
HAL Id: hal-03658807
https://hal.science/hal-03658807

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical Representation and Analysis for RC-Arguments
Leila Amgoud, Philippe Besnard, Anthony Hunter

To cite this version:
Leila Amgoud, Philippe Besnard, Anthony Hunter. Logical Representation and Analysis for RC-
Arguments. 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2015),
Nov 2015, Vietri sul Mare, Italy. pp.104-110, �10.1109/ICTAI.2015.28�. �hal-03658807�

https://hal.science/hal-03658807
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22248

Official URL

DOI : https://doi.org/10.1109/ICTAI.2015.28

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Amgoud, Leila and Besnard, Philippe and
Hunter, Anthony Logical Representation and Analysis for RC-
Arguments. (2015) In: 27th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2015), 9 November 2015 - 11
November 2015 (Vietri sul Mare, Italy).

Logical Representation and Analysis for RC-Arguments

Leila Amgoud

IRIT – CNRS

Toulouse – FRANCE

amgoud@irit.fr

Philippe Besnard

IRIT – CNRS

Toulouse – FRANCE

besnard@irit.fr

Anthony Hunter

University College London

London – U.K

anthony.hunter@ucl.ac.uk

Abstract—An argument is seen as reason in favour of a claim.
It is made of three parts: a set of premises representing the
reason, a conclusion representing the supported claim, and a
connection showing how the premises lead to the conclusion.

Arguments are frequently exchanged by human agents in
natural language (spoken or written) in discussion, debate,
negotiation, persuasion, etc. They may be very different in
that their three components may have various forms.

In this paper, we propose a language for representing such
arguments. We show that it is general enough to capture the
various forms of arguments encountered in natural language,
and that it is possible to represent attack and support relations
between arguments as formulas of the same language.

Keywords-Arguments; Representation language.

I. INTRODUCTION

An argument gives reason to support a claim that is

questionable, or open to doubt. It is made of three parts:

a set of premises representing the reason, a conclusion

representing the supported claim, and a link showing how

the premises lead to the conclusion [14]. The link is hence

the logical part of an argument. The notion of argument is

very rich and complex. Indeed, the reason (respectively the

conclusion) varies from simple statements to combinations

of arguments, and the link may be deductive, abductive,

inductive, . . . [4]. Let us consider the following example

of a natural language argument.

Example 1: The title and first two paragraphs from an

article on whether the London Heathrow airport should be

expanded with a third runway. The article comes from the

BBC website 1.

〈claim〉 Heathrow needs more capacity. 〈\claim〉
〈reason〉 Heathrow runs at close to 100% capac-

ity. With demand for air travel predicted to double

in a generation, Heathrow will not be able to cope

without a third runway, say those in favour of the

plan. 〈\reason〉
〈reason〉 Because the airport is over-stretched,

any problems which arise cause knock-on delays.

Heathrow, the argument goes, needs extra capacity

if it is to reach the levels of service found at

competitors elsewhere in Europe, or it will be

overtaken by its rivals. 〈\reason〉

1http://news.bbc.co.uk/1/hi/uk/7828694.stm

In the above tagging, we have a single claim, viz “Heathrow

needs more capacity”, and we have two reasons for this

claim. Hence, we appear to have two arguments. Each with

the same claim.

However, if we look at the second reason, we see that

there are nested arguments, and so we could deconstruct

the second paragraph as follows. The first sentence is an

argument containing a reason and claim as follows

〈reason〉 Because the airport is over-stretched

〈\reason〉, 〈claim〉 any problems which arise

cause knock-on delays. 〈\claim〉.

Then, we see that the above argument is itself a premise for

the following claim

〈claim〉 Heathrow, the argument goes, needs extra

capacity if it is to reach the levels of service found

at competitors elsewhere in Europe, or it will be

overtaken by its rivals. 〈\claim〉

Putting these observations together, we could tag the second

paragraph as follows where we have an argument as a nested

reason.

〈reason〉 〈reason〉 Because the airport is over-

stretched, any problems which arise cause knock-

on delays. 〈\reason〉 〈claim〉 Heathrow, the argu-

ment goes, needs extra capacity if it is to reach the

levels of service found at competitors elsewhere

in Europe, or it will be overtaken by its rivals.

〈\claim〉 〈\reason〉

So the final paragraph contains an argument (i.e. a reason

with claim), this argument is the reason for a claim within

the paragraph. Furthermore, the whole paragraph is a reason

for the claim in the title of the article.

Recently, there is growing interest in the computational

models of argument community and in the computational

linguistics community in mining arguments from texts (see

for example [9], [10], [16], [17], [22], [23], [26], [27], [28],

[29], [31], [33], [34]). An interesting challenge that is thus

arising is the choice of target formalism for representing the

extracted arguments. In computational models of argument,

abstract argumentation (as proposed by Dung [15]) and

logical or structured argumentation (as proposed in [6], [8],

[18], [25]) are the two key options. Neither is ideal as a

target formalism as we outline below.

DOI 10.1109/ICTAI.2015.28DOI 10.1109/ICTAI.2015.28DOI 10.1109/ICTAI.2015.28

Abstract argumentation: Each argument is atomic. There

is no differentiation between reasons and claims. So there

is insufficient structure for a target language for argument

mining.

Logical argumentation: Each argument is a set of

formulae for premises, and a formula for a claim, where

the premises imply the claim using a given consequence

operator of a particular monotonic logic. So there is

excessive structure for a target language for argument

mining since natural language arguments are generally

enthymemes, that is some of their premises are unstated.

In previous work [2], we have proposed a formal language

for representing arguments. The language is made of formu-

lae of the form (−)R(y) : (−)C(x). The notation (−)R(y)
(resp. (−)C(x)) denotes that there are two cases: −R(y)
and R(y) (resp. −C(y) and C(y)). A formula R(y) : C(x)
stands for y gives reason to claim x, R(y) : −C(x) stands

for y gives reason for not claiming x, and −R(y) : C(x)
stands for y is not a reason for claiming x. The latter

form is called rejection of argument. The link between the

reason and the claim is left implicit. We have shown that

the language is general enough to capture a wide range of

types of arguments. In this paper, we extend the language

in such a way that the reason and/or the conclusion of an

argument can also be a combination of arguments. This al-

lows us to capture complex arguments like those conveyed in

recommendation letters. Consider a recommendation letter

written for someone who is applying for a position. The

main claim is that the candidate deserves the position and

the reason is a conjunction of several arguments, each of

which may be nested. Another contribution of the paper

consists of highlighting several forms of attacks and supports

between arguments, some of them have never been defined in

computational models of arguments. We show that each form

can be defined as a formula of the language. This allows

us to represent in a unified setting arguments and relations

between them. We show also what issues in (computational)

argumentation our formalism can address. In particular, we

deal with the details of applying our formalism in a range

of cases, discussing the significance of various forms of

arguments allowed in our formalism.

The paper is organized as follows: Section II introduces

the language. Section III shows how to encode attacks and

supports between arguments as formulae of the language.

Section IV compares our formalism with computational

argumentation ones, and Section V describes briefly how

the language can be used as a target language for argument

mining. The last section concludes.

II. SYNTAX FOR RC FORMULAE

Our formalism for representing arguments is inspired by

Apothéloz [5] and extends the one proposed in [2] for

representing nested arguments.

The formalism is built upon a classical propositional

language L(A) where A is a set of atoms. The formulae of

the language L(A) are defined in the usual way from A and

the usual classical operators ¬,∨,∧,→,↔. Our formalism

also uses two functions R(.) and C(.), a disjunction operator

|, a conjunction operator &, and an additional negation

operator −. Thus, two negation operators are needed: ¬ for

denying propositional formulas (¬x denotes that x is false),

and − for denying R(.) and C(.). Please note that ¬¬x is

identified with x and −−R(.) is identified with R(.) (also,

−− C(.) is identified with C(.)).
Definition 1 (RC formulae): The set of formulas

Arg(L(A)) is the smallest set such that a formula is of the

form (−)R(y) : (−)C(x) where x and y are formulae of

L(A)∪Arg(L(A)) or is a Boolean combination of formulae

of Arg(L(A)) with the connectives | and &.

The two operators | and & connect RC

formulae as follows: R(y) : C(x) | R(z) : C(t),
R(y) : C(x) & R(z) : C(t), R(y) : C(x) | −R(z) : C(t),
R(y) : C(x) & −R(z) : C(t), . . .

Remark: Please note that −((−)R(y) : (−)C(x)) is identi-

fied with −(−)R(y) : (−)C(x).
Each formula of Arg(L(A)) is either an argument or

a rejection of an argument. An argument is a reason for

concluding a claim. It has two main parts: premises (the

reason) and a conclusion. An argument is interpreted as

follows: its conclusion holds because it follows, according

to a given notion, from the premises. The notion refers to the

nature of the link (e.g., the premises cause the conclusion).

Definition 2 (Argument): An argument is a formula of

Arg(L(A)) of the form R(y) : (−)C(x).
The functions R and C play the roles of giving reason and

concluding, resp. They thus capture the coupling between a

reason and a conclusion. As we will see later, the contents

may be true while the functions do not hold and vice

versa. The intuitive meaning of the two formal expressions

captured by the previous definition is as follows:

R(y) : C(x) means that

“y is a reason for concluding x”

R(y) : −C(x) means that

“y is a reason for not concluding x”

The nature of the link between the reason and the conclusion

is captured by the colon. There are at least two reasons for

leaving the link implicit. First, natural language arguments

are generally enthymemes, thus some of their premises are

unstated. For instance, in the argument “Paul has DNA

because he is human”, there is a missing premise which

says “All humans have DNA”. Actually, it is not always

possible to make the link explicit. The second reason is

that there are several kinds of links, each of which leads

to a particular definition of arguments. In [4], it was shown

that arguments of types “threats” and “rewards” are defined

in an abductive way, while arguments of type “appeals to

prevailing practices” are deductive. Our purpose is to have

one general definition of argument in which all the different

types can be captured.

So far, the negation operator “−” has been used to deny

the concluding function. In what follows, the function of

giving reason can be denied as well by placing “−” in front

of R. What is denied in this case is not the premises but

rather the idea that the premises justify the conclusion of

the argument. Such a form is called rejection of argument

since it has exactly the opposite meaning of an argument.

Definition 3 (Rejection): A rejection of an argument is a

formula of Arg(L(A)) of the form −R(y) : (−)C(x).
The intuitive meaning for these formal expressions is as

follows:

Example 2: Assume the propositional atoms bird, pen-

guin, damaged.wing (to denote animals with a damaged

wing), slightly.damaged.wing (to denote animals with a

slightly damaged wing), and egg.laying (to denote animals

that lay eggs).

1) R(bird) : C(fly)
2) R(penguin) : C(¬fly)
3) R(bird ∧ damaged.wing) : −C(fly)
4) −R(bird ∧ slightly.damaged.wing) : −C(fly)
5) −R(egg.laying) : C(fly)
6) −R(egg.laying) : C(¬fly)
7) −R(egg.laying) : −C(fly)

Arguments can be counterarguments for other arguments.

For instance, R(bird) : C(fly) has R(penguin) : C(¬fly)
and R(bird ∧ damaged.wing) : −C(fly) as counterargu-

ments. We investigate the notion of a counterargument as

RC-formulae in the next section.

III. REPRESENTING ATTACK AND SUPPORT

In structured argumentation, an attack against a given

argument consists of presenting another argument denying

one of the components of the initial argument (i.e., premises,

conclusion, link). Thus, similar to a rejection, the aim of an

attack is to undermine an argument. The main difference

between the two lies in that the attacker provides a reason

for the attack. For instance, to undermine the conclusion x

of an argument R(y) : C(x), one should provide another

argument justifying why ¬x holds. In contrast, a rejection

needs no justification (but it may have one). Every attack

between two arguments leads to a rejection of the attacked

argument in the following way:

If R(z) : C(w) attacks R(y) : C(x),
then R(R(z) : C(w)) : C(−R(y) : C(x)).

Note that the converse is not true, rejections might not be

transformed into an attack between a pair of arguments.

Consider the following dialogue.

Paul: Why are you late? (la).

Carla: Because I am late R(la) : C(la)

Paul: This is not a reason −R(la) : C(la)

In the example, Paul rejects Carla’s argument without justi-

fying why. In fact, he denies the fact that the argument can

be circular.

We now turn to showing how to detect attacks between

mined arguments, and how the language can be used to

capture them within formulae of the language. Recall that

an argument R(y) : C(x) may be attacked on one of its

components: conclusion, premises, the link.

There are two ways for undermining the conclusion of

an argument: a strong way by showing that the negation of

the conclusion holds, and a weak way by showing that the

conclusion fails.

R(y) : C(x) R(z) : C(¬x)

R(R(z) : C(¬x)) : C(−R(y) : C(x))

(

Strong

Rebuttal

)

R(y) : C(x) R(z) : −C(x)

R(R(z) : −C(x)) : C(−R(y) : C(x))

(

Weak

Rebuttal

)

Strong Rebuttal corresponds to the well-known rebuttal in

existing argumentation formalisms.

Example 3: Illustration for strong rebuttal: Nixon is a

quaker (nq) and Nixon is a republican (nr). Is Nixon a

pacifist (np)?

R(nq) : C(np) R(nr) : C(¬np)

R(R(nr) : C(¬np)) : C(−R(nq) : C(np))

Weak rebuttal captures somehow the so-called undercut-

ting relation [24]. The basic idea is to block the application

of a defeasible rule in some cases. Let us consider the

following example:

Example 4: The object is red (re) because it looks red

(lr). This argument is written in our formalism as R(lr) :
C(re). In existing argumentation systems like ASPIC and

ASPIC+, the hidden assumption “Objects that look red are

indeed red” is encoded as a defeasible rule. If the object

is illuminated by red light (il), then undercutting amounts

to blocking the application of the rule, thus blocking its

conclusion re. In our language, this is simply written as

R(il) : −C(re). Unlike Example 3, the reason in the

counter-argument (il) needs not command that the negation

of the conclusion in the attacked argument (¬re) holds.

The premises of an argument may also be undermined in a

strong or a weak way as follows:

R(y) : C(x) R(z) : C(¬y)

R(R(z) : C(¬y)) : C(−R(y) : C(x))

Strong

Premise

Attack

R(y) : C(x) R(z) : −C(y)

R(R(z) : −C(y)) : C(−R(y) : C(x))

Weak

Premise

Attack

Strong Premise Attack amounts to the well-known

Assumption-Attack in argumentation literature.

Example 5: Illustration of strong premise attack: The

weather is good (gw) so the bbq will be a success (bs)
but weather reports predict rain (ra).

R(gw) : C(bs) R(ra) : C(¬gw)

R(R(ra) : C(¬gw)) : C(−R(gw) : C(bs))

The last component of an argument is the link between the

premises and the claim. As already said, the link concerns

the logical part of the argument, that is the inference pattern

that is used in order to infer the conclusion from the

premises. It can be denied in three ways as follows:

R(z) : C(−R(y) : C(x)) (Strong Reason Attack)

R(z) : −C(R(y) : C(x)) (Weak Reason Attack)

−R(y) : C(x) (Pure Reason Attack)

Example 6: Consider the following abductive argument.

If all dogs are mammals (dm), then all dogs are animals

(da). All dogs are animals. Therefore, all dogs are mammals.

This argument can be written as: R((dm → da) ∧ da) :
C(dm). Note that in spite of the premises and the conclusion

all being true, the argument is not valid. Indeed, it uses the

inference pattern

B if A then B

A
.

Of course, it may happen that A is false although B and if

A then B are true. In the same spirit, one may reject the

initial argument by means of a mere rejection −R((dm→
da) ∧ da) : C(dm). There are many circumstances where a

rejection can be justified, though. It would here be of the

form R(z) : C(−R((dm → da) ∧ da) : C(dm)) with z a

case making the previous pattern invalid (e.g. read da as

“David is annoyed” and dm as “David moans”, let z stand

for a situation where David is only slightly annoyed so that

da is not enough of a reason for dm).

Example 7: Consider the following argument. 90% of

humans are right-handed (hrh), therefore Paul is also right-

handed (prh). The argument, written as R(hrh) : C(prh),
might be rejected (−R(hrh) : C(prh)) because the link

between the premise hrh and the conclusion prh is invalid.

To sum up, with our logic of arguments, we can formalize

and manipulate attacks explicitly within the logic (which is

not possible in other formal systems of argumentation), and

we have a wider range of attacks than are considered in

other formal proposals for argumentation.

Unlike attacks which express negative links between argu-

ments, supports express positive links. In existing literature

(e.g., [12]), such links are captured by a binary relation

defined on the set of arguments. In our approach, such

an external relation is not needed since supports can be

expressed as formulae of the language. Let us now look at

various forms of support. An argument may support another

argument by approving one of its components: premises,

claim and link.

R(z) : C(y) R(y) : C(x)

R(R(z) : C(y)) : C(R(y) : C(x))

(

Premise

Support

)

R(z) : C(x) R(y) : C(x)

R(R(z) : C(x)) : C(R(y) : C(x))

(

Claim

Support

)

R(R(z) : C(t)) : C(R(y) : C(x)) (Reason Support)

R(z) : C(R(y) : C(x)) (Reason Support)

The first two relations have been presented in [11] but both

forms of link (reason) support are new.

Example 8: Consider the following dialogue.

Paul: Carl will pass his exams (pe). He is smart (sm).

R(sm) : C(pe)
John: He is moreover well prepared (wp).

R(wp) : C(pe)

John’s argument can also be interpreted in a sense to be

captured by the following argument: R(R(wp) : C(pe)) :
C(R(sm) : C(pe))

IV. COMPARISON

We have explained the language for our approach, and

we now turn to comparing it with existing approaches in

the literature.

A. Implicit representation of links

In almost all works on structured argumentation (e.g. [1],

[3], [6], [18], [25], [30]), an argument is a set of premises

that, using a notion of derivation, will lead to a conclusion

(see [20] for a comprehensive description of the derivations

used in the literature). As argued in the introduction, this

definition needs a logical representation of all the premises.

This is not viable for arguments mined from texts since they

are enthymemes (and therefore lack the explicit representa-

tion of premises and/or claim). Moreover, in general, existing

definitions capture only one type of argument (viz. deductive

arguments) while in text or dialogue, analogical arguments

are very common. Our approach captures enthymemes and

a wide variety of types of argument (such as abductive and

inductive).

B. Capturing links not relying upon inference

As mentioned above, in almost all works on structured

argumentation, an argument relies on a notion of derivation

linking the premises of the argument to its conclusion.

However, there arguably exist arguments that do not involve

an inference from premises to claim. An example is:

Smoking is a reason to get cancer.

Please observe that this is definitely an argument. Though,

there is no default rule to infer “getting cancer” from

“smoking”, not even a weighted default-like rule: It does

not seem right to express that smoking entails getting cancer

with likelihood x, whatever x in [0, 1].

In other words, such arguments fall outside the realm

of the existing approaches to structured argumentation.

Nonetheless, such an argument can be naturally expressed

in the RC-formalism as:

R(s) : C(gc)

where of course we use s to mean “smoking” and gc to

mean “getting cancer”.

C. Arguing explicitly about ignorance

In our approach, it is possible to argue explicitly about

ignorance. For instance, the RC-formula R(s) : −C(fe) can

represent the argument below:

Since Carl is very smart (s), we cannot conclude that

he will fail his exams (fe).

Some approaches to structured argumentation (e.g., [3],

[25]) prevent the conclusion fe from being deduced in an

indirect way, using Pollock’s undercutting [24] for blocking

the application of defeasibles rules as is illustrated next.

Example 9: Consider the facts F = {sm,¬wh}, the set

of strict rules S = {sm → n}, the set of defeasible rules

D = {¬wh → fe}, where fe denotes Carl will fail his

exams, wh denotes Carl worked hard, sm denotes Carl is

smart. Let n refer to the defeasible rule ¬wh → fe and

let n denote its non-application. So the strict rule sm → n

actually means that ¬wh→ fe does not apply in the context

of sm. The following four arguments can be built:

• a1 : (< sm >, sm)
• a2 : (< ¬wh >,¬wh)
• a3 : (< sm, sm→ n >, n)
• a4 : (< ¬wh,¬wh→ fe >, fe)

Argument a3 is a Pollock undercutting of a4. Using Pollock

undercutting as the attack relation, {a1, a2, a3} is the only

stable extension. So, the set of conclusions drawn from the

theory at hand is {sm,¬wh, n}. As expected, fe is not

inferred. There is however no argument expressing that sm

is the main reason for not having fe. While this approach is

worthwhile in reasoning, it is not natural in dialogues where

agents provide arguments for blocking conclusions. Our so-

lution (i.e., using an argument of the form R(sm) : −C(fe))
makes the connection explicit.

Instead of using a succinct formula such as R(y) : −C(x)
where x and y are propositions, structured argumentation

identifies two arguments A1 and A2 where the reason

(premises) of A1 includes x, and the claim of A2 is y.

Furthermore, for structured argumentation, the claim of A1,

and the premises of A2, need to be determined in order

to have the attack defined (which can be problematic when

they are not explicitly represented in the text or dialogue).

Consider the following argument:

Since Carl is at the university (u), he cannot conclude

whether his printer is delivered at home (de)

that can be represented simply by R(u) : −C(de) in

our approach. Contrastedly, in structured argumentation, not

even blocking the conclusion de is possible without further

information being available. In structured argumentation, not

only is there need for an argument A with some explicit

premises and claim de, but, in addition, a counterargument

B is needed that either attacks the premises of A′ or the

derivation of the claim de from those premises.

D. Complex arguments

Our approach supports the representation of nesting of

reasons. This means an argument or a rejection of an argu-

ment can be used as a reason or as a claim in an argument

or rejection of an argument. The premises and conclusion

can also be a conjunction or disjunction of arguments. This

provides a rich formalism for representing arguments and

rejections of arguments as arising in texts and dialogues.

DefLog [30] offers a language for representing arguments

that in some respects is similar to our Definition 2. It has

reasons and claims. These are atomic, or for claims, they

can be nested arguments. So unlike our approach, DefLog

does not support Boolean formulae as reasons or claims, and

DefLog does not support nested reasons. Also, DefLog does

not support rejections of arguments.

In [7], [21], abstract argumentation has been extended

with attacks on attacks, but this form of meta-argumentation

does not support differentiation of reasons and claims, and it

does not support rejection of arguments. Meta-argumentation

has also been proposed in logic-based approaches to ar-

gumentation (such as [19], [32]). These allow arguments

to appear in the premises or claims of other arguments.

However, these approaches assume explicit representation

of the logical formulae in the premises by which the claim

is derived, and they do not support rejection of arguments.

Also, they do not support arguing about ignorance.

E. Rejection of arguments

Our approach incorporates the representation of a rejec-

tion of an argument. This is different to a counterargument,

as we have argued in Section III. Approaches to structured

argumentation (such as [6], [8], [18], [25]) represent counter-

arguments, but there is no proposal that represents rejection

of arguments.

F. Explicit representation of attacks

Our approach represents rejections of arguments, which

are essential for representing diverse mined arguments. Con-

sequently, an attack is represented as an explicit construct

in the language. Attacks can also be justified (e.g. R(x) :
C(−R(y) : C(z)). As said before, no other logic-based

approach to modelling argumentation provides a language

for expressing rejection of arguments and attacks in the

object language.

A proposal for introducing support and attacks relations

into the language is E-DeLP [13], but the formalism only

allows reasons to support or to attack a claim, and the claim

can only be a defeasible rule. It therefore seems unlikely

to be a suitable target language for representing mined

arguments.

V. TARGET LANGUAGE FOR ARGUMENT MINING

Next we consider how our formalism can be used as a

target language for argument mining. Tagging is an impor-

tant step in developing a natural language processing system

(an NLP system). For this, we need to annotate a corpora

of items of text that we use for training an NLP system

(for instance based on statistical natural language processing

and/or machine learning). The aim is that after training, the

NLP system can automatically tag previously unseen items

of text (i.e. items of text not used for training) correctly.

Since there is often a subjective aspect to the tagging. each

of text is tagged by a number of people independently.

Example 10: We return to Example 1. We use the tag

x1 to tag a string in the title, we use the tags y1 and y2
to tag strings in the first paragraph, and we use the tags

z1, z2, and z3 to tag strings in the second paragraph. For

each tag p, 〈p〉 denotes the start of the string, and 〈\p〉
denotes the end of the string. From the following tagged

strings, we can obtained the RC-formulae R(y1) : C(x1)
and R(R(R(z1) : C(z2)) : C(z3)) : C(x1).

• 〈x1〉Heathrow needs more capacity〈\x1〉
• 〈y1〉Heathrow runs at close to 100% capacity. With

demand for air travel predicted to double in a genera-

tion, Heathrow will not be able to cope without a third

runway〈\y1〉, say those in favour of the plan.

• 〈z1〉Because the airport is over-stretched〈\z1〉, 〈z2〉any

problems which arise cause knock-on delays〈\z2〉.
〈z3〉Heathrow, the argument goes, needs extra capacity

if it is to reach the levels of service found at competitors

elsewhere in Europe, or it will be overtaken by its

rivals〈\z3〉.

So, as a target language, RC-formulae capture the connection

between reasons and claims, and as illustrated in Example

10, this connection can be nested. Furthermore, arguments

and rejections can be nested as reasons and claims.

VI. CONCLUSIONS

This paper deals with the definition of a formalism for

representing natural language arguments. The formalism

provides a wide range of benefits including: (1) Target

language for arguments, mined from texts or dialogues, that

is between abstract and logical argumentation; (2) Represen-

tation of any type of arguments in a unified setting (threats,

rewards, examples, . . .); (3) Representation of arguments in

favour of ignorance; (4) Explicit representation of attacks

and supports in the object language; (5) Practical represen-

tation of enthymemes; (6) Representation of rejections; and

(7) Nesting and combinations of arguments and rejections.

This paper builds on a previous work [2] which it extends

in the following way. Whereas [2] focussed on the inference

system for RC-formulae, this paper deals with a number

of notions in argumentation that can be captured by our

approach and which facilitate the representation and reason-

ing with arguments as arising in AI applications involving

text and dialogue. Indeed, representation of attack and

support, nature of the reason-claim link and its underlying

requirements/conditions, ability to capture mere ignorance,

difference between rejections and counter-arguments, are all

topics in this paper that were not addressed in [2].

ACKNOWLEDGEMENT

This work benefited from the support of AMANDE ANR-

13-BS02-0004 project of the French National Research

Agency.

REFERENCES

[1] L. Amgoud and Ph. Besnard. Logical limits of abstract
argumentation frameworks. Journal of Applied Non-Classical
Logics, 23(3):229–267, 2013.

[2] L. Amgoud, Ph. Besnard, and A. Hunter. Representing and
reasoning with arguments mined from texts and dialogues.
In Proceedings of the European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU’2015), LNCS. Springer, 2015.

[3] L. Amgoud, M. Caminada, C. Cayrol, M. Lagasquie, and
H. Prakken. Towards a consensual formal model: inference
part. Technical report, Deliverable, ASPIC Project (IST-
002307 funded by EU FP6), 2004.

[4] L. Amgoud and H. Prade. Handling threats, rewards, and
explanatory arguments in a unified setting. International
Journal of Intelligent Systems, 20(12):1195–1218, 2005.

[5] D. Apothéloz. The function of negation in argumentation.
Journal of Pragmatics, pages 23–38, 1993.

[6] Ph. Besnard and A. Hunter. Elements of Argumentation. MIT
Press, 2008.

[7] G. Boella, D. Gabbay, L. van der Torre, and S. Villata. Meta-
argumentation modelling I: methodology and techniques.
Studia Logica, 93(2-3):297–355, 2009.

[8] A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An ab-
stract, argumentation-theoretic approach to default reasoning.
Artificial Intelligence, 93:63–101, 1997.

[9] E. Cabrio and S. Villata. Generating abstract arguments: a
natural language approach. In Proceedings of Computational
Models of Argument (COMMA’12), pages 454–461. IOS
Press, 2012.

[10] E. Cabrio and S. Villata. A natural language bipolar argumen-
tation approach to support users in online debate interactions.
Argument and Computation, 4(3):209–230, 2014.

[11] C. Cayrol and M. Lagasquie. On the acceptability of argu-
ments in bipolar argumentation frameworks. In Proceedings
of the European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty (ECSQARU’2005),
pages 378–389, 2005.

[12] C. Cayrol and M. Lagasquie. Bipolarity in argumentation
graphs: towards a better understanding. International Journal
of Approximate Reasoning, 54:876–899, 2013.

[13] A. Cohen, A. Garcı́a, and G. Simari. Backing and un-
dercutting in defeasible logic programming. In Symbolic
and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU), volume 6717 of LNCS, pages 50–61. Springer,
2011.

[14] S. Cottrell. Critical Thinking Skills : Developing Effective
Analysis and Argument. Palgrave Macmillan, 2011.

[15] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artificial Intelligence, 77:321–
357, 1995.

[16] V. Feng and G. Hirst. Classifying arguments by scheme.
In Proceedings of 49th Annual Meeting of ACL: Human
Language Technologies (HLT 11), pages 987–996, 2011.

[17] E. Florou, S. Konstantopoulos, A. Koukourikos, and
P. Karampiperis. Argument extraction for supporting public
policy formulation. In Proceedings of the 7th Workshop on
Language Technology for Cultural Heritage, Social Sciences,
and Humanities, pages 49–54. ACL, 2013.

[18] A. Garcı́a and G. Simari. Defeasible logic programming:
an argumentative approach. Theory and Practice of Logic
Programming, 4(1-2):95–138, 2004.

[19] A. Hunter. Reasoning about the appropriateness of proponents
for arguments. In Proceedings of AAAI’08, pages 89–94. MIT
Press, 2008.

[20] A. Hunter. Base logics in argumentation. In Proceedings
of Computational Models of Argument COMMA’2010, pages
275–286, 2010.

[21] S. Modgil and T. Bench-Capon. Metalevel argumentation.
Journal Logic and Computation, 21(6):959–1003, 2011.

[22] M. Moens, E. Boiy, R. Mochales Palau, and C. Reed. Auto-
matic detection of arguments in legal texts. In Proceedings
of 11th International Conference on AI and Law (ICAIL’07),
pages 225–230. ACM Press, 2007.

[23] A. Peldszus and M. Stede. From argument diagrams to
argumentation mining in texts: a survey. International Journal
of Cognitive Informatics and Natural Intelligence (IJCINI),
7(1):1–31, 2013.

[24] J. Pollock. How to reason defeasibly. Artificial Intelligence,
57:1–42, 1992.

[25] H. Prakken. An abstract framework for argumentation with
structured arguments. Argument and Computation, pages 1–
31, 2010.

[26] N. Rooney, H. Wang, and F. Browne. Applying kernel
methods to argumentation mining. In Proceedings of 25th
Int. Florida Art. Int. Research Society Conf. (FLAIRS’12),
pages 272–275, 2012.

[27] J. Schneider, T. Groza, and A. Passant. A review of ar-
gumentation for the social semantic web. Semantic Web:
Interoperability, Usability, Applicability, 4(2):159–218, 2013.

[28] Ch. Stab and I. Gurevych. Annotating argument components
and relations in persuasive essays. In Proceedings of 25th Int.
Conf. Computational Linguistics (COLING’14), pages 1501–
1510, 2014.

[29] S. Teufel, J. Carletta, and M. Moens. An annotation scheme
for discourse-level argumentation in research articles. In
Proceedings of EACL 1999, 1999.

[30] B. Verheij. Deflog: on the logical interpretation of prima facie
justified assumptions. Journal of Logic and Computation,
13(3):319–346, 2003.

[31] L. Wang and C. Cardie. Improving agreement and disagree-
ment identification in online discussions with a socially-tuned
sentiment lexicon. In Proceedings of the ACL Workshop
on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, 2014.

[32] M. Wooldridge, P. McBurney, and S. Parsons. On the meta-
logic of arguments. In ArgMAS, pages 42–56, 2005.

[33] A. Wyner, R. Mochales Palau, M. Moens, and D. Milward.
Approaches to text mining arguments from legal cases. In
Semantic Processing of Legal Texts, volume 6036 of LNCS,
pages 60–79. Springer, 2010.

[34] A. Wyner, J. Schneider, K. Atkinson, and T. Bench-Capon.
Semi-automated argumentative analysis of online product
reviews. In Proc. 4th Conf. on Computational Models of
Argument (COMMA’12), pages 43–50. IOS Press, 2012.

