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ON THE INVERSE OF THE LQG
HOMING PROBLEM*

by Mario LEFEBVRE
Ecole Polytechnique de Montréal

Abstract

The inverse of the problem of minimizing (or maximizing) the time
spent by a diffusion process in a given région is considered. A proposi-
tion that shows how the Laplace transform of the probability density
function of a first hitting time can be used to obtain the optimal con-
trol in a related LQG homing problem is proved. The cost criterion
takes the risk-sensitivity of the optimizer into account. An example in
two dimensions is presented.

1 Introduction.

We consider the controlled stochastic process x(t) defined by the System of
stochastic difîerential équations

dx(t) = f(x{t))dt §| B(x(t))u{t)dt + [N(x(t))]l/2 dW{t), (1)

where x(t) is in Mn, the control variable u(t) is in Mm, f is an n-vector

function, B is an n x m matrix, N is an n x n symmetric positive definite
matrix and W (t) is an n-dimensional standard Brownian motion. Let D be
a subset of 2Rn and define

T(x) = inf{t > 0 : x(t) G £>|x(0) S S}.
That is, T(x) is the first passage time of the controlled process x(t) into
the termination set D. Whittle (1982, p. 289) considered the problem of
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minimizing the time spent by x(t) in the continuation région C — Dc (the
complément of D in Mn). Assume that the cost function is given by

c(*)= +-«3] (2)J0

where Q is an m x m symmetric positive definite matrix and A is a positive
parameter. Let Ç(t) be the uncontrolled process defined by

«K = f(t(t))dt + [N (Z(t))\ll2 dW (t)

and

t(x) = inf{t > 0 : £(t) € D|f(0) = a:}. (3)

Whittle showed that if P[t(x) < oo] = 1 and the relation

N = aBQ~lB' (4)

holds for some positive scalar a, then the control u* that minimizes the

expected value of the cost function C(x) is given by

U* = -Q~lB'F'x (5)

where the function F(x) can be obtained from the formula

exp[—F(x)/a] = j^{exp[—(À/û)r(x)]}.

Thus, Whittle proved that if ultimate entry into D of the uncontrolled
process Ç(t) that corresponds to x(t) is certain, and if a certain relation holds
between the noise and the control matrices, then it is possible to compute

the optimal control by simply considering the uncontrolled process.

Notice that if the parameter A in (2) is négative, then the objective
is to maximize the survival time in the continuation région C, taking the

quadratic control costs into account.

Next, Kuhn (1985) generalized Whittle’s resuit by using the risk-sensitive
cost criterion

J(x,6) = -(T1 logEle-"^11!
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in which 6 is the parameter that takes the risk-sensitivity of the optimizer
into account. The problem treated by Whittle corresponds to the risk-
neutral case 0 = 0, since

lim J(x,0) = E[C(x)\.

Moreover when 6 is positive, the optimizer is said to be optimistic or risk-

seeking, whereas we say that the optimizer is pessimistic or risk-averse when
6 is négative (see Whittle (1990, p. 5)). Kuhn showed that if the relation
(4) is replaced by

0N = BQ~lB' + ON (6)

then the optimal control is still given by (5), but with

(7)

Remark. In fact, in Whittle (1990, p. 223) and in Kuhn (1985) the func-
tion / and the matrices B, N and Q may also dépend on the variable t,

the parameter À is replaced by a function h(x(t),t), and there is a general
termination cost function K[x(T),T). Here, we assume that the problem is
time-invariant and that K[x(T),T] = 0, as did Whittle and Kuhn in partie-
ular cases. Moreover, the term LQG homing really corresponds to the case

when f(x(t)) = Ax(t) and the matrices A, B, N and Q are ail constant (see
Whittle and Gait (1970)).

In this note, we consider the inverse of the LQG homing problem. More

precisely, we show that the moment generating function of a first passage

time t(x) can sometimes be used to find the optimal control in a related
LQG homing problem, even if the relation (6) is not satisfied.

In Section 2, we prove a proposition that gives the LQG homing problems
that correspond to the given Laplace transform of the probability density
function of a first passage time r(x). An example is presented in Section 3.

Finally, some concluding remarks are made in Section 4.
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2 Theoretical resuit.

The function F(x) that appears in (5) satisfies the dynamic programming
équation (see Kuhn (1985))

inf[(l/2)u,Qtx + A 4- Fx{f + Bu) - Fx{eN/2)F'x + (l/2)tr(NFII)] = 0. (8)

This équation is valid in C. We also hâve the boundary condition

F(x) = 0 if xedD, (9)

where dD is the boundary of the stopping région D. Substituting the op-

timal control u* given by (5) into the dynamic programming équation, we

find that we must solve the partial differential équation

A + Fxf — Fx[(l/2)BQ~lB' + {\/2)0N]F'x + (l/2)tr {NFxx) = 0. (10)

Let

M := -N{BQ~lB' + 6Nj_1, (11)

where we assume that the inverse matrix exists. Next, suppose that there
exists a function <p such that

Fx = yilf. (12)
9

Then, we hâve

Fxx = ^M - -k<t>'x4>xM + Ç, (13)<P Ç>* (f)

where
/ 4>X^X\ \

P := :

\ 4>xMXn J
and MXi •— dM/dx{ for i = l,...,n. Substituting (12) and (13) into (10)
and using the fact that

ti(N (f)'x<f)xM ) = tv(4>xM N <p'x) = (pxM N 4>'x,
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we fmd that Eq. (10) is linearized to

<t>x 1
A + ^M/ + -tr<p Z

N
&XX . , P

M H
<t> <t>

= 0.

Now, we may write that

tr (NP) = <t>IYJMXiNi,
1=1

(14)

where Ni is the tth column of the matrix N. It follows that Eq. (14) may

be rewritten as

n

\<t> + <px{MJ + (1/2) Mx,Ni) + (l/2)tr[MN</„] = 0. (15)
1 = 1

If the matrix M is positive definite, Eq. (15) is the Kolmogorov backward
équation satisfied by

Tp(x) := E[eXc^x\ (16)

where

<j{x) := inf{t > 0 : £(t) G A|£(0) = x},

in which A is a subset of lRn and Ç[t) is the uncontrolled process defined by
the System of stochastic differential équations

n

dC(t) = (M f + (1/2) ^ Mç{N{) dt + [MN\1/2 dW (t). (17)
i=l

If M is négative definite, Equations (16) and (17) become, respectively,

V-(i) := £[e-A,7(l)] (18)

and
n

dC(t) = —(M/ + {1/2) J2MÇtNi)dt + l-MN]l/2 dW(t). (19)
i=l

We can prove the following proposition.
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Proposition 1 Suppose that P[a(x) < oo] — 1. Then the function 4>{x)
that appears in (12) (if it exists) is equal to the function 'ip(x) defined in

(16) or (18). Furthermore, the boundary of the termination set D, i.e. dD,
is obtained from

dD = {x e lRn : F(x) = 0}. (20)

Proof. If P[<t(x) < oo] = 1, then the solution of Eq. (15), subject to

'ip(x) = 1 if a: £ A,

is unique (see Whittle (1982, p. 290)). Hence, if there exists a function
such that Eq. (12) is valid, then we may write that <t>{x) = \p{x) and

the function F obtained from (12) will be the unique function that satisfies
the partial differential équation (10), subject to the appropriate boundary
condition. Finally, the boundary condition (9) implies that dD is indeed
the set defined in (20). □.

Remarks.

1) Proposition 1 implies that if we hâve a function \p{x) such that the
random variable a(x) that appears in its définition satisfies the condition

P[o(x) < oo] = 1, then we can State that this function can sometimes be
used to solve an optimal control problem. There are, in fact, many optimal
control problems that can be solved by using the same function ip(x) since
the matrix M defined in (11) dépends on the control matrices B and Q, and
the noise matrix N (as well as the risk parameter 6). Therefore, different
combinations of matrices B, Q and N can lead to the same matrix M and,
consequently, to the same function F.

2) If the relation (6) holds, then we can always define the function (p(x)
as follows:

= e-^*) = £[e-VT(l)]
(see Eq. (7)), where r(x) is defined in (3). Furthermore, in this case we will
hâve D = A. However, when the relation (6) does not hold, the termination
set D obtained from (20) will not, in general, be the same as the set A.
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In the next section we will give an example, in two dimensions, where
a first passage time moment generating function such as 'tp(x) can be used
to solve explicitly an optimal control problem. Moreover, in this particular

example the relation (6) will not hold.

3 An example.

Consider the two-dimensional uncontrolled stochastic process (Ci(t), C2(0)
defined by the stochastic differential équations

rfCi(i) = {2C,l(t)Ÿl2 dWx(t), (21)
<*C2 (t) = [2CI(011/2dW2(t), (22)

where W\{t) and W2(t) are independent one-dimensional standard Brownian
motion processes. Let

:= E[e~Xa(Xl'X2>)],
where A is a real, non-negative parameter and

o(xi, 2:2) := inf{t > 0 : Cl(0C2(0 = l|Cl(0) — 0. > 0» C2(0) = 22 > 0}.
That is, ip(xi, X2\ A) is the moment generating function (or the Laplace trans-
form of the probability density function) of the first passage time random
variable <7 (x 1,0:2).

Next, using the results in Lefebvre (1995), we can state that

t/>(xi,X2;A) = (X1X2)1' for xi > 0, X2 > 0,xiX2 > 1, (23)

where

l- Ü±i^. (24)2 2

Note that we hâve

lim V>(xi,x2, A) = 1,
Àj.0

so that P[cr(xi, X2) < 00] = 1, as required.
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Now, suppose that we choose N = B = I2 in {!), where 12 is the two-
dimensional identity matrix, and

in (2). Furthermore, we assume that the risk parameter 6 is equal to 0; that
is, we consider the risk-neutral case. Then the matrix M defined in (11) is

given by
M = -Q(xi(t),X2(0)-

Remark. Notice that the matrix M is not constant (so that the relation

(6) does not hold) and that we hâve

as should be (see (21) and (22)).

Using Eq. (12) with <p{x\,X2) = ^{x\, X2\ A), we obtain that

(FZl, FI2) = u(—2x\, -2x2).

It follows that

F(x 1,0:2) = —rfai + *2) + ko,

where k0 is a constant. To complété the example, we must choose the
function / in (1) and (19), and we must also find the boundary of the
termination set D.

First, using (19), (21) and (22), we can write that

1
M(Ci,<2)/(Ci,C2) +

where

andNj =
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-1/Cl
-1/C2

A simple calculation now yields that

/(Cl) C2) =

Moreover, we hâve

F(zi,X2) = 0 <=>• x\ + x\ = ko/i/.

Hence, assuming that A:o < 0 (because u < 0 (see (24)), we may write that

dD — {(xi, X2) € jR2 : xi + x\ = ko/v}.

Summarizing the example presented in this section, we can State that
the function ^(^1)^2!^) defined in (23) enables us to solve the following
optimal control problem: find the control u*(t) that minimizes the expected
value of the cost function

C(x 1,12) =
*T(11,12)

[W(t)Q(xi(t), X2{t))u{t) + A] dt,

where

T(xi,X2) = inf{t > 0 : x||t)+x|(^) = fc'o/i'|a:.i(0) = ^1 > 0,X2(0) = X2 > 0},

( 2l(t) 4wj-
and (xi(t), X2(t)) is the two-dimensional stochastic process defined by the
stochastic differential équations

dxi(t) = —

dx2{t) = —

1

xi(t)
1

x2(t)

dt + u\(t) dt -f d\Vi(t),

dt -f U2(t) dt + dW2{t)i

where Wj(t) and W2{t) are independent standard Brownian motion pro-

cesses.

Finally, from (5) we deduce that the optimal control is given by

u*(t) = v
l/xi{t) \
l/x2(0 J '
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4 Conclusion.

In this note, we hâve shown, in Section 2, how the moment generating func-
tion of a first passage time random variable for an uncontrolled stochastic
process can sometimes be used to obtain the exact solution to related opti-
mal control problems. An explicit example to illustrate the theoretical resuit
was presented in Section 3.

If the relation (6) holds between the control and the noise matrices (and
if ultimate entry of the uncontrolled process into the termination région is

certain), then it is always possible to obtain the optimal control, in the LQG
homing problems studied in this note, by considering the corresponding
uncontrolled process.

Similarly, when this spécial relation (6) holds, the stopping régions in the
controlled and the uncontrolled cases will be the same. However, when the
relation (6) is not valid, the stopping régions will, in general, be different.
Therefore, we do not know in advance what the stopping région in the
optimal control problem wrill be.

Furthermore, when the spécial relation (6) does not hold, it is generally
not possible to reduce the optimal control problems to first passage time
problems. However, in another paper (Lefebvre (1996)), the author has
shown that in the one-dimensional case we can indeed obtain the solution to

the optimal control problem from a mathematical expectation for a related
uncontrolled process, even when the relation (6) is not satisfied. For this
reason, we wanted to présent here an example in two or more dimensions.

In conclusion, in the présent paper we considered the inverse LQG hom-
ing problem. The last step would now be to try to solve a given LQG homing
problem in two or more dimensions, for which the relation (6) does not hold,
by considering a related uncontrolled process. As mentioned above, this is
not possible in general. Therefore, one or more additional conditions must
be imposed.
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