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Abstract. The method of ensemble variational assimilation
(EnsVAR), also known as ensemble of data assimilations
(EDA), is implemented in fully non-linear conditions on
the Lorenz-96 chaotic 40-parameter model. In the case of
strong-constraint assimilation, it requires association with
the method of quasi-static variational assimilation (QSVA).
It then produces ensembles which possess as much reliabil-
ity and resolution as in the linear case, and its performance
is at least as good as that of ensemble Kalman filter (EnKF)
and particle filter (PF). On the other hand, ensembles consist-
ing of solutions that correspond to the absolute minimum of
the objective function (as identified from the minimizations
without QSVA) are significantly biased. In the case of weak-
constraint assimilation, EnsVAR is fully successful without
need for QSVA.

1 Introduction

In the first part of this work (Jardak and Talagrand, 2018), the
technique of ensemble variational assimilation (EnsVAR),
which achieves exact Bayesian estimation in the conditions
of linearity and Gaussianity, has been implemented on two
chaotic toy models with small dimension. The first model
was the 40-parameter model introduced by Lorenz (1996). A
linearized version was used as reference for the case where
exact Bayesianity is achieved. Experiments were then per-
formed with the full non-linear model over assimilation win-
dows for which a linear approximation is almost valid for the
temporal evolution of the uncertainty. Although non-linear
effects are distinctly present, the statistical quality of the en-
sembles produced by EnsVAR is as good as in the linear case.

The second model was the Kuramoto–Sivashinsky equation
(Kuramoto and Tsuzuki, 1975, 1976). Similar conclusions
were obtained.

EnsVAR is implemented in this second part, still on the
Lorenz (1996) model, over assimilation windows for which
a linear approximation is no longer valid. It is implemented
first in the strong-constraint case (Sect. 2), where it turns
out to be necessary to use it together with the method of
quasi-static variational assimilation (QSVA), introduced by
Pires et al. (1996). The performance of EnsVAR is compared
with that of ensemble Kalman filter (EnKF) and particle fil-
ter (PF) in Sect. 3. EnsVAR is then implemented in the weak-
constraint case (Sect. 4), where the use of QSVA turns out not
to be necessary. Conclusions are drawn in Sect. 5. The gen-
eral conclusion is that, in the conditions of our experiments,
EnsVAR is as successful in non-linear as in linear situations.

Except when explicitly mentioned (and that will be the
case mostly concerning the length of the assimilation win-
dows and the number Nwin of realizations over which di-
agnostics are performed), the experimental set-up will be
the same as in Part 1. In particular, the size of the ensem-
bles Nens = 30 will always be the same. And, unless spec-
ified otherwise, the space–time distribution of observations
will also be the same (one complete set of observations of
the state variable twice a day, with white-in-space-and-time
noise, with standard deviation σ = 0.63).

Notations such as Eq. (I-3) or Fig. I-2 will refer to equa-
tions or figures of Part 1 (Jardak and Talagrand, 2018).
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Figure 1. Diagnostics of an experiment performed in the same conditions as for Figs. I-4 and I-5, with the only difference being that the length
of the assimilation windows is now 10 days. (a) Truth (dashed black curve), observations (blue dots), and minimizing solutions (red curves)
at the initial time of one assimilation window, as functions of the spatial coordinate. (b) Truth (dashed curves) and minimizing solutions
(red curves) as functions of time at two grid points over one assimilation window. (c) Rank histogram for the variable x over all grid points
and ensemble assimilations. (d) Reliability diagram for the event {x < 1.14}, which occurs with frequency 0.35 (dashed–dotted horizontal
curve), built over all grid points and ensemble assimilations. (e) Components of the Brier score for the events E = {x < τ }, evaluated over all
grid points and ensemble assimilations, as functions of the threshold τ (red curve: reliability, blue curve: resolution). (f) Average RMS errors
to truth, as functions of time over assimilation windows. Blue curve: error in individual assimilations. Red curve: error in mean of ensembles
(the black dashed–dotted curve shows the standard deviation of observational error).

2 Strong-constraint assimilation

Figure 1 shows the same diagnostics as Figs. I-4 and I-5, for
an experiment in which the length of the assimilation win-
dow is 10 days instead of 5. Comparison with Figs. I-4 and
I-5 shows an obvious degradation of the quality of the assim-
ilation. The top panels (to be compared with the top panels
of Fig. I-4) show that the dispersion of the minimizing solu-

tions is now much larger. That dispersion is statistically much
too large can be seen from the rank histogram (middle-left
panel), which has a distinct humpback shape, meaning that
the verifying truth is much too often located in the central
part of the ensembles. The error from the truth is now larger
than the observational error (bottom-right panel), which is
an obvious proof of failure of the assimilation process. The
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Figure 2. Histogram of (half) the values of the minima of the ob-
jective function (I-9), for the same experiment as in Fig. 1.

reliability diagram (middle-right panel) differs slightly, but
markedly, from the diagram in Fig. 1.5 through its sigmoid
shape. That can easily be verified to be consistent with the
overdispersion seen on the rank histogram. And both Brier
scores (bottom-left panel) are significantly larger than in
Fig. I-5.

Another diagnostic is given in Fig. 2, which shows the his-
togram of the minimizing values of the objective function (I-
9) (the format is the same as in Fig. I-3). The histogram is
clearly bimodal. The values in the left mode have expecta-
tion 387.1 and standard deviation 18.8, in good agreement
with the values of 400 and 20 indicated by the χ2 linear
theory (Eqs. I-10–I-11; note that because of the increase in
the length of the assimilation window from 5 to 10 days,
the value of the parameter p/2 is now 400). This is to be
noted since there is a priori no reason to expect that mini-
mizations that lead to the left mode correspond to errors εk
and δk (Eqs. I-7–I-8) distributed in such a way as to verify
conditions (I-10–I-11). The right mode in Fig. 2 is outside
the linear approximation. It is also worth mentioning that out
of 270 000 values of Jmin, only 96 330 were situated in the
left mode.

These results tend to confirm the interpretation that was
given of results obtained in Part 1 (see Fig. I-7 and associ-
ated comments). This agrees with the discussion and con-
clusions of the paper by Pires et al. (1996). Because of the
chaotic character of the motion, the uncertainty in the posi-
tion of the observed system is located on a folded subset in
state space. The longer the observation period is, the more
folded the uncertainty subset is. Secondary minima of the
objective function (I-9) may occur on the various folds (for
more on this point, see Figs. 4 and 5 of Pires et al., 1996, and
the discussion therein). With this interpretation, the left mode
on Fig. 2 corresponds to absolute minima and the right mode

to secondary ones. Also, because of the longer assimilation
window, the basin of attraction of the absolute minimum is
narrower than that of Part 1, and more minimizations lead to
a secondary minimum. A related discussion can be found in
Ye et al. (2015).

Pires et al. (1996) showed that, in the case of noisy obser-
vations of chaotic motion, the location of the absolute min-
imum of the objective function is not significantly affected
by the observational noise. It makes therefore sense to lo-
cate that absolute minimum. To that end, they proposed the
method of quasi-static variational assimilation (QSVA). In
that method, the length of the assimilation window is gradu-
ally increased, keeping the same initial time, with each new
minimization being started from the result of the previous
one.

This is what has been done here. Figure 3, which is in the
same format as Fig. 1, depicts the results produced by the
use of quasi-static variational assimilation over an overall 10-
day assimilation window, with an increment of 1 day for the
gradual increase in the assimilation window.

The improvement over Fig. 1 is obvious. The spread of
the minimizing solutions (top two panels) is much smaller,
the rank histogram (middle left) is almost perfectly flat, the
reliability diagram (middle right) is much closer to the diag-
onal, and both Brier scores (bottom left) have decreased. The
estimation error (bottom right) is now, as it must, well be-
low the observational error. The error in the ensemble mean
(red curve) is now 0.1 at the middle point of the assimilation
window, against 0.2 in Fig. I-4, relative to assimilations over
5-day windows (without QSVA). This improvement must be
due to the fact that more observations, distributed over a
longer assimilation window, have been used. In particular,
as discussed in Bocquet and Sakov (2014), observations at
the beginning and the end of the assimilation window must
reduce the uncertainty in respectively the stable and unstable
modes of the system. The rank histogram is also flatter than
in the corresponding Fig. I-5. That must be due mostly to the
larger validating sample.

Figure 4, which is again in the same format as Figs. 1 and
3, is relative to an 18-day QSVA (with still an increment of
1 day between successive assimilation windows). It confirms
the previous conclusions. The estimation error and both com-
ponents of the Brier score are reduced even further.

All these results show that ensemble variational assimi-
lation is successful, if implemented with QSVA, over long
assimilation windows for which the tangent linear approxi-
mation is expected to fail. EnsVAR produces ensembles with
a high degree of statistical reliability. In addition, the accu-
racy of the estimated ensembles, as measured by resolution
or by the error in the ensemble mean, is improved when the
length of the assimilation window is increased.

It can be noted that, if EnsVAR is successful in non-linear
situations, it is not because of a possible intrinsically non-
linear character. Minimization of an objective function of
form (I-3) is a priori valid for statistical estimation only in
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Figure 3. Same as Fig. 1, for quasi-static variational assimilations, with an increase in the length of the successive assimilation windows
by 1 day. All scores are computed for the ensembles obtained from the final minimizations performed over the whole 10-day assimilation
windows. The reliability diagram is relative to the event E = {x < 0.94}, which occurs with frequency 0.29 (dashed–dotted horizontal curve).

a linear situation. The success of EnsVAR probably results
from the fact that, through QSVA, it is capable of maintaining
the current estimate of the flow within the ever-narrower re-
gion of state space in which the tangent linear approximation
is valid. If the temporal density of the observations became so
small, or alternatively if the dynamics of the observed system
became so non-linear that it would not be possible to jump
from one set of observations to the next one within a linear
approximation, EnsVAR would probably fail. This point will
deserve further study.

There is actually no reason to expect any strict link be-
tween the validity of the tangent linear approximation and
the possible statistical reliability of minimizing solutions that
lie within that approximation (not to speak of their Bayesian-

ity). As already said, one can expect the a posteriori Bayesian
probability distribution to be concentrated for long assimila-
tion windows on a folded non-linear subset in state space.
The bimodality of the histogram in Fig. 2 has been inter-
preted as separating the minimizations that lead to the ab-
solute minimum of the objective function (left mode) from
those that lead to a secondary minimum (right mode). This
suggests, without resorting to QSVA, retaining only those
minimizations corresponding to the left mode of the his-
togram. This of course requires, if one wants to obtain en-
sembles with dimension Nens, a larger number of minimiza-
tions (even if there is of course no need to continue until
convergence minimizations which show at an early stage that
they will lead to the right mode of the histogram).

Nonlin. Processes Geophys., 25, 589–604, 2018 www.nonlin-processes-geophys.net/25/589/2018/
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Figure 4. Same as Fig. 3, for quasi-static variational assimilations performed over 18-day assimilation windows, with an increase in the
length of the successive assimilation windows by 1 day. The reliability diagram is for the event E = {x < 0.94}, which occurs with frequency
0.29 (dashed–dotted horizontal curve).

This has been done on a set of Nwin = 1443 realizations
(and over 10-day assimilation windows). The results are
shown in Fig. 5, which presents the same diagnostics as those
shown in the lower four panels of Fig. 1. The histogram (top-
left panel) shows a distinct bias towards low values of the
variable x, associated with a distinct underdispersion. This is
confirmed by the reduced centred random variable (RCRV),
which has positive mean 0.25 and standard deviation 1.29. It
is also confirmed by the reliability diagram (top right), which
lies below the diagonal, and the error curves (bottom right),
where the ratio between the errors in the individual mini-
mizations and in the mean of the ensembles is less than

√
2.

The former is qualitatively consistent with a bias towards low

values of x, and the latter with both a bias and an underdis-
persion. Finally, concerning the Brier score (bottom left), it is
seen that the reliability component is degraded with respect
to QSVA (the resolution component, on the other hand, is not
significantly modified).

Clearly, this procedure is a failure as far as reliability is
concerned. But it can also be noted that the errors (bottom-
right panel) are smaller than those of Fig. 3, especially at
both extremities of the assimilation window. The errors in
the individual minimizations (blue curve) are 0.395 and 0.24
at the beginning and end of the assimilation window (against
0.47 and 0.28 respectively in Fig. 3). As for the errors in the
ensemble means (red curves), they are 0.28 and 0.175 at the

www.nonlin-processes-geophys.net/25/589/2018/ Nonlin. Processes Geophys., 25, 589–604, 2018
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Figure 5. Same as the lower four panels of Fig. 1, restricted to minimizations that lead to the absolute minimum of the objective function
(I-9), as identified from the value of the minimum itself (see Fig. 2). The diagnostics have been computed on 1443 realizations. The reliability
diagram (b) is relative to the event E = {x < 0.33} , which occurs with frequency 0.38. In panel (d), which shows the RMS estimation errors
along the assimilation window, the green curve has been obtained by dividing the values on the blue curve by a factor

√
2.

beginning and end of the window (against 0.33 and 0.2 in
Fig. 3). There is less difference at the middle of the window.

Judging from the above results, restricting the ensembles
to minimizations that lead to the absolute minimum of the
objective function degrades reliability, but improves to some
extent the quadratic fit to reality. Now, the Bayesian expec-
tation E(x|z) is the deterministic function of the data vec-
tor z that minimizes the error variance on the state vector
x. Should the present results be confirmed, they would con-
stitute an a contrario proof that QSVA, although it produces
ensembles that possess high reliability, is not Bayesian.

3 Comparison with ensemble Kalman filter and
particle filter

As in Part 1, we compare the results produced by EnsVAR
with those produced by ensemble Kalman filter (EnKF) and
particle filter (PF). Figures 6, 7, and 8 show the results ob-
tained at the final time of 10-day assimilations performed
with respectively QSVA EnsVAR, EnKF, and PF. The al-
gorithms used for EnKF and PF are the same as in Part 1.
Except for the top-left panel of Fig. 6, the format of the fig-
ures is the same as the format of Figs. 9–11 of Part 1. The
top-left panel of Fig. 6, where the quantity on the horizontal

Nonlin. Processes Geophys., 25, 589–604, 2018 www.nonlin-processes-geophys.net/25/589/2018/
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Figure 6. Further diagnostics of 10-day ensemble assimilations performed with QSVA EnsVAR. All diagnostics are performed at the end
of the assimilation windows. (a) Truth (dashed black curve), observations (blue dots), and minimizing solutions (red curves), as functions
of the spatial coordinate, at the end of one assimilation window. (b) Rank histogram for the variable x over all grid points and ensemble
assimilations. (c) Reliability diagram for the event E = {x < 0.94}, which occurs with frequency 0.29 (dashed–dotted horizontal curve), built
over all grid points and ensemble assimilations. (d) Components of the Brier score (same format as in Fig. 1).

axis is the spatial coordinate, shows the same diagnostics as
the top-left panels of Figs. 3 and 4, but for the final time of
an assimilation window. It is again seen that the dispersion
of the minimizing ensemble solutions is small. The top-left
panels of Figs. 7 and 8 show also the dispersion of the mini-
mizing solutions for one assimilation window, but as a func-
tion of time along the window. The dispersion is small for
EnKF, but distinctly larger for PF. The other panels show on
all three figures diagnostics at the end of the assimilations.
Concerning the rank histogram (top-right panels), it is noisy
for EnsVAR, but does not show otherwise any sign of dis-

symmetry or inadequate spread. This is similar to what was
observed in Part 1 at the end of 5 days of assimilation (Fig. I-
9). On the other hand, the histograms for EnKF and PF, in
addition to being noisy, and again as in Part 1 (Figs. I-10 and
I-11), have a distinct U shape, which shows that the ensem-
bles (although individually dispersed as shown by the top-left
panels) tend to miss their target. Concerning the reliability
diagrams (bottom-left panels), it is difficult to see visually
any significant difference between the three algorithms. The
Brier scores (bottom-right panels) show similar performance

www.nonlin-processes-geophys.net/25/589/2018/ Nonlin. Processes Geophys., 25, 589–604, 2018
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Figure 7. Diagnostics for assimilations performed with EnKF. (a) Temporal evolution, for one realization, of the truth at three grid points
(black curves) and of the 30 corresponding ensemble solutions at the same points (red curves). The other three panels are in the same format
as in Fig. 6 (and, as in Fig. 6, show diagnostics performed at the final time of the assimilation windows).

for EnsVAR and EnKF, but distinctly poorer performance for
PF. This again is similar to what was observed in Part 1.

Similar results have been obtained, with the same conclu-
sions, for longer assimilation periods (not shown).

EnsVAR shows therefore a slight advantage over EnKF
and a more distinct advantage over PF. This conclusion is
however to be taken with some caution and will be further
discussed in the concluding section of the paper.

4 Weak-constraint assimilation

We present in this section the results of experiments that have
been performed in the weak-constraint case when the deter-
ministic model (I-6) is no longer considered as being exact.
Following a standard approach, we now assume that the truth
is governed by the equation

xk+1 =M(xk)+ bk, (1)

where bk is a white-in-time-and-space stochastic noise with
probability distribution N (0,Qk) at time k.

A typical experiment is as follows. A reference truth
xr
k,k = 0, · · ·,K is created using Eq. (1) for a particular real-

Nonlin. Processes Geophys., 25, 589–604, 2018 www.nonlin-processes-geophys.net/25/589/2018/
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Figure 8. Same as Fig. 7, for assimilations performed with PF.

ization of the noise bk . Noisy observations yk are extracted
from that reference truth in the same way as in Part 1 (Eq. I-
7). The data to be used in order to reconstruct the whole se-
quence of states xr

k now consist of the observations yk and
of the a priori estimates wk = E(bk)= 0 of the noise bk . The
general expression (I-3) for the objective function to be min-
imized then takes the standard weak-constraint form

J (ξ0,η0,η1, · · ·,ηK−1)= (2)

1
2

K∑
k=0

[
Hkξ k − yk

]TR−1
k

[
Hkξ k − yk

]
+

1
2

K−1∑
k=0

ηTk Q−1
k ηk

subject to

ξ k+1 =M(ξ k)+ ηk,k = 0, · · ·,K − 1. (3)

Implementation of ensemble variational assimilation as stud-
ied here requires the perturbation of both the observations yk
and the estimates wk according to their own error probabil-
ity distribution. This leads to the minimization of objective
functions of the form

J iens(ξ0,η0,η1, · · ·,ηK−1)=

1
2

K∑
k=0

[
Hkξ k − (y

iens
k )′

]T
R−1
k

[
Hkξ k − (y

iens
k )′

]
+ (4)

1
2

K−1∑
k=0

[
ηk − (w

iens
k )′

]T
Q−1
k

[
ηk − (w

iens
k )′

]
subject to condition (3).
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In Eq. (4), (yiens
k )′ is obtained, as in Eq. (I-8), by perturbing

the observation yk , while (wiens
k )′ ∼N (0,Qk) is the pertur-

bation around wk = 0. As done above (and in Part 1) for the
observational error, we do not consider the possibility that
the statistical properties of the model error may be imper-
fectly known.

As previously, for given reference solution xr
k and obser-

vations yk ,Nens minimizations of objective functions of form
(4) are performed with independent perturbations on yk and
wk . This is repeated on Nwin assimilation windows, with dif-
ferent xr

k and observations yk . Nens will always be equal, as
before, to 30. Nwin will depend on the experiment.

The experiments have again been performed with the
Lorenz-96 model (Eq. I-12). Experiments performed with a
linearized version of the model have produced results (not
shown) that are entirely consistent with the theory of the
BLUE, within a numerical uncertainty which is similar to
what has been observed in Part 1.

The covariance matrix Qk of the stochastic noise has been
taken equal to qI, where q is a positive scalar. Tests (not
shown) have been made on the predictability associated with
the different values of q. The value q = 0.1, which corre-
sponds to a predictability time of about 10 days, is used in
the sequel.

The experimental procedure is otherwise the same as be-
fore. In particular, the complete state vector is observed ev-
ery 0.5 days, with the observations being affected with un-
correlated unbiased Gaussian errors with the same variance
σ = 0.63 as in the strong-constraint case.

The first conclusion that has been obtained is that QSVA is
no longer necessary for achieving the minimization, at least
up to assimilation windows of length 18 days (the largest
value that has been tried). Clearly the presence of the addi-
tional noise penalty term in Eq. (4) has a regularizing effect
which acts as a smoother of the objective function variations.
This is in agreement with results already obtained by Fisher
et al. (2005) in a study of weak-constraint variational assim-
ilation.

Figure 9 shows the results obtained over 18-day assim-
ilation windows (and, because of computational cost, only
Nwin = 1200 realizations). The figure is to be compared with
Fig. 4, relative to 18-day strong-constraint variational assim-
ilations. The top-left panel, relative to one particular real-
ization, shows the temporal evolution, over the assimilation
window and at a particular grid point, of the truth and of
the corresponding 30 minimizing solutions. It is seen that,
if most of the latter closely follow the former, there are nev-
ertheless a few outliers (two solutions out of 30). In view of
what has already been said, these outliers must correspond
to secondary minima of the objective function (thus show-
ing departure from strict linearity). The rank histogram (top
right), the reliability diagram (middle left), and the Brier
scores (middle right) show overall good performance, al-
though not as good as in the strong-constraint case. In par-

ticular, both components of the Brier score are larger than
their counterparts in Fig. 4 (bottom-left panel).

The bottom panels of Fig. 9 show the RMS estimation er-
ror on the state variable xk and on the model noise bk (left
and right panels respectively), as functions of time along the
assimilation windows. In addition to the average RMS error
in the individual minimizations (blue curves) and in the mean
of the ensembles (red curves), the green curves (as in the
bottom-right panel of Fig. 5) are in the ratio 1/

√
2 to the blue

curves. The error is generally smaller than the standard devi-
ation of the corresponding observation error (0.63 and 0.32
respectively). But it is actually larger in the individual min-
imizations at both ends of the assimilation window for the
variable xk and at the initial time of the window for the model
noise bk . The coincidence of the red and green curves indi-
cates statistical reliability. The curves in both panels show os-
cillations with a half-a-day period, with minima at observa-
tion times for the xk error and maxima for the bk error. These
oscillations are not visible in the individual minimizing so-
lutions, nor in the mean of the ensembles (not shown), and
become visible only on averages made over a large number
of realizations. The origin of these oscillations can easily be
understood. At observation times, the minimizing fields tend
to fit closely the observations. In between observation times,
on the contrary, the minimization adjusts the model noise
so as to fit more closely the deterministic equation, with the
consequence that the minimizing fields drift from the truth.
These oscillations show up only because the temporal distri-
bution of the observations is the same in all realizations of
the assimilation. This interpretation is confirmed by Fig. 10,
which shows the same diagnostics (without green curves) for
weak-constraint assimilations over 5-day windows, with ob-
servations once every day. The top and bottom panels show
errors in xk and bk respectively. The error in xk is minimum
at observation times, at which the error in bk is maximum.

Figure 11, which is in the same format as Fig. I-7, shows
the distribution of (half) the minima Jmin of the objective
functions. It is seen that, in superposition to a background
of small minima, a number of very large values are present.
These are interpreted as corresponding (as in Fig. I-7) to sec-
ondary minima of the objective function (associated, for in-
stance, with the outliers of the top-left panel of Fig. 9). As
concerns the theoretical χ2 values, the number of observa-
tions of the variable xk has now increased to 37×40= 1480.
The use of weak constraint, which adds as many parameters
to be determined as parameters to be adjusted in the objective
function (2), does not modify the difference p =m−n. This
leads for the expectation and standard deviation of Jmin to
the values p/2= 720 and

√
p/2= 26.8. The sample values

in the background of small minima in Fig. 11 are respectively
727.45 and 25.51, in good agreement with the theoretical val-
ues, and with the interpretation that those small minima cor-
respond to minimizing solutions that lie within the range of
the tangent linear approximation.
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Figure 9. Diagnostics of weak-constraint variational assimilations performed over 18-day assimilation windows. (a) Truth (dashed curves)
and minimizing solutions (red curves) as functions of time at one grid point over one assimilation window. (b) Rank histogram for the
variable x over all grid points and ensemble assimilations. (c) Reliability diagram for the event E = {x > 1.02}, which occurs with frequency
0.27 (dashed–dotted horizontal curve), built over all grid points and ensemble assimilations. (d) Components of the Brier score (same format
as in the bottom-left panel of Fig. 1). (e, f) RMS estimation error on the state variable x and on the model noise b (e and f respectively),
as functions of time along the assimilation windows. Blue curves: average RMS error in the individual minimizations. Red curves: average
RMS error in the mean of the ensembles. The green curves are in the ratio 1/

√
2 to the blue curves.

These results show that, although there are clearly imper-
fections (minimizations occasionally lead to secondary min-
ima), ensemble variational assimilation is on the whole very
successful for weak-constraint assimilation.

Figure 12 shows the compared performance of EnsVAR,
EnKF, and PF, evaluated over the last 13 days of the 18-day
assimilation windows (this in order to eliminate the effects
of the initialization of EnKF and PF). The experimental con-

ditions for EnKF and PF are exactly the same as for EnsVAR
(concerning the model noise, it has been added in the corre-
sponding ensemble integrations in order to simulate the dis-
persion it would create in a real situation). The three columns
correspond, from left to right, to EnsVAR, EnKF, and PF re-
spectively. The rows show, from top to bottom, the rank his-
tograms, the reliability diagrams, and the two components
of the Brier score. The general performance of the three al-
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Figure 10. RMS estimation errors on the state variable xk and on the model noise bk (a and b respectively) for weak-constraint variational
assimilations performed over 5-day windows, with observations at times −5,−4, . . .,0.

gorithms is similar. The only significant difference is seen
on the rank histograms. The histogram for EnsVAR is much
flatter than the other two histograms, which shows a distinct
underdispersion of the ensembles. This is confirmed by the
standard deviations of the RCRV diagnostic, which are equal
to 1.02, 1.14, and 1.11 for EnsVAR, EnKF, and PF respec-
tively.

5 Discussion and conclusions

The principle of ensemble variational assimilation
(EnsVAR), which has been discussed in the two parts
of this work, is very simple. Namely, perturb the data
according to their own error probability distribution and, for
each set of perturbed data, perform a standard variational
assimilation. In the linear and additive Gaussian case,
this produces a sample of independent realizations of the

(Gaussian) Bayesian probability distribution for the state of
the observed system, conditioned by the data.

The primary purpose of this work was to study EnsVAR as
a probabilistic estimator in conditions (non-linearity and/or
non-Gaussianity) where it cannot be expected to be an ex-
act Bayesian estimator. Since the degree to which Bayesian-
ity is achieved cannot be objectively evaluated, the weaker
property of reliability has been evaluated instead. Standard
scores, commonly used for evaluation of probabilistic pre-
diction (rank histograms, reliability diagrams and associated
Brier score, and in addition the reduced centred random vari-
able) have been used to that end. The additional property
of resolution, i.e. the degree to which the estimation system
is capable of a priori distinguishing between different out-
comes, has also been evaluated (resolution component of the
Brier score, root-mean-square error in the mean of the en-
sembles). Indeed, one purpose of this work was to stress the
importance, in the authors’ minds, of evaluating ensemble
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Figure 11. Values of (half) the minima of the objective function
for all realizations of the weak-constraint assimilations over 18-day
windows.

assimilation systems as probabilistic estimators, particularly
through the degree to which they achieve reliability and res-
olution.

The results presented in both parts of this paper show that
EnsVAR is fundamentally successful in that, even in con-
ditions where Bayesianity cannot be expected, it produces
ensembles which possess a high degree of statistical relia-
bility. Actually, the numerical scores for reliability that have
been used are often as good, if not better, in situations where
Bayesianity cannot be expected to hold than in situations
where it holds. Better scores can be explained in the present
situation only by better numerical conditioning. The resolu-
tion, as measured by the RMS error in the mean of the en-
sembles, or by the resolution component of the standard Brier
score, is also high.

In non-linear strong-constraint cases, EnsVAR has been
successful here only through the use of quasi-static varia-
tional assimilation, which significantly increases its numeri-
cal cost. However, in the weak-constraint case, QSVA has not
been necessary, providing new evidence as to the favourable
effect, on numerical efficiency of assimilation, of introduc-
ing a weak constraint. At the same time, the comparison of
the results shown in the right bottom panels of Figs. 3 and
5 shows that EnsVAR, even when it has as high a degree of
reliability as in purely linear and Gaussian situations, is not
Bayesian.

Comparison with two other standard ensemble assimila-
tion filters, namely ensemble Kalman filter and particle filter,
made at constant ensemble size, shows a superior or equal
performance for EnsVAR, at least as concerns the dispersion
of the ensembles.

Our comparison is of course far from being complete. As
already said, there exist many variants of both the EnKF

and the PF, and EnsVAR has been compared here, for each
of those two classes of algorithms, with only one of those
variants. Several of these have been studied by Bocquet and
Sakov (2013), Goodliff et al. (2015), and Carrassi et al.
(2017), with however less emphasis than here on their perfor-
mance as probabilistic estimators. A close comparison with
these works would certainly be very instructive.

If a code for variational assimilation is available, EnsVAR
is very easy (if costly) to implement. It possesses the advan-
tages and disadvantages of standard variational assimilation.
The advantages are the easy propagation of information both
forward and backward in time (smoothing) and easy intro-
duction of observations of new types and of temporal corre-
lations between data errors. What is usually considered to be
a major disadvantage of variational assimilation is the need
for developing and maintaining an adjoint code. Concerning
that point, it must however be stressed that algorithms are be-
ing developed which might avoid the need for adjoints while
keeping most of the advantages of variational assimilation.

EnsVAR, as it has been implemented here, is very costly
in that it requires a very large number of iterative minimiza-
tions. The comparison with EnKF and PF, which has been
made here at constant ensemble size, might have led to dif-
ferent conclusions if it had been made at for example con-
stant computing cost. In addition, the particular versions of
EnKF and PF that have been used here may not be, among
the many versions that exist for both algorithms, the most
efficient ones for the problem considered here. In particular,
concerning the EnKF, a deterministic version could be used
instead of the stochastic version that has been used here. On
the other hand, many possibilities exist for reducing the cost
or at least the clock time of EnsVAR, through simple paral-
lelization or through use of the results of the first minimiza-
tions to speed up the following ones. The rapid development
of algorithmic science makes it difficult to draw definitive
conclusions at this stage as to the compared cost of various
methods for ensemble assimilation.

EnsVAR, at it has been presented here, is almost uniquely
defined on the basis of its principle. It has been necessary to
introduce only one arbitrary parameter for the experiments
that have been described, namely the temporal increment
(1 day) between successive assimilation windows in QSVA.
Everything else is unambiguously defined once the princi-
ple of EnsVAR has been stated. This may of course not re-
main true in the future, but is certainly a distinct advantage
to start with. On the other hand, EnsVAR, like actually the
EnKF and the PF, is largely empirical, with the consequence
that, should difficulties arise, conceptual guidelines may be
missing to solve these difficulties. The only thing that can be
said at this stage is that EnsVAR is successful in non-linear
situations probably because it keeps the estimation problem
within the basin of attraction of the absolute minimum of the
objective function to be minimized.

One can also remark that EnsVAR, in the form in which
it has been implemented here, and contrary to EnKF and PF,
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Figure 12. Compared performance of EnsVAR, EnKF, and PF (columns from left to right respectively) over the last 13 days of 18-day
assimilation windows. (a, b, c) Rank histogram. (d, e, f) Reliability diagram for the event E = {x > 1.02}, which occurs with frequency 0.27.
(g, h, i) Reliability and resolution components of the Brier score for events x < τ as functions of the threshold τ .

produces an ensemble of totally independent realizations of
a same probability distribution. It is difficult to say if that can
be considered as a distinct advantage, but it is certainly not a
disadvantage.

The problem of cycling EnsVAR for one assimilation win-
dow to the next one has not been considered here. It has been
studied to some extent by Bocquet and Sakov (2013, 2014)
in the context of another form of ensemble assimilation. The
general questions that arise range from the simplest one (is
cycling necessary at all, or can one simply proceed by im-
plementing EnsVAR over successive, possibly overlapping,
windows?) to the question of carrying a background ensem-
ble from one window to the next, together with an associated

error covariance matrix. In the latter case, the difficulties as-
sociated with localization and inflation, which have signif-
icantly complicated the development of EnKF, might arise
again. One interesting possibility is to use the ideas of assim-
ilation in the unstable subspace (AUS), advocated by Tre-
visan and colleagues (see, Trevisan et al., 2010, and Palatella
et al., 2013), in which the control variable of the assimilation
is restricted to the modes of the system that have been un-
stable in the recent past, where the uncertainty in the state of
the system is most likely to be concentrated. This approach
is actively studied at present (see e.g. Bocquet and Carrassi,
2017).
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EnsVAR has been implemented here on a small-dimension
system. It is operationally running at both ECMWF and
Météo-France to specify initial conditions for the ensemble
forecast and to construct the background error covariance
matrix for the variational assimilation. It has not been sys-
tematically evaluated as a probabilistic estimator on a physi-
cally realistic large-dimensional model. It has also to be com-
pared with other ensemble assimilation methods, in terms of
both intrinsic quality of the results and of cost efficiency. In
addition to the many variants of ensemble Kalman filter and
particle filter, one can mention the Metropolis–Hastings al-
gorithm, which, as already said in the introduction of Part 1,
possesses itself many variants. It has been used for many ap-
plications, most of which, if not all, are however relative to
problems with small dimensions. It would be extremely in-
teresting to study the performance in problems of assimila-
tion for geophysical fluids. More recently, and in the contin-
uation of Bardsley (2012), Bardsley et al. (2014) have pro-
posed what they call the randomize-then-optimize (RTO) al-
gorithm. This defines a theoretical improvement on EnsVAR,
based on an appropriate use of the Jacobian of the data op-
erator. But, as for EnsVAR itself, the question of whether
it can be implemented on large-dimension models (see e.g.
Liu et al., 2017) is still open. Systematic comparison of the
performances of the many algorithms that now exist for en-
semble assimilation, in particular in terms of their capability
of achieving Bayesian estimation, will certainly be very in-
structive.

Data availability. Data used in this article ia available upon request
to the corresponding author.

Author contributions. MJ and OT have defined together the scien-
tific approach to the paper and the numerical experiments to be per-
formed. MJ has written the codes and run the experiments. OT wrote
most the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special is-
sue “Numerical modeling, predictability and data assimilation in
weather, ocean and climate: A special issue honoring the legacy of
Anna Trevisan (1946–2016)”. It is a result of a Symposium Hon-
oring the Legacy of Anna Trevisan – Bologna, Italy, 17–20 Octo-
ber 2017.

Acknowledgements. This work has been supported by Agence
Nationale de la Recherche, France, through the Prevassemble and
Geo-Fluids projects, as well as by the programme Les enveloppes
fluides et l’environnement of Institut national des sciences de

l’Univers, Centre national de la recherche scientifique, Paris.
The authors acknowledge fruitful discussions with Julien Brajard
and Marc Bocquet. The latter also acted as a referee along with
Massimo Bonavita. Both of them made further suggestions which
significantly improved the paper.

Edited by: Alberto Carrassi
Reviewed by: Marc Bocquet and Massimo Bonavita

References

Bardsley, J. M.: MCMC-Based Image Reconstruction with Uncer-
tainty Quantification, SIAM J. Sci. Comput., 34, A1316–A1332,
2012.

Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.: Randomize-
Then-Optimize: A Method for Sampling from Posterior Distribu-
tions in Nonlinear Inverse Problems, SIAM J. Sci. Comput., 36,
A1895–A1910, 2014.

Bocquet, M. and Sakov, P.: Joint state and parameter estima-
tion with an iterative ensemble Kalman smoother, Nonlin. Pro-
cesses Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-
803-2013, 2013.

Bocquet, M. and Sakov, P.: An iterative ensemble Kalman
smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535,
https://doi.org/10.1002/qj.2236, 2014.

Bocquet, M. and Carrassi, A.: Four-dimensional ensemble varia-
tional data assimilation and the unstable subspace, Tellus A,
69, 1304504, https://doi.org/10.1080/16000870.2017.1304504,
2017.

Carrassi, A., Bocquet, M., Hannart, A., and Ghil, M.: Estimating
model evidence using data assimilation, Q. J. Roy. Meteor. Soc.,
143, 866–880, https://doi.org/10.1002/qj.2972, 2017.

Fisher, M., Leutbecher, M., and Kelly, G. A.: On the equivalence be-
tween Kalman smoothing and weak-constraint four-dimensional
variational data assimilation, Q. J. Roy. Meteor. Soc., 131, 3235–
3246, https://doi.org/10.1256/qj.04.142, 2005.

Goodliff, M., Amezcua, J., and Van Leeuwen, P. J.: Compar-
ing hybrid data assimilation methods on the Lorenz 1963
model with increasing non-linearity, Tellus A, 67, 26928,
https://doi.org/10.3402/tellusa.v67.26928, 2015.

Jardak, M. and Talagrand, O.: Ensemble variational assimilation
as a probabilistic estimator – Part 1: The linear and weak
non-linear case, Nonlin. Processes Geophys., 25, 565–587,
https://doi.org/10.5194/npg-25-565-2018, 2018.

Kuramuto, Y. and Tsuzuki, T.: On the formation of dissipative struc-
tures in reaction-diffusion systems, Prog. Theor. Phys., 54, 687–
699, 1975.

Kuramuto, Y. and Tsuzuki, T.: Persistent propagation of concentra-
tion waves in dissipative media far from thermal equilibrium.,
Prog. Theor. Phys., 55, 356–369, 1976.

Liu, Y., Haussaire, J., Bocquet, M., Roustan, Y., Saunier, O.,
and Mathieu, A.: Uncertainty quantification of pollutant source
retrieval: comparison of Bayesian methods with application
to the Chernobyl and Fukushima Daiichi accidental releases
of radionuclides, Q. J. Roy. Meteor. Soc., 143, 2886–2901,
https://doi.org/10.1002/qj.3138, 2017.

www.nonlin-processes-geophys.net/25/589/2018/ Nonlin. Processes Geophys., 25, 589–604, 2018

https://doi.org/10.5194/npg-20-803-2013
https://doi.org/10.5194/npg-20-803-2013
https://doi.org/10.1002/qj.2236
https://doi.org/10.1080/16000870.2017.1304504
https://doi.org/10.1002/qj.2972
https://doi.org/10.1256/qj.04.142
https://doi.org/10.3402/tellusa.v67.26928
https://doi.org/10.5194/npg-25-565-2018
https://doi.org/10.1002/qj.3138


604 M. Jardak and O. Talagrand: Ensemble variational assimilation – Part 2

Lorenz, E. N.: Predictability: A problem partly solved, in: Proc
Seminar on Predictability, Vol. 1. ECMWF, Reading, Berkshire,
UK, 1–18, 1996.

Palatella, L., Carrassi, A., and Trevisan, A.: Lyapunov vectors and
assimilation in the unstable subspace: Theory and applications, J.
Phys. A-Math. Theor., 46, 254020, https://doi.org/10.1088/1751-
8113/46/25/254020, 2013.

Pires, C., Vautard, R., and Talagrand, O.: On extending the limits of
variational assimilation in nonlinear chaotic systems, Tellus A,
48, 96–121, 1996.

Trevisan, A., D’Isidoro, M., and Talagrand, O.: Four-dimensional
variational assimilation in the unstable subspace and the opti-
mal subspace dimension, Q. J. Roy. Meteor. Soc., 136, 387–496,
2010.

Ye, J., Rey, D., Kadakia, N., Eldridge, M., Morone, U. I.,
Rozdeba, P., Abarbanel, H. D. I., and Quinn, J. C.: Sys-
tematic variational method for statistical nonlinear state
and parameter estimation, Phys. Rev. E, 92, 052901,
https://doi.org/10.1103/PhysRevE.92.052901, 2015.

Nonlin. Processes Geophys., 25, 589–604, 2018 www.nonlin-processes-geophys.net/25/589/2018/

https://doi.org/10.1088/1751-8113/46/25/254020
https://doi.org/10.1088/1751-8113/46/25/254020
https://doi.org/10.1103/PhysRevE.92.052901

	Abstract
	Introduction
	Strong-constraint assimilation
	Comparison with ensemble Kalman filter and particle filter
	Weak-constraint assimilation
	Discussion and conclusions
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

