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Assessment of CORDEX-SA experiments in representing
precipitation climatology of summer monsoon over India

A. Choudhary1, A. P. Dimri1 & P. Maharana2

Abstract The present work assesses the performance of 11

regional climate simulations in representing the precipitation

patterns of summer monsoon over India for the period 1970–

2005. These simulations have been carried out under

Coordinated Regional Climate Downscaling Experiment–

South Asia (CORDEX-SA) project. The regional climate

models (RCMs) have been inter-compared as well as evaluat-

ed against the observation to identify the commonweaknesses

and differences between them. For this, a number of statistical

analysis has been carried out to compare the model precipita-

tion field with the corresponding observation. Model uncer-

tainty has been also evaluated through bias studies and anal-

ysis of the spread in the ensemble mean (hereafter, ensemble).

The models which perform better than the rest are identified

and studied to look for any improvement in the ensemble

performance. These better performing experiments (best

RCM experiments) are further assessed over the monsoon

core region (MCR) of India. This has been done to understand

howwell the models perform in a spatially homogeneous zone

of precipitation which is considered to be a representative

region of Indian summer monsoon characteristics. Finally,

an additional analysis has been done to quantify the skill of

models based on two different metrics—performance and

convergence including a combination of the two. The exper-

iment with regional model RegCM4 forced with the global

model GFDL-ESM2M shows the highest combined mean

skill in capturing the seasonal mean precipitation. In general,

a significant dry bias is found over a larger part of India in all

the experiments which seems most pronounced over the cen-

tral Indian region. Ensemble on an average tends to outper-

form many of the individual experiments with bias of smaller

magnitude and an improved spatial correlation compared with

the observation. Experiments which perform better over India

improve the results but only slightly in terms of agreement

among experiments and bias.

1 Introduction

Studies over the last decade based on observations and climate

models have indicated towards the consequential risk the cli-

mate change poses to the present day state of Indian summer

monsoon (hereafter, ISM) (Hu et al. 2000; Cubasch et al.

2001; May 2002; Fan et al. 2012). In the last few decades,

this has been observed in the form of changes in precipitation

variability and increased frequency of precipitation extremes

like floods and droughts (Goswami et al. 2006; Rajeevan et al.

2008; Guhathakurta et al. 2011; Singh et al. 2014). Such kind

of developments will have serious socio-economic impacts on

the life of people as the livelihood and economies of the major

part of the Indian population are still based upon the monsoon-

dependent systems especially agriculture. There is a growing

need for impact studies and devising effective adaptation strat-

egies to deal with this issue for which projected climate infor-

mation or data is required for making future climate predic-

tions. Global climate models (hereafter, GCMs) provide such

data but the resolution is too coarse to be applied for regional

scale impact studies where there is a need for finer level spatial
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data. Also for India where the precipitation is subjected to

a high degree of spatial variation, GCM data would not be

suitable for such studies because the fine-scale processes

are not adequately represented in GCM physics.

Therefore, regional climate models (hereafter, RCMs)

are required which dynamically downscale GCM output

to scales that can be employed directly by the end users

(Sun et al. 2006). Like any other model, RCMs cannot

perfectly simulate the climate and they have errors in

form of biases against real observations. It is important

to evaluate the models—to understand the shortcomings

and quantify the magnitude of errors which could then be

corrected or accounted for while using it as a tool for

impact studies. Also, each RCM has its own internal mod-

el physics (parameterization schemes)—they use different

methods to discretize the equations and to reproduce ef-

fects at sub-grid scale (Déqué et al. 2007). This gives rise

to uncertainty in the simulations and simultaneously makes it

necessary to study these discrepancies. Lucas-Picher et al.

(2011) and Kumar et al. (2013) in their study over India found

the amount of precipitation and its distribution at regional

scale differ substantially between a set of RCMs forced with

same lateral boundary conditions. Mishra et al. (2014) also

reported 18–60% uncertainty in precipitation and 1–3 °C in

temperature in a similar set of RCMs which is the focus of

present study. The uncertainty in projections of climate may

arise from other sources also like internal variability and sce-

nario uncertainty (Hawkins and Sutton, 2009).

Over the past few years, the use of RCMs to study the

regional climate has seen marked increase across the globe

(Alley et al. 2007). For Indian region, also a number of efforts

have been made at individual levels to study the climatic re-

gime of India based on RCM simulations (Jacob and Podzun

1997; Ji and Vernekar 1997; Ratnam and Kumar 2005;

Bhaskaran et al. 1996; Dobler and Ahrens 2010; Lucas-

Pitcher et al. 2011; Dimri 2012; Mathison et al., 2013; Dash

et al. 2006, 2013; Maharana and Dimri 2014; Maharana and

Dimri 2016). These studies have been mainly carried out ei-

ther over specific regions or using one or few RCMs driven by

a single GCM or reanalysis. However, Kumar et al. (2013) for

the first time studied a set of high-resolution multi-model pro-

jections of climate change over India in which eight simula-

tions from three RCMs were forced with reanalysis and two

GCMs. This is still a small number, considering a greater

importance in terms of reliability of a larger ensemble. This

underlines the need of a common framework under which

multi-individual or multi-institutional modeling efforts are

made in coordination to provide an ensemble of RCM outputs

based on multiple RCMs. In this regard, the World Climate

Research Programme’s project, Coordinated Regional

Climate Downscaling Experiment (hereafter, CORDEX), is

a coordinated effort of a number of modeling centers across

the globe in order to generate an ensemble of high-resolution

past, present, and future regional climate projections for dif-

ferent regions or domains across the world (Giorgi et al. 2009;

Jones et al. 2011; Lake et al. 2017). CORDEX-South Asia

(hereafter, CORDEX-SA) a part of a larger global effort

CORDEX comprises of regional climate information for the

South Asia region from RCM runs that are obtained by down-

scaling the Atmosphere-Ocean coupled General Circulation

Model (AOGCM) runs conducted under the Coupled Model

Intercomparison Project Phase 5 (CMIP5) (Taylor et al. 2012).

Previous studies done by Mishra et al. (2014) and Ali et al.

(2014) based on CORDEX-SA experiments have focused

mainly on evaluating the RCMs in simulating extremes of

precipitation over India. Simultaneously and equally impor-

tant is the need to evaluate the ensembles’ ability in

representing with certainty the long-term mean precipitation

of a season so as to take into account the overall state of the

changing field during entire period of that season. Ghimire

et al. (2015), Choudhary and Dimri (2017), and Nengker

et al. (2017) carried out such a work in studying the ability

of CORDEX-SA RCMs in representing the seasonal mean

precipitation and temperature pattern over Himalayan region.

However, the present study has been carried out with a focus

on evaluating the performance of a set of 11 regional climate

simulations (or experiments) under CORDEX-SA in

representing the patterns of seasonal mean summer monsoon

(June–September hereafter, JJAS) precipitation over India

(see Fig. 1 for description of study region) for the time period

1970–2005 which represents the present climate. The study is

organized as follows: in section 2, the study area, dataset used,

and the working methodology are briefly described. In section

3, the results and discussions are presented, beginning with the

evaluation of mean annual cycle of precipitation and summer

monsoon climatology over all India region, the added value of

RCMs, the associated frequency distribution followed by an

analysis of the spread among the experiments. The better

performing experiments or models (Best RCM experiments)

are identified and further analyzed over monsoon core region

(hereafter MCR) of India. In the final subsection of results and

discussion, the analysis on model skill and ensemble

weighting are presented which are carried out as an additional

part of the study. Finally, in section 4, key results are summa-

rized and conclusions are presented regarding the main short-

comings, strengths, and uncertainties in the CORDEX-SA

experiments.

2 CORDEX-SA experiment, data, and methodology

2.1 Study area

The study focuses on India which is a part of the larger

CORDEX-SA domain. It lies between 8°4′ and 37°6′ north

latitude and 68°7′ and 97°25′ east longitude. The region is
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defined as per the official political boundary of country (see

Fig. 1). The peninsular part of India is bounded by the Indian

Ocean on the south of the Deccan plateau region, the Arabian

Sea on the southwest with mountain range of Western Ghats

running along the coastline, and the Bay of Bengal on the

southeast which is flanked by Eastern Ghats mountain range.

Himalayan mountain ranges and Tibetan plateau bounds the

northern plains of country. The climate of India is primarily

characterized by a tropical wet to subtropical hot and wet

season with dry semi-arid to arid climate over northwest part

of India. The country as a whole receives 70 to 90% of its total

annual precipitation during the summermonsoon season (Pant

and Rupa Kumar 1997) which is considered as months from

June–September. India comprises of a complex topography

with diverse precipitation regimes and spatial pattern owing

to the local effects of interaction of these varying terrain and

land-surface heterogeneities with large-scale climate forcings

(Gadgil 1978; Sud and Smith 1985; Webster 1987; Goswami

et al. 2010).

2.1.1 Indian monsoon core region

The ISM is heterogeneously distributed over the Indian region

with high spatial variability. The spatially averaged study of

monsoon characteristics over India may not give a certain and

exact picture of the performance of models in simulating those

characteristics. The model performance also varies spatially.

So a core region of ISM (hereafter, MCR) is considered in this

study as the area spanning 73–82° E and 18–28° N (Fig. 1,

box), based on a study byMandke et al. (2007) over which the

mean and standard deviation of precipitation are found to be

homogeneous or spatially uniform. This region shows

coherence in space with respect to intraseasonal variation

and shows high mean seasonal precipitation. So, it is

considered to be a homogenously representative region of

typical ISM characteristics. Singh et al. (2014) also considered

the same area as the core region of monsoon in her study on

changes in extremes of precipitation during the South Asian

summer monsoon.

2.2 CORDEX-SA experiments and data

In this study, a total of 11 experiments which consists of 11

combinations arising out of 4 RCMs driven with 9 GCMs (see

Table 1) are selected to study their performance in simulating

summer monsoon (JJAS) precipitation over India. The data is

available on CORDEX-SA database maintained by Centre for

Climate Change Research, Indian Institute of Tropical

Fig. 1 Study region considered

over Indian political boundary

(hereafter called BIndia^) and

Indian monsoon core region

(hereafter called BMCR^—box)

with topography (in meters)

3



Meteorology (IITM), Pune, India which is the coordinating

institution of this project. It is to be noted that experiment

LMDz-IITM-LMDz at S. No. 2 (see Table no. 1) is not an

RCM in true sense rather a zoomed version of GCM IPSL-

CM5-LR. The period chosen for study is 1970–2005 to rep-

resent the present climate. This period is chosen as it was the

common data span available in the dataset of all the 11 exper-

iments. The RCM experiments’ data are available at ~ 0.44°

grid resolution and over South Asia domain. Since this anal-

ysis is limited to and focused on studying precipitation over

India, only so the data used here is masked to have data over

only Indian land points (hereafter, India).

To evaluate the model results in representing the precipitation

over India, the India Meteorological Department (hereafter,

IMD) gridded precipitation dataset (Rajeevan and Bhate 2009)

which is available at 0.5° spatial and daily resolution from 1971

to 2005 is used as observational reference throughout the study.

For the initial comparison of climatology though two more

gauge-based gridded observational datasets namely Global

Precipitation Climatology Center (GPCC) (version 6, available

for 1901–2006; Schneider et al. 2011) and Climatic Research

Unit (CRU) (version 3.0, available for 1902–2006; Mitchell

and Jones 2005) both of which are available at 0.5° spatial and

monthly temporal resolution have been used. This is done for a

prior assessment of uncertainty within the observations before

choosing the IMD as a reference for further model evaluation. In

Fig. 2b, it can be seen that all the three observations agree quite

well in capturing the spatial pattern of ISM precipitation. The

western coast and central part of India and foothills of Himalayas

are shown as high precipitation regions in all the three datasets.

Similarly, the northwestern part of India (due to the parallel

orientation of Aravalli mountain range to southwesterly mon-

soon jet) and southeastern coast of India (which falls in the rain

shadow region of Western Ghats) are seen as low precipitation

receiving regions in all the three observations. There is a strong

agreement between the three. So, further in the study, only IMD

(Fig. 2b(a)) dataset is used for model evaluation to keep the

analysis simple. IMD data set is prepared using quality con-

trolled precipitation data from more than 6000 rain-gauge sta-

tions over India and is validated against another gridded data

Table 1 CORDEX-SA experiment details (Source: CORDEX South Asia Database, CCCR, IITM http://cccr.tropmet.res.in/cordex/files/downloads.

jsp)

S.

no.

Experiment name RCM description Driving GCM Contributing institute

1 LMDz-IITM-RegCM4 The Abdus Salam International Centre

for Theoretical Physics (ICTP)

Regional Climatic Model version 4

(RegCM4; Giorgi et al., 2012)

IPSL LMDz4 Centre for Climate Change

Research (CCCR), Indian

Institute of Tropical

Meteorology (IITM), India

2 LMDz-IITM-LMDz Institut Pierre-Simon Laplace (IPSL)

Laboratoire de Me´te´orologie

Dynamique Zoomed version 4

(LMDz4) atmospheric general

circulation model (Sabin et al.,

2013)

IPSL Coupled Model version 5

(IPSL-CM5-LR; Dufresne

et al. 2013)

CCCR, IITM, India

3 GFDL-ESM2M-IITM-RegCM4 ICTP RegCM4 Geophysical Fluid Dynamics

Laboratory, USA, Earth

System Model

(GFDL-ESM2M-LR; Dunne

et al. 2012)

CCCR, IITM

4 ICHEC-EC-EARTH-SMHI-RCA4 Rossby Centre regional atmospheric

model version 4 (RCA4;

Samuelsson et al., 2011)

Irish Centre for High-End

Computing (ICHEC),

European Consortium ESM

(EC-EARTH; Hazeleger

et al. 2012)

Rossby Centre, Swedish

Meteorological and

Hydrological Institute (SMHI),

Sweden

5 NorESM1-M-CSIRO-CCAM Commonwealth Scientific and

Industrial Research Organisation

(CSIRO), Conformal-Cubi

Atmospheric Model (CCAM;

McGregor and Dix, 2001)

NorESM1-M CSIRO Marine and Atmospheric

Research, Melbourne,

Australia

6 MPI-ESM-LR-CSIRO-CCAM MPI-ESM-LR

7 GFDL-CM3-CSIRO-CCAM GFDL-CM3

8 CNRM-CM5-CSIRO-CCAM CNRM-CM5

9 CCSM4-CSIRO-CCAM CCSM4

10 ACCESS-CSIRO-CCAM ACCESS

11 COSMO-CLM Consortium for Small-scale Modeling

(COSMO) model in CLimate Mode

version 4.8 (CCLM; Dobler and

Ahrens, 2008)

Max Planck Institute for

Meteorology, Germany, Earth

System Model

(MPI-ESM-LR; Giorgetta

et al. 2013)

Institute for Atmospheric and

Environmental Sciences

(IAES), Goethe University,

Frankfurt am Main (GUF),

Germany
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set—Asian Precipitation–Highly Resolved Observational Data

Integration Towards Evaluation of the Water Resources

(APHRODITE) (Yatagai et al. 2005; Rajeevan and Bhate,

2009). Earlier also inmany studies, this dataset was used to study

the observed dynamics of Indian monsoon and as a reference to

evaluate model simulations (Das et al. 2012; Pattnayak et al.

2013; Pattnayak et al. 2016; Kumar et al. 2013; Das et al.

2014; Maharana and Dimri 2014).

For the evaluation of model simulated southwesterly low-

level jet (850 hPa wind fields), NCEP-NCAR Reanalysis 1

data (hereafter, NCEP) (Kalnay et al. 1996) is used as a

reference.

2.3 Methodology

2.3.1 Criteria for performance evaluation

To evaluate the performance of the ensemble of the

CORDEX-SA experiments, two general criteria are adopted:

firstly, comparison with IMD—how well the models and their

ensemble compared with the IMD are able to capture or rep-

resent the climatology of JJAS precipitation. And secondly,

the evaluation of the uncertainty or spread in the simulations

so as to account for degree of agreement among various ex-

periments in simulating precipitation. First of all, the mean

annual cycle is studied to see how well the annual distribution

of precipitation are represented by the experiments especially

the peak during the JJAS season. For climatology assessment,

the spatial distribution of long-term mean (1971–2005) of

JJAS precipitation (seasonal average; mm day−1) is analyzed

by looking at the bias between the model (or experiments; will

be used interchangeably hereafter) and IMD to see whether

the models are overestimating or underestimating the actual

precipitation. Further, the performance of RCM is also com-

pared with that of its parent GCM to see the added value of

downscaling. The uncertainty or degree of agreement

among the simulations is seen here in the form of

spread between the experiments and its distribution in

space. The spread among the experiments is also studied

with respect to IMD through ranked histogram which is

discussed later in this paper. Furthermore, for a robust

assessment of the ability of models in capturing the

climatological pattern of precipitation over India spatial

correlation of model simulated precipitation with that of

Fig. 2 a Mean annual cycle of

precipitation (mm day−1) over

India for the period 1970–2005

from the 11 CORDEX-SA

experiments, their ensemble, and

IMD. The 11 CORDEX-SA

experiments are described in

Table 1. b JJAS precipitation

climatology (mm day−1) for the

period 1970–2005 in three

different observations b(a) IMD,

b(b) GPCC, and b(c) CRU (In

case of IMD, the observation are

over India only)
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IMD in terms of Pearson correlation coefficient (Hall

2015) is also calculated and shown in the Taylor dia-

gram (Taylor 2001).

2.3.2 Identification of best RCM experiments

In order to identify better performing CORDEX-SA experi-

ments with respect to the simulation of climatology, we adopt

a method from Menon et al. (2013). We compare the long-

term (1970–2005) seasonal mean precipitation area averaged

over India of experiments with that of observed precipitation

(IMD). The climatological mean precipitation of IMD is

6.62 mm day−1, with a standard deviation of 0.75 mm day−1.

The experiments that fall within ± 2 standard deviations (hor-

izontal dashed lines) from IMD are considered here as better

performing experiments and we call it as Best RCM experi-

ments. The experiments that fall within ± 1 standard deviation

(horizontal dashed lines) from IMD have also been shown to

further narrow down on the better performing experiments.

For the monsoon core region, we apply the same procedure

for best model selection wherein the climatological mean pre-

cipitation of IMD is 6.79 mm day−1, with a standard deviation

of 1.09 mm day−1. The experiments that fall within ± 2 stan-

dard deviations (horizontal dashed lines) from IMD are con-

sidered here as better performing experiments over MCR.

3 Results and discussion

3.1 All India monsoon

Figure 2a shows the mean seasonal cycle of precipitation of

the 11 CORDEX-SA experiments, their ensemble, and IMD

averaged over India and for the study period (1970–2005).

The IMD distribution is best represented by LMDz-IITM-

RegCM4 with the precipitation peaking during July in the

monsoon season and then declining. Though it shows an un-

derestimation of precipitation in the monsoon season but the

shape is well reproduced in comparison with other experi-

ments which show either a large underestimation of precipita-

tion during this season or a shift in the peaking month or both.

We can notice that an almost similar cycle of precipitation is

seen in all the GCMs downscaled using CCAMRCM (except

for ACCESS) with a large difference towards drier side. On

the other hand, the CCAM simulation forced with ACCESS

particularly stands out of the rest of the ensemble members

during the monsoon season. In general, there is no close sim-

ilarity between the experiments or individually with the IMD

in distribution.

For the first hand comparison of the spatial distribution

of model simulated precipitation and their ensemble with

that of IMD, the seasonal mean climatology was com-

pared (Fig. S1). For a better evaluation, the climatological

bias is calculated as model climatology minus IMD cli-

matology. Figure 3 shows the JJAS mean precipitation

bias (mm day−1) of 11 CORDEX-SA experiments (a–k)

and their ensemble (l) with respect to IMD (Fig. 2b(a))

over India. In all the experiments, the models are able to

capture the key features of the spatial distribution of mean

precipitation of ISM reasonably well with varying degree

and signs of biases. Almost all the experiments show re-

alistically high precipitation along the west coast of India

where the Western Ghats mountain range lies, hilly region

of northeast India and along the foothills of Western

Himalayan mountainous region because of the orographic

interaction with the southwest humid monsoon winds

(Fig. S1). On the other hand, the northwestern part partic-

ularly Rajasthan rightly shows less precipitation as seen in

the IMD also. This is because of the well-known reason

of the parallel orientation of the Aravalli mountain stretch

with the southwest monsoon winds. The southwestern

part of India which lies in the leeward side of Western

Ghats receives less precipitation because of the rain-

shadow effect and this phenomenon is also well-

represented by almost all the experiments and their

ensemble. The overall pattern of mean precipitation

distribution may be getting represented but biases also

exist which vary in their sign and magnitude spatially

for individual experiments as well as across the set of

experiments. Feng and Fu (2006) in their study on inter-

comparison of 10 RCMs for precipitation over Asia also

found that the RCMs are able to capture the basic spatial

pattern of precipitation distribution but there are distinc-

tions in location and intensity in them. Interestingly, over

the regions of high precipitation (due to orography), i.e.,

along the western coast, foothills of western Himalaya

and northeast region of India, the value is overestimated

in most of the experiments with a large (+ve) bias of up to

10 mm day−1 as seen in one of the experiments LMDz-

IITM-LMDz (Fig. 3b) along the western coast. In other

RCM-based studies also (Jacob and Podzun 1997; Ji and

Vernekar 1997; Bhaskaran et al. 1996; Ratnam and Kumar

2005; Dash et al. 2006; Nguyen and McGregor 2009;

Dobler and Ahrens 2010; Mathison et al. 2013; Dimri,

2012; Moors et al. 2012; Kumar et al. 2013) almost all

reported a general overestimation of orographic precipita-

tion over these regions. These errors are possibly associ-

ated with the parameterization of convection in the model.

The unrealistic simulations in the experiments may not be

only due to RCM shortcomings but also due to some

contribution made by the error in large-scale forcings

from their parent GCMs. For, e.g., Menon et al. (2013)

in his study on GCMs found that IPSL-CM5A-LR which

has been used in the CORDEX-SA experiment LMDz-

IITM-LMDz (Fig. 3b) poorly simulates the Indian mon-

soon. Over northwest India around the state of Rajasthan

6



and the southwestern India which receive generally less

average precipitation, almost all the experiments and their

ensemble show a good resemblance with the observed

climatology which can be seen in the low values of bias

within ± 1 mm day−1 except for COSMO-CLM (Fig. 3k)

where the bias is slightly higher towards the negative side.

In fact, this particular experiment shows a negative (dry)

bias for almost whole India but simultaneously with a

strong overestimation at west coasts and northeast region.

A slight underestimation is also seen at the foothills of

Himalaya in the northern India. Similar findings for

COSMO-CLM were reported by Dobler and Ahrens

(2010) who also found an underestimation of convection

(based on outgoing long-wave radiation data) over large

parts of India. This indicates towards shortcomings in the

model physics related with possibly convection or cumu-

lous parameterization. In another work by Rockel and

Geyer (2008) who ran the COSMO-CLM model for the

South Asian region found a similar result. They suggested

that the overestimation of precipitation over Western

Ghats and the warm adjoining oceans removes most of

the moisture from atmosphere resulting in a dry bias over

interior areas like central India. In fact, for central Indian

region, most of the experiments except RCA4 regional

model forced with EC-EARTH global model (Fig. 3d)

are generating not enough precipitation as seen in the

IMD. The above reason mentioned for COSMO-CLM

could be contributed for these experiments’ underestima-

tion also though such studies are not available to substan-

tiate our views. Regarding the RCA4 model’s overestima-

tion, it could be linked to Willen (2008) who in her work

on an earlier version of RCA (3.0) found the cloud frac-

tion is getting overestimated compared to IMD resulting

in a higher precipitation. Especially over the mountainous

Fig. 3 JJAS precipitation bias (mm day−1) for the period 1970–2005 of 11 CORDEX-SA experiments (a–k) and their ensemble (l) with respect to IMD

over India
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regions, accurately representing velocities in complex ter-

rain is known to be difficult in numerical models which

may contribute to an unrealistic forcing of the grid scale

precipitation scheme (Samuelsson et al. 2011). In other

experiments, Fig. 3a, c where RegCM4 model has been

forced with two different GCMs, the results are quite sim-

ilar in that both show an overestimation of precipitation of

up to 10 mm day−1 over peninsular India when compared

with IMD. An underestimation of up to 6 mm day−1 is

seen over the plains of Central India such as Madhya

Pradesh and Chhattisgarh region and parts of northeast

India. Pattnayak et al. (2013) and Dash et al. (2013) made

a similar inference for earlier version of RegCM–

RegCM3. Maharana and Dimri (2014) who reported sim-

ilar findings for RegCM4 based on precipitation and out-

going long-wave radiation explained the reason for this

phenomenon that a higher precipitation at Western Ghats

results in an excessive loss of moisture from atmosphere

and a positive bias of temperature over Bay of Bengal

results in reduced moisture above the sea. Thus the

disturbances coming into central India from Bay of

Bengal do not have enough moisture content causing

reduced precipitation. Mishra et al. (2014) in their work

on four CORDEX-SA experiments as named in Fig. 3b–d,

k also found in general, an underestimation of mean an-

nual maximum precipitation in the central parts of India.

Another remarkable observation is that the six experi-

ments (Fig. 3e–j) which uses CCAM regional model show

almost no difference in their results as we can see in their

contour structures and corresponding values even though

they have been forced with six different GCMs. This may

suggest that this regional model is insensitive to the large

scale forcings (GCMs) in simulation of mean state of at-

mosphere. Whether it is a serious shortcoming of CCAM

model, we can say only after we inter-compare their

GCMs. An important achievement of these six CCAM

simulations is that they all capture the low precipitation

in southwestern part almost in resemblance with the IMD

which ultimately improves the ensemble performance

over this region. Nguyen & McGregor (2009) found sim-

ilar performance of CCAM over southwestern parts of

India. Though interestingly, a dry bias is seen at the west-

ern coastal line unlike other experiments but the precipi-

tation gradually picks up in the upper reaches of Western

Ghats as wet bias is seen there.

A paired Student’s t test for difference between the JJAS

mean precipitation values of experiments (including ensem-

ble) and that of IMD (Table 2) is further carried out to under-

stand the overall bias over India and its significance. We do

this for all-India grid points considering it as our sample

where the null hypothesiswould be that there is no difference

between the two means, i.e., of experiment and of IMD.

Alternative hypothesis would be that there is a significant

difference or bias (dry or wet depending upon the sign). In

general, a significant dry bias (at 5% level) is seen in almost

all simulations except Rossby Centre RCM (RCA4) where a

non-significant positive bias (0.22 mm day−1) is found.

Samuelsson et al. (2011) who used an earlier version of

RCA (RCA3) linked the wet biases to the use of the resolved

scalevertical velocity in the convective triggermechanismof

Table 2 Difference between JJAS mean precipitation (mm day−1) between each CORDEX-SA experiment and IMD over India (Paired difference

spatial t test (between pair of grid points))

S. no. Model comparison (Model–IMD) Paired differences t P value

Mean

bias

Std.

deviation

Std. error

mean

1 GFDL-ESM2M

–IITM-RegCM4 - IMD

− .88 5.86 .17 − 4.89 .000

2 ICHEC –EC

–EARTH-SMHI-RCA4 - IMD

.22 4.67 .13 1.35 .176

3 LMDz-IITM-LMDz - IMD − 1.46 4.69 .13 − 10.28 .000

4 LMDz-IITM-RegCM4 - IMD − 1.00 4.61 .13 − 5.22 .000

5 CCSM4-CSIRO-CCAM - IMD − 2.05 6.34 .18 − 15.44 .000

6 CNRM-CM5-CSIRO-CCAM - IMD − 2.05 5.03 .14 − 15.47 .000

7 GFDL-CM3 –CSIRO-CCAM - IMD − 2.06 6.74 .19 − 15.78 .000

8 MPI-ESM-LR –CSIRO-CCAM - IMD − 2.17 4.63 .13 − 16.53 .000

9 NorESM1-M –CSIRO-CCAM - IMD − 1.99 4.69 .13 − 15.01 .000

10 ACCESS-CSIRO-CCAM - IMD − 2.06 3.57 .10 − 15.57 .000

11 COSMO-CLM - IMD − 2.12 4.69 .13 − 21.01 .000

12 ENSEMBLE (11 experiments) - IMD − 1.60 3.94 .11 − 14.37 .000
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Kain–Fritsch convection scheme in themodel,whichmaybe

associated with excessive convective triggering particularly

over mountainous regions during the summer season. The

smallest bias is seen for the experiment GFDL-

ESM2M-IITM-RegCM4 (−0.88 mm day−1) while largest

bias is seen for MPI-ESM-LR forced CCAM experiment

(−2.17 mm day−1). The ensemble shows a negative bias

of −1.60 mm day−1.

It is important to assess the added value of downscal-

ing of GCM by RCM as simply increasing the resolution

may not result in an improved or more realistic simulation

of observed climate (e.g., Jacob et al. 2007; Rauscher

et al. 2010). Fine-scale simulations may show no added

value or could even show worsening of the results due to

errors in the lateral forcing of the RCMs (Warner et al.

1997), issues with the domain size (Vannitsem and Chomé

2005; Leduc and Laprise 2009), imperfections in the pa-

rameterization physics of the RCMs (Jiao and Caya

2006), or a combination of these factors (e.g., Castro

et al. 2005). Lack of improvement with downscaling to

finer resolution is also found in other studies carried out

in the recent past (e.g., Pope and Stratton 2002; Mass

et al. 2002; Dobler and Ahrens 2010; Haslinger et al.

2013). Moreover, the performance of model at finer reso-

lution could be dependent on seasonality and physiogra-

phy as the climatic regime is dictated by these factors and

so is the precipitation variability (Iorio et al. 2004;

Rauscher et al. 2010; Chan et al. 2013). Di Luca et al.

(2012) described added value of a RCM as the relative

improvement in the finer RCM simulation with respect to

its coarser driving fields or forcing. In the present work,

added value of each CORDEX-SA experiment is defined

Fig. 4 Added value for JJAS mean precipitation (mm day−1) of 11

CORDEX-SA RCM experiments (a–k) over their parent GCMs as

absolute bias in GCM simulation minus absolute bias in RCM simulation

(with respect to IMD observation). See Table 1 for name of RCM and

corresponding parent GCM for different experiments
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as the difference of absolute bias in RCM simulation from

that in its parent or forcing GCM simulation, that is,

Added value ¼ absolute bias in RCM simulation

–absolute bias in GCM simulation

where the bias in both RCM and GCM is calculated from

the IMD observation.

The same method was used by Karmacharya et al. (2016)

for calculating added value of a high-resolution regional cli-

mate simulation of ISM. This method is selected because of

the simplicity of computation and direct relation of added

value with the reduction in amount of bias. In Fig. 4, it can

be seen that along Western Ghats (western coastline of India)

almost all the experiments show an improvement or added

value in terms of reduction of precipitation bias by at least

5 mm day−1. The corresponding parent GCMs of these exper-

iments show in general a dry bias along the Western Ghats

(see Fig. S2). The RCMs on the other hand due to the presence

of orographic interaction with the low-level jet in its fine-scale

environment tends to have an increased moisture supply over

this region. This is apparent as a reduction in precipitation bias

after downscaling when compared to parent GCM and hence

could be seen as an added value although the bias in RCMs is

towards positive side (see Fig. 3). Further, for some of the

experiments where CCAM RCM is involved, it is also ob-

served that the added value extends well up to the leeward

side of Western Ghats (Fig. 4e, g, i, j) as the wet bias in the

corresponding GCMs (Fig. S2 d, f, h and i) seems to be re-

duced after downscaling (Fig. 3e, g, i, j). However, over cen-

tral Indian region, CCAM RCM irrespective of different

GCM forcings shows a degradation after downscaling due to

a large dry bias in the RCM results which is described earlier

in the section on bias assessment of models. Therefore, it can

be concluded that over central Indian region various GCMs

seem to perform better than their downscaled counterpart from

CCAM RCM. We find similar results after downscaling of

GCMs IPSL-CM5-LR and GFDL-ESM2M by RegCM4

(Fig. 3a, c) where the effect of the driving GCM seems to be

minor. Of the other experiments, zoomed version of GCM

IPSL-CM5-LR i.e. LMDz-IITM-LMDz (Fig. 4b) and its

downscaled result from RCMRegCM4 produces added value

over the central and eastern Indian region respectively mainly

because of poor performance of the parent GCM IPSL-CM5-

LR in form a consistent large dry bias over these regions.

Overall, the results present a clear benefit (or added value in

the sense of smaller absolute biases) by the use of higher

resolution RCM simulation at least over specific regions.

Nonetheless, it can also be concluded that the added value of

RCM can vary spatially over a geographically heterogeneous

region like India with the possibility of both improvement and

worsening of results.

Figure 5a presents the scatter plot to assess resemblances or

associations in the spatially distributed (grid point) mean JJAS

precipitation values of CORDEX-SA experiments with that of

IMD. It is found that precipitation generally lies between 0 to

15 mm/day. More the data points/blue dots are closer to the

diagonal line, more the simulation match closely with the

IMD. As can be seen from the figure for most of the experi-

ments and the ensemble, there are slightly more dots towards

the IMD side of the diagonal line indicating that experiments

show in general smaller amount of precipitation than the

IMD—a dry bias of model which was seen in the climatology

analysis earlier. Though this is not the case for ICHEC-EC-

EARTH-SMHI-RCA4where there is higher precipitation than

the IMD. For GFDL-ESM2M-IITM-RegCM4, more number

of dots is closer to the diagonal line than in case of any other

experiment which suggests a good capture of precipitation

distribution by this experiment.

To assess the performance of experiments in simulating the

entire range of spatially distributed values of precipitation

over India their probability distribution with respect to spatial-

ly distributed JJASmean values have been studied in compar-

isonwith that of IMD (Fig. 5b). For determining the frequency

distribution of CORDEX-SA experiments and IMD, the value

of JJAS mean precipitation intensity at each grid point (a

single value as time average over the study period) is taken

and the gamma distribution parameters are calculated (Table 3

and Fig. 5b) for the entire range of values. Figure 5b also

shows the frequency distribution of ensemble and IMD as

histogram. As suggested by location parameter and Bσ^ the

ensemble shows smaller mean precipitation as well as spatial

variability than the IMD. Though the gamma distribution

shapes of individual distributions differ in shape from the

IMD but the ensemble improves upon them as its shape shows

best resemblance with IMD which is indicated by its shape

parameter, Bα^ (2.664) (Table 3) being closest to that of IMD

(2.087) compared with experiments. In general, for the exper-

iments as well as ensemble most of the precipitation is con-

centrated within lower to intermediate range and frequency is

overestimated when compared with IMD. However, IMD

shows a larger distribution in high range of precipitation.

The scale parameter, Bβ^ of ensemble being smaller than that

of IMD which makes the shape of earlier getting squeezed

quantifies this fact. This is also indicative of the widespread

dry bias shown by experiments.

�Fig. 5 a Scatter plot of averaged (1970–2005) JJAS mean precipitation

(mm day−1) over India from 11 CORDEX-SA experiments (aa-ak) and

their ensemble (a(l)) versus that of IMD. b Probability distribution of the

JJAS mean precipitation (mm day−1) as gamma function (in line) of 11

CORDEX-SA experiments, their ensemble, and that of the IMD (see

Table 3 for corresponding parameters of distribution). Also shown here

(in bar) for only ensemble and IMD is the percentage of precipitation data

falling within a particular class interval. The range has been classified into

low, intermediate, and high based upon respectively +1σ, +2σ, and +3σ

of the lowest value from IMD
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Figure 6 presents yearly variability of monsoonal mean

precipitation for IMD and each of the experiment along

with their ensemble. The variability has been measured in

terms of standard deviation in the 36 years’ values (for

Table 3 Corresponding to Fig. 5 (gamma distribution), the parameters of spatial distribution ofmean JJAS precipitation over India where Bx^ is the no.

of grid points in the study area; Bσ^ is the standard deviation over area and Bμ,^ Bα,^ and Bβ^ are respectively, the location, shape, and scale parameters

of the gamma distribution

S. no. Distribution parameters x μ σ α β

Model/observation

1 GFDL-ESM2M-IITM-RegCM4 1249 6.214 5.031 1.526 4.073

2 ICHEC-EC-EARTH-SMHI-RCA4 1249 7.320 6.291 1.354 5.406

3 LMDz-IITM-LMDz 1249 5.633 4.493 1.572 3.583

4 LMDz-IITM-RegCM4 1249 6.099 5.959 1.048 5.822

5 CCSM4-CSIRO-CCAM 1249 5.046 3.995 1.595 3.163

6 CNRM-CM5-CSIRO-CCAM 1249 5.042 3.976 1.608 3.135

7 GFDL-CM3-CSIRO-CCAM 1249 5.038 3.938 1.637 3.078

8 MPI-ESM-LR-CSIRO-CCAM 1249 4.929 4.068 1.468 3.357

9 NorESM1-M-CSIRO-CCAM 1249 5.104 3.946 1.673 3.051

10 ACCESS-CSIRO-CCAM 1249 5.036 4.017 1.572 3.204

11 COSMO-CLM 1249 4.972 5.108 0.947 5.249

12 ENSEMBLE 1249 5.495 3.367 2.664 2.063

13 IMD 1249 7.132 4.936 2.087 3.417

Fig. 6 Variability (as standard deviation in mm day−1) in yearly JJAS mean precipitation over the period 1970–2005 as simulated by 11 CORDEX-SA

experiments (b–l) and their ensemble (m) over India. Also shown in a is the same for IMD
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IMD only 35 years) of JJAS mean precipitation at each

grid point in the study area. The regions where the exper-

iments and IMD (Fig. 6a) show high variability are also the

regions of high precipitation. All the experiments correctly

show high variability of precipitation of up to 4 mm day−1

along the western coast of India which the IMD also pre-

sents. On the other hand, in the central parts of India, most

of the experiments showing smaller precipitation (in com-

parison with IMD) also show smaller variability in com-

parison with IMD. On the other hand, LMDz-IITM-LMDz

(Fig. 6c) shows high variability in the same region. The

ensemble due to the cancelation of fluctuations shows very

small variability throughout the study region.

To identify the level of agreement or confidence in the

present set of simulations the spread in the experiments is

examined. In Fig. 7a, the spatial distribution of ensemble

spread is represented as the standard deviation of the 11 ex-

perimental 36-year JJAS mean values at each grid point we

can see that the spread is not same everywhere which means

the uncertainty in the experiments has a spatial variation also.

As seen in the climatological analysis also, there are regions

like over parts of Rajasthan where most of the models are in

complete agreement in capturing the magnitude and regional

grid to grid variation of precipitation and the spread in milli-

meter per day is almost zero everywhere across that space.

Remarkably, the areas with large inter-experiment spread are

also the areas with the large ensemble bias. Over the regions of

high precipitation—the west coast and the northeast parts of

India—experiments are showing higher uncertainty

(> 4 mm day−1) than the regions of low precipitation like

southwestern and Rajasthan region where there is a better

agreement among experiments. Summarizing the findings, it

can be said that the spread between experiments in capturing

the precipitation varies on spatial scales and the spread or the

uncertainty is itself in general large.

Figure 7b shows that on the basis of metric (explained in

methodology) that we have used here five experiments comes

out to be the good performing experiments among this lot and

Fig. 7 a Spatial distribution of ensemble spread among the 11

CORDEX-SA experiments during JJAS (mean) precipitation (mm

day−1) for the period 1970–2005 over India. b JJAS precipitation

climatology (black markers) for the period 1970–2005 over India from

11 CORDEX-SA experiments and their ensemble. The black horizontal

line represents the precipitation climatology of IMD and the upper/lower

dashed lines depict ± 2 standard deviation from the mean. Black markers

with error bars represent mean and mean ± 1 standard deviation of the 11

CORDEX-SA experiments and their ensemble. c Same as b but upper/

lower dashed lines depicting ± 1 standard deviation from the mean

13



we call them as our Best 5 CORDEX-SA experiments. These

experiments are the ones whose spatially averaged precipita-

tion climatology comes within the ± 2 standard deviations

from that of the IMD mean. They are: NorESM1-M-CSIRO-

CCAM, LMDz-IITM-LMDz, LMDz-IITM-RegCM4,

GFDL-ESM2M-IITM-RegCM4 and ICHEC-EC-EARTH-

SMHI-RCA4. Three of these experiments also come within

± 1 standard deviation from IMD (Fig. 7c) which has been

shown just to narrow down further on the better performing

experiments but the aforementioned five experiments have

been chosen ultimately so as to include more number of

CORDEX-SA experiments in the ensemble. The metric may

not be the only one to choose the better performingmodels but

still we wanted to focus on the climatology so we stick to this

method alone and it was beyond the scope of the present study

to go for other metrics as it needs altogether a separate study to

compare the different methods of selection of models.

The ranked histogram can be used as a diagnostic tool to

assess the spread of an ensemble. (Hamill 2001). The underly-

ing assumption is that the ensemble member results are distrib-

uted so as to delineate ranges or bins of the simulated variable

such that in each bin there is an equal probability of occurrence

of observation. The histogram shows the probability of the total

occurrences of observed values in each bin where bins are

determined by ranking the ensemble member values from low-

est to highest. The bins are fixed by ranking the ensemble

member simulations from lowest to highest. A bin is formed

by the interval between each pair of ranked values. There will

be Bn + 1^ bins if there are Bn^| ensemble members. For each

case, observation will fall into a certain ranked bin. Therefore,

for each bin there would be a number of total occurrences of

observation which determines the histogram. As it can be seen

in Fig. 8a, the IMD value too frequently occurs in the wettest

(highest-valued) bins. Therefore, the ensemble tends to show

dry bias as found in climatology analysis previously. There is

also an uncertainty in the experiments with respect to IMD as

histograms are not of same height.

Figure 8b presents the Taylor diagram showing the perfor-

mances of experiments in simulating the spatial pattern of

precipitation with IMD as reference. Here the JJAS mean

precipitation values averaged over the study period (1971–

2005) at each grid point present in the study area is considered

Fig. 8 a Ranked histogram

showing the spread of the

ensemble of 11 CORDEX-SA

experiments with respect to IMD

for JJAS mean precipitation

(1970–2005). The histogram

shows the probability of the total

occurrences of IMD values in

each bin where bins are

determined by ranking the

ensemble member values from

lowest to highest. b Taylor

diagram representing the

normalized statistical comparison

of spatial pattern of JJAS

precipitation of the 11

CORDEX-SA experiments and

their ensemble with that of IMD

over India
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to calculate the Taylor diagram parameters. It can be noticed

that the spatial pattern is captured up to an extent by all the

experiments as none of them show negative correlation

values. In particular, COSMO-CLMperforms better than even

ensemble in all aspects and shows smallest RMSE and highest

correlation (0.65) among all the experiments with respect to

IMD.

During summer monsoon, a southwesterly low-level flow

is established in the atmosphere—a part of large scale circu-

lation in the atmosphere at around 850 hPa. Its formation

Fig. 9 JJAS mean climatology

(1970–2005) of 850 hPa wind (m

s−1) from a NCEP reanalysis, b, c

two CORDEX-SA experiments,

and d, e their respective biases

from NCEP reanalysis
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involves processes such as the cross equatorial flow of zonal

wind, which turns to the right due to the Coriolis force and

develops as Findlater Jet. This transports moisture from the

Arabian Sea to the Indian landmass and causes the precipita-

tion during JJAS. These basic features of wind fields during

monsoon are very important for a model to realistically simu-

late so as to accurately represent the monsoon dynamics and

associated precipitation. In Fig. 9, the model simulated wind

fields (Fig. 9b, c) are compared with that of NCEP reanalysis

(Fig. 9a) along with the respective biases of models (Fig. 9d,

e). The 850 hPa wind data was available for only two of these

RCM experiments under CORDEX-SA. Of the two RCMs,

COSMO-CLM is found to capture the spatial features of wind

fields very well with the cross equatorial flow and the

Findlater Jet very clearly represented along with the Bay of

Bengal branch of the monsoonal flow. A strong wind core

over the Arabian sea and over Bay of Bengal is realistically

simulated by this RCM. The same RCM was earlier found to

also capture the spatial distribution of precipitation over India

very well in terms of a high spatial correlation (Fig. 8b).

However, in terms of magnitude, the wind seems to be

overestimated (Fig. 9e) over the central Indian region.

Moisture riding on a strong wind tends to precipitate mostly

along the Western Ghats by orographic forcing. The wind

being still strong enough but with less moisture further moves

inland but gets carried out of this region thus inhibiting the

convergence. This could be linked with the precipitation as

wet bias over the Western Ghats and the large dry bias over

rest of India was found earlier in this model (Fig. 3k). On the

other hand, ICHEC-EC-EARTH does not capture the ob-

served spatial variability of wind field as good as COSMO-

CLM with the former showing underestimation along the

Western Ghats and overestimation over the foothills of

Himalayas.

As it can be seen in Fig. 10a, the spread of the ensem-

ble of Best experiments has reduced as all of these exper-

iments climatologically lie within a boundary defined by

standard deviation of the IMD. The spatial distribution of

spread remains more or less same but the magnitude has

reduced for whole of India and hence the certainty seems

to be increased slightly. Figure 10b(a), b(b) shows the

comparison of the JJAS precipitation bias for the ensem-

ble of 11 experiments and that of the Best 5 experiments,

respectively. A slight reduction in bias is seen over many

places like central parts, and some parts of northern and

eastern India. The reduction in bias is a direct result of the

Best 5 experiments’ closer resemblance with the observed

precipitation climatology.

3.2 Indian monsoon core region

Model physics responds variably to the physiographic

variations and hence its ability to reproduce the observed

climate also varies spatially in a heterogeneous region like

India. Therefore, in this section following the same ap-

proach as for all India, an attempt is made to have a

focused study of the CORDEX-SA experiments for its

ability in simulating the summer monsoon precipitation

climatology by considering a homogeneous monsoon re-

gion of India which is called as Indian monsoon core

region (or MCR) (as described in Section 2.1.1).

Figure 11a shows the best performing CORDEX-SA ex-

periments over MCR as the ones whose mean climatology

lie within ± 2 standard deviation from that of IMD. They are

referred here as the Best 3 experiments. They are—LMDz-

IITM-LMDz, ICHEC-EC-EARTH-SMHI-RCA4, and

GFDL-ESM2M-IITM-RegCM4. Incidentally, these three

experiments are also among the best performing experi-

ments over the all India region. The first two experiments

mentioned above have their climatology almost equal to

that of IMD with LMDz-IITM-LMDz and ICHEC-EC-

EARTH-SMHI-RCA4 showing 6.88 and 6.71 mm day−1

Fig. 10 a Spatial distribution of ensemble spread among the Best 5

CORDEX-SA experiments during JJAS mean precipitation (mm day−1)

for the period 1970–2005 over India. b JJASmean precipitation bias (mm

day−1) for the period 1970–2005 for b(a) ensemble of 11 CORDEX-SA

experiments and b(b) ensemble of Best 5 CORDEX-SA experiments

with IMD over India
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respectively and they also come within ± 1 standard devia-

tion (Fig. 11b) from IMD (6.78 mm day−1).

The Best 3 experiments show varying biases across the core

region (Fig. 12a). Overall, they produce a dry bias over MCR as

can be seen in the figure where the ensemble is showing an

underestimation of precipitation climatology of upto 2mmday−1.

Mishra et al. (2014) also reported similar findings based on the

CORDEX-SA experiments two of which is included in the Best

3 set from the present study. They found that over the central part

of India the experiments and their ensemble are showing dry bias

although they studied annualmaximumprecipitation values only.

The climatology of ensemble seems to be improvedwith reduced

biases. The LMDz-IITM-LMDz and GFDL-ESM2M-IITM-

RegCM4 which is although showing a wet bias within a small

area at the bottom left region of the MCR box as a part of

WesternGhats induced orographic precipitationmainly produces

dry bias over the larger part of core region. The dry bias in the

RCMs as discussed before could be due to the excessive

(orographic) precipitation along the west coasts and warm ocean

regions (in Indian scenario, the Bay of Bengal) which seems to

remove most of the moisture from the atmosphere and generate

weaker precipitation over land (Rockel and Geyer 2008). In

Fig. 12b, the variation of inter-model spread over space is de-

scribed. The spread in the Best 3 experiments is reduced com-

pared with 11 experiments or even the Best 5 over all-India

region. There is an increased certainty and agreement in these

set of three experiments. This may be just due to less number of

experiments or due to the ability of experiments and nature of

their selection based on resemblance with a common IMD data.

Spatially the spread in the experiments is very less over MCR as

Fig. 11 a JJAS precipitation

climatology (black markers) for

the period 1970–2005 over MCR

of 11 CORDEX-SA experiments

and their ensemble. The black

horizontal line represents the

precipitation climatology of IMD

and the upper/lower dashed lines

depict ± 2 standard deviation from

the mean. Black markers with

error bars represent mean and

mean ± 1 standard deviation of

the 11 CORDEX-SA experiments

and their ensemble. b Same as a

but the upper/lower dashed lines

depicting ± 1 standard deviation

from the mean
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shown by standard deviations which vary between 0 and 3 mm

day−1 at most of the places with high degree of spread seen at

places which seems to come under the influence of varying orog-

raphy like, Western Ghats or Himalayan region. The Taylor dia-

gram in Fig. 12c which represents the performance of experi-

ments in simulating the precipitation spatially shows that the

results are improved over MCR. The ensemble shows best cor-

relation of about 0.7 with the member experiments also showing

smaller but positive correlations. Two experiments GFDL-

ESM2M-IITM-RegCM4 and ICHEC-EC-EARTH-SMHI-

RCA4 show close spatial variation with IMD as indicated by

their corresponding standard deviations in the diagram.

Interestingly, over MCR the ICHEC-EC-EARTH-SMHI-

RCA4 and the ensemble shows better resemblances in various

aspects of Taylor diagram with the reference when compared

with their respective performance over all India region.

3.3 Skill score and model weighting

Weighting of individual climate models of an ensemble is a

widely used method to reduce uncertainty in climate projec-

tions (Giorgi and Mearns 2002, 2003, Murphy et al. 2004,

Fig. 12 a JJAS precipitation bias

(mm day−1) averaged over the

period 1970–2005 of only Best 3

CORDEX-SA experiments (a(a)–

(c)) and their ensemble (a(d)) with

IMD over MCR (box). b Spatial

distribution of ensemble spread

among the Best 3 CORDEX-SA

experiments during JJAS

precipitation (mm day−1) for the

period 1970–2005 over MCR

(box). c Taylor diagram

representing the normalized

statistical comparison of spatial

pattern of JJAS mean

precipitation (1970–2005) of only

the Best 3 CORDEX-SA

experiments and their ensemble

with that of IMD over MCR
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Tebaldi et al. 2005, Tebaldi and Knutti 2007, Knutti et al.

2010). The basic idea behind weighting is that the higher

performing models in an ensemble are given higher

weightage in calculating the mean of all models, which

would result in a better performing ensemble. As the ensem-

ble members in the present set of CORDEX-SA experi-

ments are not completely independent (common RCM/

GCM in some experiments), the equally weighted ensemble

mean are considered throughout the study.Moreover, equal-

ly weighted ensemble is considered to consistently outper-

form the individual members of ensemble (Knutti et al.

2010). However, considering the relative impacts of joint

model errors and model noise on the performance of ensem-

ble mean, a knowledge of relative performance of model is

also required (Weigel et al. 2010). Taking this into consid-

eration, as an additional part of the present study a compar-

ison of the basic climatology of weighted ensemble mean

with the earlier used simple ensemble mean (equally

weighted or average) is made. For this purpose, first we

have calculated a Bcombined^ skill score of each individual

model and then the relative (combined) skill score of a mod-

el is used as a weighing factor for that model in calculating

the weighted ensemble mean.

The model Bcombined^ skill score is the combination

of two separate skill scores—(i) model Bperformance^

skill score and (ii) model Bconvergence^ skill score.

The idea of this method is based on the Breliability

ensemble averaging method^ of Giorgi and Mearns

(2002). We have followed the approach of Dessai

et al. (2005) in calculating these skill scores but without

area averaging of the scores so as to show spatial var-

iation of model skills. The method relies on the modi-

fied version of least complicated skill score used by

Ta y l o r ( 2 0 0 1 ) a n d Mu r p h y ( 1 9 8 8 ) . Mo d e l

Bperformance^ skill score (Fig. 13a) is calculated as:

S:S:performance ¼
j�xobsj

1
N
∑ N

i¼1 ximod−xiobsð Þ2�
1=2

h ð1Þ

Fig. 13 Skill scores for 11 CORDEX-SA experiments, for a(a)–(k) model Bperformance^ (with respect to IMD), b(a)–(k) model Bconvergence^ (with

respect to simple ensemble mean), and c(a)–(k) combined skill score for JJAS precipitation over India

19



Fig. 13 (continued)
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where

S.S. performance = model Bperformance^ skill score,

N = number of time points, here 35 for 35 years (1971–2005)

ximod = ith data point of model simulation for variable x,

here variable is JJAS mean precipitation

xiobs = ith data point of observation (here, IMD) for variable

x, here variable is JJAS mean precipitation

xo: average of observations for variable x.

This skill score gives an overall measurement of model

bias, variance and spatial correlation. Therefore, it is consid-

ered as an integrated index of measurement of model

performance.

Similarly, the model Bconvergence^ skill score (Fig. 13b) is

calculated as:

S:S:convergence ¼
j�xensj

1
N
∑ N

i¼1 ximod−xiensð Þ2�
1=2

h ð2Þ

where

S.S. convergencemodel Bconvergence^ skill score,

Nnumber of time points, here 35 for 35 years (1971–2005)

ximodith data point of model simulation for variable x, here

variable is JJAS mean precipitation

xiensith data point of the ensemble average for variable x,

here variable is JJAS mean precipitation

xomulti-model ensemble average for variable x.

Finally, the combined skill score is calculated as:

S:S:combined ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S:S:performance
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S:S:convergence
p� �4

ð3Þ

where S.S. combined = model Bcombined^ skill score.

From Fig. 13b as well as Table 4 it is found that there is a

wide variation in convergence skill scores among the

individual experiments suggesting discrepancy between the

models or the inter-model spread. This also point towards

the uncertainty among the experiments which was discussed

earlier in Fig. 7a. The skill also varies spatially for eachmodel.

For e.g. we find that the experiments which involves CCAM

as RCM shows particularly a high skill in north-western part

of India and a similar distribution to each other at other re-

gions. For ICHEC-SMHI-RCA4 the skill drastically reduces

along the Indo-Gangetic plains. This indicates that in this re-

gion the model has a large deviation from the ensemble.

Overall, the MPI-ESM-LR-CCAM agrees best with the

multi-model ensemble which is indicated by highest mean

convergence skill core of 3.0. As it was found in the bias study

also, the model performance varies in space and from

each other again indicating discrepancy or uncertainty in

simulations. A wet bias along the west coast of India

results in a reduced skill of less than one in almost all

models in that region. As seen in climatological com-

parison of models Fig. 7b, the GFDL-ESM2M-RegCM4

experiment lies closest to the mean observation line,

here also it shows the highest Bperformance^ skill of

1.52 as well as the combined skill of 37.82 although

in ‘convergence’ it does not emerges to be the highest

skilled model.

Based on the relative combined skill score, weights are

assigned to different experiments and then weighted ensemble

mean is calculated. In Fig. 14, the climatology and the respec-

tive bias (with IMD) of the weighted ensemble mean

(Fig. 14c, d) and simple ensemble mean (Fig. 14a, b) which

is simply the multi-model average that we used earlier in all

our analysis are compared. A clear difference that is seen in

weighted mean climatology is the reduction of bias along the

western coastline, on both windward and leeward side of

Western Ghats where reduction in dry bias as well as wet bias

Table 4 Mean skill score (for Performance, Convergence, and Combined) for each CORDEX-SA experiment (averaged over India) for JJAS

precipitation

S. no. Model Skill score

Performance Convergence Combined

1 GFDL-ESM2M-IITM-RegCM4 1.52 2.59 37.82

2 ICHEC-EC-EARTH-SMHI-RCA4 1.41 1.72 13.51

3 LMDz-IITM-LMDz 1.22 1.70 7.36

4 LMDz-IITM-RegCM4 1.52 2.41 27.46

5 CCSM4-CSIRO-CCAM 1.41 2.97 25.22

6 CNRM-CM5-CSIRO-CCAM 1.42 2.81 21.76

7 GFDL-CM3-CSIRO-CCAM 1.43 2.84 21.61

8 MPI-ESM-LR-CSIRO-CCAM 1.43 3.00 24.86

9 NorESM1-M-CSIRO-CCAM 1.41 2.88 23.59

10 ACCESS-CSIRO-CCAM 1.39 2.30 26.01

11 COSMO-CLM 1.48 2.02 15.36
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takes place, respectively. This indicates a regional skill of

weighted ensemble mean. A slight reduction in wet bias is

also found in parts of western Himalayan region. On the other

hand, in the central part of India, the dry bias is getting en-

hanced. This could be due to higher convergence of those

models and hence a higher Bcombined^ skill in this region

which was showing dry bias. Summarizing, the weighted en-

semble definitely exhibits an improved performance in cap-

turing the climatology though the skill is localized.

4 Conclusions

In this study, a comprehensive evaluation of the ability and

uncertainty of an ensemble of 11 RCM experiments under

CORDEX-SA in representing seasonal mean summer mon-

soon precipitation climatology over India is presented. In gen-

eral, most of the simulations were able to capture the important

features of summer monsoon precipitation climatology over

India especially the high precipitation over the western coast

and northeast India and low precipitation over Rajasthan.

However, there also exists a very wide spread dry bias in sim-

ulations which used a particular regional model (CCAM) that

affects the performance of ensemble in capturing the spatial

pattern of precipitation. Individual model skill varies from each

other and also spatially in capturing precipitation climatology

over India but in general most of the experiments tend to un-

derestimate the monsoonal mean precipitation over a larger part

of India including theMCR. This reflects in their ensemble also

though with slightly reduced bias due to cancelation of opposite

signed biases. In fact, paired difference Student’s t-test reveals

that a significant dry bias is seen in all the simulations over

India spatially except for RCA4 regional model which shows

a significant wet bias. This suggests a common deficiency in the

present set of CORDEX-SA experiments in simulating the

summer monsoon precipitation over India. Such systematic

biases could be removed by applying bias correction method-

ology to improve accuracy (Dobler and Ahrens 2008; Piani

et al. 2010). About the added value of RCM over its parent

GCM, it can be concluded that the benefit of downscaling can

vary spatially over a geographically heterogeneous region like

India with the possibility of both improvement and worsening

of results. A considerable uncertainty is found in the present

ensemble of experiments which varies in space where in some

parts it is as large as 5 mm day−1. This is reflected in their

convergence skill score where some models skill gets highly

reduced in particular region over India. On an average, the

uncertainty between the models in simulating the mean precip-

itation is around 2–3mmday−1. The reason for such differences

in model results could be lying in the variation in

Fig. 14 Comparison of JJAS

precipitation climatology (mm

day−1) over India for the period

1970–2005 of a simple ensemble

mean, bweighted ensemble mean

of 11 CORDEX-SA experiments,

and c, d their respective biases

with respect to IMD
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parameterization physics like convection, planetary boundary

layer assumption, and land-surface schemes, etc. to which the

simulation of monsoon dynamics could be very sensitive espe-

cially where they play an important role like over regions where

local forcings are relevant (Solman et al. 2013). Other sources

of uncertainty could also exist such as differences in model’s

configuration- numerical techniques, vertical resolution and dif-

ferent forcings which can explain differences in simulated pre-

cipitation climatology (Solman and Pessacg 2012). To conclu-

sively comment on the reasons behind the uncertainty would

require analysis of other variables and their physical linkages

together with the information of simulation design in hand. This

is beyond the scope of present study. Moreover, from this study

we can definitely say that large uncertainty together with large

bias at a place which results in a reduced combined skill of

model suggests that the reliability in simulating the monsoonal

mean precipitation features is degraded at that place. One other

noticeable finding is that though the experiments are not able to

capture the actual strength of long-term seasonal mean precip-

itation as seen in climatology bias but it shows good ability in

capturing its spatial distribution (variation along the grid points)

as shown by the positive signs of spatial correlation values in

Taylor diagrams. Further, with the selection of better

performing CORDEX-SA experiments by the method we used,

their ensemble average shows only a slight improved perfor-

mance in various aspects—reduced biases, improved certainty

and correlations. This suggests that only a mean climatology

based identification of good performing models is not compre-

hensive enough for making a reliable ensemble.

To investigate the individual models in depth is beyond the

scope of the present study as this would require detailed anal-

ysis of how each model has been configured, how sensitive

they are to different parameterization schemes and associated

dynamics along with their interactions. Unavailability of this

information under CORDEX-SA is a major limitation in

interpreting the results. We have made no attempt in the present

study to identify the reasons behind the agreement or disagree-

ment in the experiments. Though RCMs are thought to be por-

table in the sense that they can be used to generate climate

information for any region across the world but the quality of

their results depends on regions as found by Takle et al. (2007).

The current analysis which documents the assessment of 11

experiments—their common weaknesses and strengths that

may be informative for identification of individual models

and their improvement to give reliable future projections of

precipitation over Indian region.
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