Sarah Benyagoub 
email: benyagoub.sarah@univ-mosta.dz
  
Meriem Ouederni 
email: meriem.ouederni@enseeiht.fr
  
Yamine Ait Ameur 
email: yamine@enseeiht.fr
  
Towards correct Evolution of Conversation Protocols

Keywords: System Evolution, Realisability, Conversation Protocols, Formal Verification, Behavioural Systems

Distributed software systems change dynamically due to the evolution of their environment and/or requirements, their internal designing policies, and/or their specification bugs which must be fixed. Hence, checking system changes must be run continuously. Such systems are usually composed of distributed software entities (called peers) interacting with each other through message exchanges, and this is to fulfil a common goal. The goal is often specified by a conversation protocol (CP), i.e. sequences of sent messages. If there exists a set of peers implementing CP, then CP is said to be realisable. In this paper, we propose a stepwise approach for checking whether an evolution, i.e. adding and/or removing messages and/or peers, can be applied to a CP that was realisable before updating it. We define a set of correct evolution patterns and we suggest an algebra of CP evolution. Our approach ensures that CP evolution preserves the realisability condition.

INTRODUCTION

Distributed software systems change dynamically due to the evolution of their running environment and/or requirements, their internal designing policies, and/or their possible specification bugs which must be fixed. Such systems are usually composed of distributed software entities (called peers) evolving concurrently in a distributed setting and interacting with each other throughout messages exchanges to fulfil a common goal.

In a top-down design of distributed software, the interaction among peers is usually modelled using collaboration diagrams, Message Sequence Chains (MSCs) or conversation protocols (CP) [START_REF] Bultan | Modeling interactions of web software[END_REF]). Let us focus on CPs, these describe interactions among peers by describing uniquely the allowed sequences of sent messages. Here, it is crucial to know if the set of interactions in a CP can be implemented. In other word, considering a CP, one must check whether there exists a set of peers where their composition generates the same sequences of send messages as specified by the CP. This issue characterises the realisability problem.

In order to formally specify, verify, and fix issues which violate realisability, CP can be modelled using Labelled Transition Systems (LTSs) where communication follows either synchronous or asynchronous semantics. Using this model enables automated analysis of interaction properties, e.g., realisability checking. Although it is obvious to check realisability in the case of synchronous communication, this realisability problem remains undecidable in the most general setting [START_REF] Brand | On Communicating Finite-State Machines[END_REF] due the possibly ever-increasing queuing mechanism and unbounded buffers in the case of asynchronous communication.

The recent work of [START_REF] Basu | Deciding Choreography Realizability[END_REF]) proposed a necessary and sufficient condition for verifying if a CP can be implemented by a set of peers communicating asynchronously throughout FIFO buffers with no restriction on their buffer sizes. This work solves the realisability issue for a subclass of asynchronously communicating peers, namely, the synchronisable systems, i.e., the system composed of interacting peers behaves equally by applying synchronous or asynchronous communication. A CP is realisable if there exists a set of peers implementing that CP, i.e., they send messages to each other in the same order as CP, and such that their composition is synchronisable. In [START_REF] Basu | Deciding Choreography Realizability[END_REF], the full checking of CP realisability applies the following steps: i) peer projection from CP; ii) checking synchronisability; and iii) checking equivalence between CP and its distributed system.

Based on LTS model, we can verify CP realisability using existing techniques such as model checking for systems with reasonable sizes [START_REF] Basu | Deciding Choreography Realizability[END_REF]) (i.e., number of states, transitions and communicating peers) or theorem proving for scalable systems [START_REF] Farah | A Correct-by-Construction Model for Asynchronously Communicating Systems[END_REF].

Considering realisable CPs, we are interested in studying the evolution of those CPs. In fact, these specify cross-organisational interactions with no centralised control between peers which can be administrated and executed by geographically distributed and autonomous companies. In order to cope with new environment changes and enduser requirements, system interaction and the corresponding CP need to evolve continuously over time. However, changing CP might result in knockon effects on its realisability. Hence, verifying the correctness of CP evolution to ensure realisability preservation must also be run continuously.

Regarding the literature, existing work such as (Rinderle et al. 2006b;[START_REF] Ryu | Supporting the Dynamic Evolution of Web Service Protocols in Serviceoriented Architectures[END_REF][START_REF] Roohi | Realizability and Dynamic Reconfiguration of Chor Specifications[END_REF] give some solutions for system evolution. In (Rinderle et al. 2006b;[START_REF] Ryu | Supporting the Dynamic Evolution of Web Service Protocols in Serviceoriented Architectures[END_REF] the authors propagate the choreography updates into communicating peers. [START_REF] Roohi | Realizability and Dynamic Reconfiguration of Chor Specifications[END_REF] focuses on system reconfiguration meaning that for a CP which has been updated into CP', the authors check whether the traces that has been executed in CP can be performed again in CP'. This reconfiguration can be better applied for run-time system to ensure execution consistency. All these approaches do not consider realisability preservation.

There exist other research approaches which can be applied as a posteriori evolution checking. The approaches suggest solutions every time the realisability check fails. For example, existing work on enforcing CP realisability such as the one given in (G üdemann et al. 2012) and recently on CP repairability [START_REF] Basu | Automated Choreography Repair[END_REF]) can be used to ensure the realisability of an already updated CP.

Our statement is different than existing work and it is as follows: an evolution is allowed if it does not violate the CP realisability. By doing so, we suggest a priori verification approach of CP evolution. Instead of running the full realisability checking as described previously and detailed in Section 2, our proposal consists in performing partial verification uniquely at the CP level in order to answer the question if there still exist a set of peers implementing the updated CP. In this work, we consider the evolution at the CP level and we study its realisability effect on the distributed peers. The main issue is considering that system specifications may change over time (e.g., service upgrade or degrade by adding and/or removing either messages exchanges or interacting peers), how can we ensure realisability preservation? to answer these questions, we proceed as follows:

• We first describe CP using LTS

• We rely on the realisability condition given in [START_REF] Basu | Deciding Choreography Realizability[END_REF] • We identify the set of behavioural properties which can hold by CP evolution yet they violate the realisability condition

• We suggest a set of evolution patterns and we show how the application of such patterns do not violate CP realisability

• We propose a language for correct CP evolution

The remainder of this paper is structured as follows: Section 2 introduces the formal definitions and the background on which our proposal relies. Section 3 presents the behavioural properties to be checked before application of CP evolution. In Section 4, we suggest an algebra for CP evolution with no violation of realisability. We present in Section 5 a case study to illustrate our approach. Section 6 overviews related work. Lastly, we conclude our work and present some perspectives in Section 7.

DEFINITIONS

In this section, we present our behavioural model for peers and CP. We, then, define how distributed peers can be obtained by projection from a given CP. Lastly, we define synchronisable systems, and we present realisability condition considering asynchronous communication.

Peer Model

We use Labeled Transition Systems (LTSs) for modelling the CP and the peers included in that specification. This behavioural model defines the order of sent messages in CP. At the peers level, the LTS can be computed by projection from CP and they describe the order in which those peers execute their send and receive actions.

Definition 1 (Peer) A peer is an LTS P = (S, s 0 , Σ, T ) where S is a finite set of states, s 0 ∈ S is the initial state, Σ = Σ ! ∪ Σ ? ∪ {τ } is a finite alphabet partitioned into a set of send messages, receive messages, and the internal action, and T ⊆ S ×Σ×S is a transition relation.

We write m! for a send message m ∈ Σ ! and m? for a receive message m ∈ Σ ? . We use the symbol τ (tau in figures) for representing internal activities. A transition is represented as s l → s where l ∈ Σ.

(internal) s τ → s ∈ T a if ∃i ∈ {1, . . . , n}, (i) s i τ → s i ∈ T i , (ii) ∀k ∈ {1, . . . , n} : Q k = Q k , and (iii) ∀k ∈ {1, . . . , n} : k = i ⇒ s k = s k
We use LT S k a to define the bounded asynchronous composition, where each message buffer is bounded to size k. The definition of LT S k a can be obtained from Def. 5 such that the maximum number of send messages that can be stored in the buffers is limited to k. A system is synchronizable [START_REF] Basu | Deciding Choreography Realizability[END_REF] when its behavior remains the same under both synchronous and asynchronous communication semantics. This is checked by bounding buffers to k = 1 and comparing interactions in the synchronous system with send messages in the asynchronous system.

Definition 6 (Synchronizability) Given a set of peers {P 1 , . . . , P n }, the synchronous system (P 1 | . . . | P n ) = (S s , s 0 s , L s , T s ), and the 1-bounded asynchronous system

((P 1 , Q 1 1 ) || . . . || (P n , Q 1 n )) = (S a , s 0
a , L a , T a ), two states r ∈ S s and s ∈ S a are synchronizable if there exists a relation Sync such that Sync(r, s) and:

• for each r m -→ r ∈ T s , there exists s m! --→ s ∈ T a , such that Sync(r , s ); • for each s m! --→ s ∈ T a , there exists r m -→ r ∈ T s , such that Sync(r , s ); • for each s m? --→ s ∈ T a , Sync(r, s ).
The set of peers is synchronizable if Sync(s 0 s , s 0 a ).

Example 4

The system described in Figure 1 is not synchronisable because peer 1 can send "a" and "c" in sequence in the asynchronous system, whereas "b" occurs before "c" in the synchronous system as specified in the CP.

In order to check CP realisability, there is a need to check well-formedness. Well-formedness states that whenever the i-th peer buffer Q i is nonempty, the system can eventually move to a state where Q i is empty. For every synchronizable set of peers, if the peers are deterministic, i.e., for every state, the possible send messages are unique, wellformedness is implied.

The approach presented in [START_REF] Basu | Deciding Choreography Realizability[END_REF] proposes a sufficient and necessary condition showing that the realizability of conversation protocols is decidable.

Definition 7 (Realizability) A conversation protocol CP is realizable if and only if (i) the peers computed by projection from this protocol are synchronizable, (ii) the 1-bounded system resulting from the peer composition is well-formed, and (iii) the synchronous version of the distributed system {P 1 , . . . , P n } is equivalent to CP .

In the remainder of this paper, we refer to a realisable CP as R(CP).

Both synchronizability and realizability properties can be checked automatically using equivalence checking as done in [START_REF] Basu | Deciding Choreography Realizability[END_REF]. This check requires the modification of the asynchronous system for hiding receptions (m? τ ), renaming emissions into interactions (m! m), and removing τtransitions using standard minimization techniques. The correctness of that approach is given in [START_REF] Farah | A Correct-by-Construction Model for Asynchronously Communicating Systems[END_REF].

BEHAVIOURAL PROPERTIES

In order to check the realisability of a CP that has been updated, we must ensure that the resulting LTS does not hold some branching and/or sequential structures which violate realisability condition. We define in the following some properties which enable us to check such structures.

Branches related Properties Property 1 (Non-Deterministic Choice (NDC))

Given a conversation protocol CP =< S CP , s 0 CP , L CP , T CP >, a state s CP ∈ S CP is called non-deterministic branching state if :

• ∃{s CP m P i ,P j -----→ s CP , s CP m P i ,P j -----→ s CP } ⊆ T CP , and

• s CP = s CP
This choice is referred to as non-deterministic choice.

We define in the following divergent choice (this is also called non-local branching choice in the literature) and it is different than process divergence (Ben-Abdallah and Leue 1997).

Property 2 (Divergent-Choice) Given a conversation protocol CP =< S CP , s 0 CP , L CP , T CP >, a state s CP ∈ S CP is divergent branching state if :

• ∃{s

m P i ,P j -----→ s CP , s CP m P j ,P i -----→ s CP } ⊆ T CP ,

and

• s CP = s CP , and

• m = m
This choice is referred to as divergent choice.

Sequences related Properties

Given a CP, there is at least two partitions of peers where there exist no interaction between both partitions.

Property 3 (Independent Sequences (ISeq))

Given a conversation protocol CP =< S CP , s 0 CP , L CP , T CP >, a transition sequence

s CP m P i ,P j -----→ . . . s CP m P k ,Pq
-----→ s CP , where all transitions are in T CP , is called independent sequence if:

• {P i , P j } ∩ {P k , P q } = ∅
The following property enables us to detect sequences in CP which lead to non-local emission choices made by two different peers in the distributed system. To avoid that situation, every peer that join the conversation at an intermediate state (i.e., different than the initial state) must be receiver the first time it shows up. Otherwise, if a peer would like to send a message m at an intermediate state, then this must be receiver in its last interaction before sending m.

Property 4 (Divergent Sequences (DSeq))

Given a CP, there exists a transition sequence

s 0 CP m P i ,P j -----→ . . . s CP m P k ,Pq
-----→ s CP where all transitions are in T CP :

• for every sender peer P t appearing before state s CP , t = k, or

• there is at least a transition s CP m P k ,P t -----→ s CP ∈ T CP such that:

s CP is reachable from s CP , and

-there is no transition in s CP m P k ,P t -----→ s CP . . . s m P k ,Pq
-----→ s CP where P k is receiver.

COMPOSITIONAL REALISABILITY

CP evolution stands for two possible tasks, namely, adding and/or removing either messages and/or interacting peers. We define here how CP realisability can be preserved by applying some evolution patterns presented in the following.

Evolution Patterns

We introduce in this paper two composition operators denoted as ⊗ (+,sCP ) for branching composition and ⊗ ( ,sCP ) for sequential composition. We also assume other operators not presented here for lack of space, namely, ⊗ ( ,sCP ) for parallel composition, and ⊗ ( ,sCP ) for looping composition. The operator ⊗ ( ,sCP ) generates at a state s CP all the interleaved behaviour of a set of transitions such that every generated branch must satisfy sequence related properties. The operator ⊗ ( ,sCP ) enables us to add self-loop of the form s m P i ,P j -----→ s where i = j and such that sequence related properties must be preserved. , L CP i , T CP i > and a state s CP ∈ S CP , the branching composition ⊗ (+,sCP ) (CP, {CP 1 , . . . , CP n }) means that there is a choice at s CP between the remaining behaviour of CP (i.e., starting from s CP ) and all CP i such that:

• Properties 1 and 2 do not hold at the state s CP , and

• ∀CP i , ⊗ ( ,sCP ) (CP, CP i ) holds
Remark 1 The application of an operator ⊗ (op,sCP ) (CP , CP ) assumes that the initial state of CP is fused with the state s CP .

Algebra for CP Evolution: syntax and language

We introduce in Listing 1 a CP algebra which we use for defining the evolution such that realisability is preserved. We refer to a state s f as final if there is no outgoing transition at that state. We denote by ECP a CP that evolutes over time while preserving realisability. The expression ECP + stands for one or more ECP .

ECP ::= ECP b | ECP op ECP b + ECP b ::= s (Pi,m,Pj ) ------→ s | ∅ op ::= ⊗ (+,s f ) | ⊗ ( ,s f ) | ⊗ ( ,s f ) | ⊗ ( ,s f )
Listing 1: CP Evolution Grammar

Realisable CP Evolution

Conjecture 1 ECP b is realisable.

Proof 1 This is obvious by default.

Conjecture 2 Given an ECP =< S ECP , s 0 ECP , L ECP , T ECP > and a ECP b such that R(ECP ) and R(ECP b ), s f ∈ S ECP , then requires to check its effect on other partner peers. This approach is implemented into DYCHOR.

In [START_REF] Preda | Dynamic Choreographies -Safe Runtime Updates of Distributed Applications[END_REF][START_REF] Fdhila | Dealing with change in process choreographies: Design and implementation of propagation algorithms[END_REF], both approaches study the evolution that might arise at the peers side. The authors propagate the change from one peer to other partners. The work proposed in [START_REF] Fdhila | Dealing with change in process choreographies: Design and implementation of propagation algorithms[END_REF] applies to Business Process Management (BPM) domain and Service Oriented Architecture (SOA). It describes service choreographies using tree-based model. The authors consider some changes such as "replace, delete, update, and insert" of behavioural fragments. [START_REF] Preda | Dynamic Choreographies -Safe Runtime Updates of Distributed Applications[END_REF] define a new language referred to as DIOC for programming distributed applications that are free from deadlocks and races by construction. The semantics of DIOC language relies on labelled transition systems. The approach given in [START_REF] Preda | Dynamic Choreographies -Safe Runtime Updates of Distributed Applications[END_REF] enables to update fragment of codes of distributed peers. This can be specified at the choreography level where blocks of code that can be updated dynamically must be tagged using "scope". These "scope" blocks have to be known a priori when describing the choreography. The solutions given in [START_REF] Preda | Dynamic Choreographies -Safe Runtime Updates of Distributed Applications[END_REF][START_REF] Roohi | Realizability and Dynamic Reconfiguration of Chor Specifications[END_REF][START_REF] Jureta | Dynamic Requirements Specification for adaptable and open Service-oriented Systems[END_REF] deal with run-time evolution.

To the best of our knowledge, we are the first who verify the evolution at the CP level such that its realisability must be preserved. Furthermore, we have no restriction on the application domain, yet we use a formal model which can be applied for design, verification, and implementation of different distributed systems, e.g. Web services, concurrent systems, Cyber Physical Systems, etc. Our result applies also for asynchronously communicating systems as far as these are synchronisable with no restriction on the buffer size.

CONCLUSION AND PERSPECTIVES

In this paper, we presented a preliminary solution for correct evolution of distributed system for which their interaction is described with a conversation protocol. We proposed a language which enables one to incrementally design distributed system that can be updated over time such that their realisability is preserved while applying and composing evolution operators.

In the near future we aim at formalising all properties and composition operators used in this paper. We intend to prove that our evolution operators and their properties preserve CP realisability. Our conjectures have also to be formally proved. We aim also at defining looping and parallel operators as well as extending our language with new operators for messages broadcast and multicast. Lastly, we are using theorem proving techniques in order to prove the correctness of CP evolution. Based on proofbased techniques, we aim at handling any number of peers and exchanged messages such that scalability is ensured.

  CP , T CP > and a state s CP ∈ S CP , the sequential composition ⊗ ( ,sCP ) (CP, CP ) means that CP must be executed before CP such that Properties 3 and 4 do not hold. CP , T CP >, a set {CP i }, i = 1..n such that CP i =< S CP i , s 0

	Definition 8 ⊗ ( ,sCP )	Given		a	CP	=<
	S CP , s 0 CP , L CP , T CP S CP , s 0 CP , L Definition 9 ⊗ (+,sCP )	>, Given	a	a	CP CP	=< =<
	S CP , s 0 CP , L CP i