ sat n guesses an assignment to V(ϕ), then sets p sat according to whether ϕ is satisfied by this assignment, and finally resets all guessed variables to false. Note that γ sat n depends on n but not on ϕ, and that γ sat n is polynomial in n. Clearly, s(ϕ) ∪ {p sat } is a γ sat n -successor of s(ϕ) if and only if ϕ is satisfiable. Hence the following decision problem is NP-hard :

-Input : a 3-CNF formula ϕ -Question : is s(ϕ) ∪ {p sat } a γ sat n -successor of s(ϕ) ? Now assume that there is a polynomial-size translation f from T-NPDDL seq to T-NPDDL not , and for all n ∈ N let δ sat n := f (γ sat n ). Let ϕ be a 3-CNF formula over n variables. Since δ sat n is in NPDDL not , we can apply Lemma 27 with Q := P n ∪ {x 1 . . . , x n } and t := s(ϕ), to get an expression in which the only occuring variable is p sat , and {p sat } is a successor of / 0 if and only if s(ϕ) ∪ {p sat } is a δ sat n -sucessor of s(ϕ), that is, if and only if ϕ is satisfiable. Since this expression has only one variable, with Lemma 13 we see that successorship can be decided in polynomial time, implying NP ⊆ P/poly. The proof is exactly the same for circuits. 

P

. The majority function (which returns true if and only if at least half of its arguments are true) can be computed by a boolean circuit ψ of linear size and logarithmic depth [START_REF] Muller | Bounds to complexities of networks for sorting and for switching[END_REF]. Consider an action a over P n = {p 1 , . . . , p n } which is applicable only in s = / 0 and in this state it produces nondeterministically all s with |s | ≥ n 2 . Thus it is obviously representable by a polynomial-size circuit NNF action theory ψ n , and this can be translated into C-NPDDL in polynomial time [START_REF] Scheck | Knowledge Compilation for Nondeterministic Action Languages[END_REF]. Now every NSTRIPS representation of a can without loss of generality be assumed to be of the form (ϕ n α n ) (¬ϕ n ⊥) with ϕ n = ¬p 1 ∧ . . . ∧ ¬p n and α n being an unconditioned NSTRIPS expression. By replacing by ∧, ∪ by ∨, +p by p and -p by ¬p we would then obtain a formula over P n whose models are α nsuccessors of / 0, thus obtaining a boolean circuit of bounded depth of size polynomial in n for the majority function, which contradicts a result from [9].

Transformations

One of the key aspects of knowledge compilation is the study of transformations that a language supports [START_REF] Darwiche | A knowledge compilation map[END_REF]. In general, we are interested in finding out whether a given transformation is possible in polynomial time, and otherwise, whether it is at least possible without a superpolynomial explosion in size.

Let L, I be a fixed action language, let α, α 1 , α 2 be action descriptions in L, P ⊂ P be a set of variables such that I(α, P), I(α 1 , P), and I(α 2 , P) are defined, and let s, s be P-states. We study the following computational problems. -S : given α 1 , α 2 ∈ L, compute an action description β ∈ L such that for all s : β (s) = {s | ∃t such that t ∈ α 1 (s) and s ∈ α 2 (t)}.

-C : given α 1 , α 2 ∈ L, compute an action description β ∈ L such that for all s : β (s) = α 1 (s) ∪ α 2 (s).

-N : given α ∈ L, compute an action description β ∈ L such that for all s : β (s) = {s | s / ∈ α(s)}. We insist that for each one it is required that the output be in the same language as the input description(s). We also consider the problem of extracting the precondition.

-E -P : given α ∈ L and P ⊂ P, compute an NNF formula ϕ such that for all s : α(s) = / 0 ⇐⇒ s |= ϕ. We see it as a transformation because it amounts to computing an action description of the form ¬ϕ ⊥ expressing when the action does not satisfy its precondition.

Of course, if a language allows for arbitrary nesting of an operator then it trivially supports a transformation. For example, NPDDL allows to express C of α 1 and α 2 via α 1 ∪ α 2 . In other cases, determining the complexity of a transformation seems to be not much easier than determining the succinctness of the language enriched with the corresponding operator. × ? F 1 -Succinctness results. An arc from L 1 to L 2 denotes that L 1 is a sublanguage of L 2 . A crossed out arc from L 1 to L 2 means that there is no polynomial-size translation from L 1 into L 2 . These relations hold for both tree and circuit representations. Dotted arcs denote open questions (see text). and observe that that ξ n is applicable in s(ϕ) if and only if ϕ is satisfiable. If there was a polynomial-size NNF representation of the precondition ψ n of ξ n , we could check ϕ for satisfiability by checking whether s(ϕ) |= ψ n , and thus we would obtain a non-uniform polynomial-time algorithm for 3-SAT. To see the claim for the other languages, observe that if E -P was polynomial-size for NPDDL, NPDDL not or NPDDL seq , it would be polynomial-size for their sublanguage NSTRIPS (since the representation of the output does not depend on the language).

Conclusion

We have studied several languages for describing nondeterministic actions along two criteria : succinctness and complexity of different decision problems and transformations natural to automated planning. We have also considered two representations, by trees and by circuits. Our results are summarized in Table 1 and on Figure 1.

An interesting result is the different complexity of queries for NPDDL seq with trees or circuits. While it is intuitively clear that there must be some languages which are strictly less succinct with trees than with circuits, and languages with less tractable queries with circuits than with trees, this gives a concrete example of this phenomenon. Finally, it is interesting that the complexity of the three queries is the same for tree-represented NPDDL with or without sequence. Since the language is strictly more succinct with sequence, T-NPDDL seq seems to be a strictly more interesting language than T-NPDDL.

We leave some problems open for transformations (see Table 1) and succinctness. For succinctness, a dotted arc from L 1 to L 2 on Figure 1 means that the existence of a polynomial-size translation from L 1 to L 2 is open ; for all these arcs we conjecture that there is actually none.

It would also be interesting to determine the complexity of other queries and transformations. Queries obviously useful to planning are to count and enumerate successors, generate a successor of a given state uniformly at random (as needed in Monte-Carlo approaches), to determine whether an action is deterministic, and whether all executions of a given action sequence are free of dead-ends. As concerns transformations, the complexity of combining two actions via logical conjunction ∧ does not seem so easy to determine. Another interesting transformation, in particular for regression approaches to planning, is the computation of the "reverse" action ᾱ of α with s ∈ ᾱ(s) ⇔ s ∈ α(s ).

Our main perspective is a more systematic study, for languages constructed using combinations of features like the sequence operator, modalities, Kleene star, etc. A very expressive language to consider is DL-PPA [10]. Another perspective is to consider languages for stochastic actions, and for actions with observations (and hence queries on belief states rather than states). The ultimate goal is to draw clear pictures of what language to choose depending on the queries which are used by, e.g., a planning algorithm or a simulator.

Proposition 14 .

 14 I -S is NP-complete for NSTRIPS, T-NPDDL, C-NPDDL and T-NPDDL seq . Proposition 15. I -S is PSPACE-complete for C-NPDDL seq .

Corollary 23 .

 23 I -A is NP-complete for NSTRIPS, T-NPDDL, C-NPDDL, and T-NPDDL seq , and it is PSPACE-complete for C-NPDDL seq , T-NPDDL not and C-NPDDL not .

  Corollary 25. E is coNP-complete for NSTRIPS, T-NPDDL, C-NPDDL, and T-NPDDL seq , and it is PSPACE-complete for C-NPDDL seq , T-NPDDL not , and C-NPDDL not .

Proposition 29 . 1 from

 291 If PSPACE ⊆ NP/poly then there is no polynomial-size translation neither from C-NPDDL not into C-NPDDL nor from T-NPDDL not into T-NPDDL. P . If NPDDL not was translatable into NPDDL with only a polynomial increase in size, we could translate α n Proposition 21 into a polynomial-sized equivalent action f (α n 1 ) in NPDDL. Since α n 1 does not depend on a formula but only on the number of variables, it would follow that deciding the validity of a quantified Boolean formula of the form ∃x 1 : ¬(∃x 2 : ¬(. . . ¬(∃x n : ϕ))) with a 3-CNF ϕ amounts to checking s(ϕ) ∈ α n 1 ( / 0), and we would obtain a nonuniform NP-algorithm for a PSPACE-complete problem,implying PSPACE ⊆ NP/poly. Proposition 30. There exists no polynomial-size translation of C-NPDDL into NSTRIPS.

  . Consider the action γ sat n from the proof of Proposition 28. Each of its subactions which are connected via the sequence operator (these are n i=1 (+x i ∪ -x i ), (ψ n +p sat ) (¬ψ n -p sat ) and n i=1 -x i ) is a NSTRIPS (and therefore NPDDL, NPDDL not ) action. Thus the proof of Proposition 28 can be reused to show that if NP ⊆ P/poly then S cannot be polynomial-size for NSTRIPS, NPDDL, nor NPDDL not . NPDDL seq . Then there exists a polynomial-sized equivalent f (α sat n ) of the negation of α sat n . Thus s(ϕ) ∈ f (α sat n ) holds if and only if ϕ is unsatisfiable, and so there is a nonuniform NP-algorithm for a coNP-complete problem.The following results show that it is in general more efficient to represent the precondition of actions implicitly in the description rather than as a separate formula. NPDDL seq under neither the tree nor the circuit representation.P. Consider the NSTRIPS action over X n ∪ P n (as in Notation 16) : ξ n := p i p i ( x∈γ i +x) ∪ ( ¬x∈γ i -x)

	NPDDL seq	× ?	NPDDL not
	×		
		NPDDL	
		Proposition 31. The following transformations are polynomial-time, in all cases for both the tree and circuit representations : -C for NPDDL, NPDDL not and NPDDL seq ; -S for NPDDL seq ; -N for and NPDDL not . Proposition 33. If coNP ⊆ NP/poly then N is not polynomial-size for T-NPDDL, C-NPDDL, nor T-NPDDL seq . P . Recall for α sat n from Lemma 20 that s(ϕ) ∈ α sat n ( / 0) holds if and only if ϕ is satisfiable. Now suppose that N is polynomial-size in T-NPDDL, C-NPDDL, or T-Proposition 34. If NP ⊆ P/poly then E -P is not polynomial-size for NSTRIPS, nor for NPDDL, NPDDL not , NSTRIPS

Proposition 32. If NP ⊆ P/poly then NSTRIPS, T-NPDDL, C-NPDDL, T-NPDDL not and C-NPDDL not do not support polynomial-size S . P

Note that this is in contrast to the usual semantics of STRIPS, where addition would override deletion, thus "forgetting" -p 2 .
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Language I -S I -

T 1 -Complexity results for queries and transformations. " " means that the transformation can be done in time polynomial in the size of the input. " ?" means that the question is open. • means that under some complexity-theoretic assumption (see formal statements) the size of the result of the transformation is in general not polynomial in the size of the input.
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