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Abstract: We consider the problem of demand estimation for public transport networks. Given
an origin-destination matrix representing the public transport demand, the distribution of flow
among different lines can be obtained assuming that it corresponds to a certain equilibrium
characterized by an optimization problem.
The knowledge of the origin-destination matrix is expensive and sometimes unaffordable in
practice. Traditionally, it is estimated using statistical or econometrical considerations. In
this work, we explore the estimation through the numerical solution of a bilevel optimization
problem. One disadvantage of this formulation is the difficulty of obtaining descent directions,
therefore we proposed a derivative-free method for the resolution of the optimization problem.
The method is firstly tested on small networks using a derivative-free optimization method
and then, using an approach based on simulation. This simulation-optimization methodology
showed as good results as analytical modeling, opening the door to handle bigger networks
where analytical computation is hard to accomplish.

Keywords: Transit assignment; Public-transport demand; Bi-level optimization; Simulation;
Equilibrium model

1. INTRODUCTION

Transit assignment models have become an interesting
research area because knowing the passenger behavior
allows comparing different planning scenarios in terms of
network performance. Such models typically assume that
the transport demand is known.

Many models for passenger behavior have been proposed.
Most of them consider that when a passenger decides to
travel between certain O-D pairs and is waiting for a
vehicle at a stop, he must decide which transit line he
should take to minimize his total expected travel time
(including access, wait and in-vehicle time). Other models
consider that passengers seek to minimize their generalized
cost, which includes not only the total travel time but
also in-vehicle crowding and fares, among others. Among
the first models that considered congestion effects, we can
cite Spiess and Florian (1989) that work with the concept
of hyperpath composed by “strategies of attractive lines”,
but failed to be realistic in cases of high demand because
waiting times are considered flow independent, assuming
that passengers always can take the first bus that arrives

at the stop. This is not necessarily true in a congested
network.

De Cea and Fernández (1993) began to consider the con-
gestion effects at bus stops and inside the bus. This model
was improved in Cominetti and Correa (2001) formulating
a transit equilibrium problem that uses effective frequen-
cies functions that vanish if the in-vehicle flow exceeds its
capacity (see 4). The main limitation of these methods
is that the technical assumptions are very limiting in the
first case and there no efficient algorithms to compute the
solution in both cases.

Cepeda et al. (2006) decided to continue this idea and
reformulated the equilibrium problem as the minimiza-
tion of a nonconvex and nondifferentiable gap function.
To solve this problem a heuristic method was proposed,
using an adaptation of the Method of Successive Averages
(MSA) and obtaining the lines flow vector. This method
can be applied on high scale networks without computa-
tional drawbacks but can generate line flows that exceed
the capacity when the demands are high. To improve
this method, Codina and Rosell (2017) presented an algo-
rithm with strict capacities that finds the solution of the



fixed point inclusion formulation derived from the prob-
lem of variational inequality proposed by Codina (2013).
At each iteration an assignment problem is solved, using
Lagrangian duality and a cutting-planes method.

The use of the previous models of transit assignment in
any planning study requires the knowledge of the trans-
port demand, commonly known as the origin-destination
matrix. Obtaining that matrix could be very expensive and
sometimes unaffordable in practice. As has been made for
the case of traffic assignment (see Walpen et al. (2015)), in
this work we explore its estimation through some directly
measurable quantities like the real frequencies of the buses.
As we know how to compute, given the demand, the
flows, and hence the frequencies, we pose a kind of inverse
problem whose solution estimates the actual demand. We
implemented this idea in Bhouri et al. (2020) and here
we reproduce those results and compare them within a
simulation approach. As far as we know, previous works
about public transport demand estimation do not use
this approach. Most of them are based on statistical or
econometrical considerations, see Ortuzar and Willumsen
(2001); Cascetta (2009); Dike et al. (2018); Garćıa-Ferrer
et al. (2006).

In the next section, we present a detailed description of the
assignment model following the one presented in Cepeda
et al. (2006). In section 3 we pose the inverse problem
used for demand estimation and in section 4 we present
the numerical experiments made with the example given
in Cepeda et al. (2006).

2. TRANSIT ASSIGNMENT MODEL

Following the notation of previous works as Spiess and
Florian (1989); Cominetti and Correa (2001); Cepeda
et al. (2006); Codina (2013) we consider a directed graph
G = (N,A) where N is the node set and A the set of arcs,
each one with cardinality NN and NA. The set of nodes is
composed of the bus-stop nodes Ns and the line nodes Nl.
The arcs are divided in the alighting and boarding arcs
connecting the bus-stop nodes with the line nodes, the on-
board arcs (or line segments) connecting line-nodes and
the walk arcs connecting bus-stop nodes, see Figure 1 for
a sketch.

boarding arc
alight arc
walk arc
line node
bus stop

Fig. 1. Public transport network.

For some origin-destination (od) pairs (i, d) ∈W ⊂ N×N ,
there is a transport demand called gdi , and we call D the
set of all nodes d that are destinations of some od pair. For
a node i we call A+

i the set of outgoing arcs and A−i the
incoming arcs set. We also define the node-arc incidence
matrix A ∈ RNN×NA where Aia = 1 iff a ∈ A+

i , Aia = −1
iff a ∈ A−i and otherwise zero.

We call vda the flow through arc a with destination d ∈ D.
For each destination d we define the set of feasible flows
with destination d and the set of total feasible flows as

V d =
{
vd ∈ RNA

+ : Avd = gd
}
, (1)

V =

{
v ∈ RNA

+ : v =
∑
d

vd, vd ∈ V d,∀d

}
. (2)

We call V (g) the set of feasible flows for the demand g,
that is the set of all vda ≥ 0 such that vda = 0 for all a ∈ A+

d
and satisfying the flow conservation constraints:

gdi +
∑
a∈A−

i

vda =
∑
a∈A+

i

vda, ∀i 6= d. (3)

Two functions of the full flow vector v are associated to
each arc, the travel time function ta(v) and the effective
frequency fa(v). Both have non negative values and the
frequencies can have the constant value +∞. As mentioned
in Cepeda et al. (2006) the case when ta and fa are
constants is called the uncongested case and the case where
only the frequencies fa are fixed is called the semicongested
case. Here we will consider a third case where the travel
time function is constant but the frequencies are not. To
model the impact of the bus load on the frequency the
function 4 is used:

fa(v) =


µ

[
1−

(
va

µc−va′+va

)β]
, if va′ < µc,

0, otherwise,

(4)

where va =
∑
d∈D v

d
a is the total flow boarding at stop

and using arc a and va′ is the total flow after the stop
(va′ ≥ va). The parameter µ is the nominal frequency of
the lines and c is the physical capacity of the buses, thus,
µc− va′ is the residual capacity waiting at the stop.

The rationale behind the model is that each passenger
at each node chooses an arc to continue its trip. The
decision is based on minimizing the total travel time.
Thus, at each node a Common Line Problem should be
solved: passengers select a nonempty subset of common
lines s ⊆ A and board the first vehicle that arrives at
the stop and belongs to this set. The chosen strategy
minimizes their total expected travel time. In addition,
now the frequencies depend on the flows. In the paper
Cepeda et al. (2006) it is shown that the corresponding
(equilibrium) flow v ∈ V ∗(g) is the global minimizer of
the so-called gap function G of the flow v, that we write
here also as a function of the demand g,

G(v, g) =
∑
d∈D

∑
a∈A

ta(v)vda′ +
∑
i 6=d

max
a∈A+

i

vda
fa(v)

− gdi τdi (v)

 ,
(5)

where ta is the travel time, τdj is the total expected travel

time from j to d, A+
i is the set of arcs emerging from i, fa

models the impact of the congestion on the frequency, µ is
the nominal frequency of the line and c its capacity, β is
a calibrated parameter and va′ is the on-board flow right
after the stop.

Then the transit assignment for a given demand g is
obtained minimizing G(v, g) over the flows in V (g). It



is known, also by the work Cepeda et al. (2006), that
the optimal value is 0. This is because function G is
the difference between the total time experienced by
passengers (travel time + maximum waiting time at stops)
and the total expected travel time of the system. A detailed
explanation about the construction and interpretation of
gap function and its optimal value can be found in Cepeda
et al. (2006).

To solve the assignment problem in Cepeda et al. (2006);
Codina and Rosell (2017) the authors propose the MSA
(Mean Successive Average) method. It means that starting
with an all-or-nothing assignment, at each iteration travel
times are updated and a new assignment (for fixed travel
times and frequencies) is averaged with the previous one.
Interestingly enough, in contrast to the traffic assignment
problem, here we have a computable stopping criterium
as we know that G(v, g) = 0 for an equilibrium. The
assignment with fixed travel times and frequencies is made
using the Hyperpath Dijkstra method as it was proposed
in Cepeda et al. (2006); Spiess and Florian (1989).

For the sake of completeness we reproduce the MSA
algorithm below:

Result: Flow at equilibrium
Let αk ∈ (0, 1) such that αk → 0 and

∑∞
k=0 αk =∞;

Find v0 ∈ V (g) and let k = 0;

while G(vk) > εG(v0) do
Compute ta = ta(vk) and fa = fa(vk);
Compute the shortest hyperpath for each d ∈ D;

Compute the induced flows v̂da;

Update vk+1 = (1− αk)vk + αkv̂;
Set k = k + 1;

end

In order to obtain the first flow v(0), an all-or-nothing
assignment is made computing the shortest hyperpath for
ta = ta(0) and fa = fa(0). If fa(v0) = 0 for some arc
a, then the next iteration will be unfeasible. To avoid
this situation, the effective frequency can be augmented to
f̃a(v) = max{fa(v), ε}, for a small enough ε > 0. In this
way, even for a large flow, there will always be a feasible
arc.

Figure 2 shows the typical performance of MSA, computed
for the second example described in section 4, using the
parameters defined therein.

3. DEMAND ESTIMATION PROBLEM

Assuming that the model carefully represents the real
dynamic of the passengers, it is possibly to use it to
detect anomalies or changes in the demand data when
the observed flow or frequencies are different from the
computed ones.

Here we focus on correcting the given demand to comply
with the observed frequencies. That is, given a nominal
demand ḡ and a subset of arcs Aobs ⊂ A over which
the frequency f̄ is measured (observed), we look for the
demand g that minimizes

min
g,v

∑
a∈Aobs

(
f̄a − fa
f̄a

)2

+ γ
∑
a∈A

(
ḡa − ga
ḡa

)2

(6)

s.t.

v ∈ V (g), (7)

G(v, g) = 0. (8)

More general quadratic criteria can be considered, for ex-
ample including coefficients for each arc that represent the
confidence of the measures on that arc. The regularization
parameter γ represents the trade-off between adjusting the
observed flows and conserving the nominal demand; in
Figure 3 we show the level curves computed for different
values of γ in the case of the first example in section 4. The
regularization term has a beneficial effect on the convexity
of the problem and also on the uniqueness of its solution
(see again Figure 3, where sublevel sets are “more convex”
for γ higher), but large values of γ make the problem to
ignore the observations.

Nevertheless, even for large values of γ, i.e, for a more
convex problem, the numerical solution of this bilevel
problem is rather involved because the flow v(g) is given
implicitly by G(v, g) = 0 and there is not an easy way to
compute variations of v with respect to g.

(a) Relative gap.

(b) Sum of the differences between T d
s and τdi .

Fig. 2. MSA algorithm performance for the example 2 in
section 4.



(a) γ = 1/5

(b) γ = 1/100

Fig. 3. Level curves (log scale)

3.1 Simulation-optimization approach

For complex traffic networks, it is very difficult to deal
with individual passenger dynamics using an analytical
method. There are too many parameters to set up, whose
values can affect the result of the estimation. Moreover,
passenger arrival could not follow a stable probabilis-
tic distribution (like the exponential inter-arrival times
supposed by Cepeda et al. (2006)). In those cases, the
usage of an agent-based simulation could help with the
modeling of different scenarios in a more realistic way.
In a simulation, many parameters are estimated by the
simulation itself, preventing the fall into prejudicial over-
simplification. Then, the simulation can be used as a black-
box function in conjunction with any optimization method
which does not require the analytical formulation of the
function to optimize.

We use the tool SUMO (Lopez et al. (2018)), an urban
traffic simulator, with support for handling buses and
pedestrians. SUMO was used in conjunction with RSUMO
(Baquela (2013)), a small library developed in R (R
Core Team (2020)) to perform traffic analysis. Given the
traffic network parameters (bus demands and frequencies)
SUMO simulates the dynamic of passengers and buses
and calculates traveling and waiting times. Using these
estimated waiting times, the effective frequency can be

estimated too. Also, due to the passenger arrivals are
stochastic, running multiple simulations allows estimating
the expected behavior of these indicators. Using this data,
it is possible to estimate the effective frequencies instead
of computing them with the analytic formula in 4, leading
also to a different way of computing the objective function
defined in 6.

4. NUMERICAL EXPERIMENTS

For a first numerical experiment and for the sake of
comparison with already published results we consider
the small example that is proposed in Cepeda et al.
(2006) (Section 4.1.1). We reproduce their computations
and compare with our methodology obtaining the same
assingment results.

For the numerical examples we will assume that we have an
observed frequency data and the objective is to estimate
the O-D matrix that induces those frequencies.

To find the minimizers in 6 we use the Nelder-Mead
method (see Lagarias et al. (1998)). It is a derivative free
method included in Matlab through the command fmin-
search (MATLAB (2017)), and we considered a precision
value of 0.01.

4.1 Cepeda et al. network

Consider the network in Figure 4 with three nodes and two
transit lines connecting them: L1 (local line, connecting
nodes 1, 2 and 3) and L2 (express line, connecting node 1
with node 3). Suppose that we have demands of 10 trips
from node 1 to node 2, 100 trips from node 1 to node 3
and 10 trips from node 2 to node 3. Considering that the
capacity of each bus is 20 passenger by bus, the dwell time
at stops is 0.01 minutes and the effective frequencies are
defined by 4 with β = 0.2.

Finally suppose that the frequencies of lines L1 and L2 are
6 and 16 vehicles per hour, respectively, and travel times
over each arc are t12 = 20.01, t23 = 20.01 and t13 = 24.01
minutes.

In order to obtain the equilibrium assignment we applied
the MSA Algorithm. It is important to note that demands
g21 and g32 can only use the line L1 while demand g31 can
choose L1 or L2. Taking this into account we obtained the
following arc volumes:

v12 = 25.7, v23 = 25.7, v13 = 84.3

where it can be seen that passengers who want to travel
from node 1 to node 3 choose a strategy that considers
both lines, local and express.

For this assignment the total time (travel + wait) of
each strategy for each demand gdi satisfies the equilibrium
condition T ds = τdi . In the particular case of g31 the total
travel time is equal to 40.02 minutes.

1 2 3
L1

L2

L1

Fig. 4. Small network proposed by Cepeda et al. (2006)



The effective frequencies based on these assignment are
f12 = 0.0265, f23 = 0.0374 y f13 = 0.0625.

Suppose we can measure the current effective frequencies
and based on them and a nominal demand we want to
estimate the current O-D matrix. Consider, for example,
the following observed frequencies:

f̄12 = 0.0215, f̄23 = 0.0362, f̄13 = 0.0624

These frequencies are obtained when we perform the flow
assignment with g21 = 10, g31 = 110 and g32 = 10. Taking
into account these frequencies and considering the nominal
O-D matrix ḡ21 = 10, ḡ31 = 100 and ḡ32 = 10 we solve the
problem (6-8) with γ = 1/5 and obtain the estimated O-D
matrix g21 = 10.05, g31 = 109.5 and g32 = 9.98, which can
be considered a good approach to the assumed real O-D
matrix ḡ21 = 10, ḡ31 = 110 and ḡ32 = 10. The progress of the
objective function of problem (6-8) during the O-D matrix
estimation can be seen in Figure 6.

Simulation approach results In order to compare both
approaches, the network was also modeled in SUMO. The
bus speed was tuned so as to obtain the same travel times
for lines L1 an L2. Efficient frequencies were estimated
measuring the passenger travel and waiting times at the
stops. Then, the optimization algorithm was again the
Nelder-Mead algorithm but the version included in the R
function optim. For each point generated by the Nelder-
Mead algorithm, 30 simulation process were ran and their
results were averaged. The obtained estimation for the OD
matrix was g21 = 10.03, g31 = 110.5 and g32 = 9.04, which
is also a good estimation for the real OD matrix.

4.2 Example 2

In order to reproduce the previous methodology in another
network with a small increase in difficulty we consider a
new example with four nodes and four lines serving it as
shown in Figure 5. The data of each line are summarized
in Table 1. Considering demands g31 = g41 = g34 = 100
the MSA Algorithm was applied and the results are
exposed in Table 2. Table 3 summarizes the arc flows
obtained summing over all destinations and considering
all demands. The effective frequencies obtained for this
assignment are also shown there.

1 2 3

4

L1

L4

L2

L1

L3
L2

L3

Fig. 5. Network with 4 nodes and 4 lines

In order to estimate the O-D matrix we have the measured
frequencies:

f12 = 0.0243, f23 = 0.0591, f14 = 0.0489, f43 = 0.0515

f24 = 0.0977, f42 = 0.1419, f13 = 0.0428,

that are obtained when an assignment is made with g31 =
120 and g41 = g34 = 100.

Using the nominal demands g31 = g41 = g34 = 100 we
solved the problem (6-8) with γ = 1/100 and observed
frequencies obtained for a demand of g31 = 120 and
g41 = g34 = 100, obtaining the following demand estimation
g31 = 118.86, g41 = 100.75 and g34 = 100.18. The progress
of the objective function of problem (6-8) during the O-D
matrix estimation can be seen in Figure 6.

Fig. 6. Progress of objective function in (6).

Simulation approach results Following the same scheme
as in 4.1.1, we estimated the OD matrix thought simulation-
optimization. The estimation we obtained is g31 = 118.43,
g41 = 100.84 and g34 = 100.07, which is similar to the result
we obtained using the pure mathematical approach.

5. CONCLUSIONS

In this work, we have proposed an approach to public
transport demand estimation. This approach can be used
not only for demand estimation but also to detect demand
changes after detecting changes in waiting and traveling
times.

Given a model of flow distribution for public transport
according to its demand, we propose the solution of an
inverse problem to update the demand for observed flow
variations. Preliminary results show that it can be done
with derivative-free optimization algorithms over small-
sized networks. We present two examples in which the es-
timated O-D matrix is good and very close to the O-D ma-
trix that generates the observed frequencies after making
the assignment. A disadvantage of the proposed numerical
solution is the local convergence of the method. Indeed,
even if using a nominal target demand could improve
these properties, the nominal demand is also unknown
in practice. When the target demand is too far from the
demand that effectively uses public transport, the results
will not be very accurate. The numerical analysis for larger
networks and the search for an analytical derivation of
descent directions are currently under work.

The use of a derivative-free method allowed us to model
traffic flows using agent-based simulations. Results ob-
tained were similar to the analytical model. Due to mod-
eling bigger scenarios with simulation seems to be easier
than modeling them analytically, and results are similar,



Table 1. Service data

Line Route Travel times (min) Frequencies (veh/h)

L1 1 → 2 → 3 t12 = t23 = 20.01 8
L2 1 → 4 → 3 t14 = t43 = 22.01 16
L3 2 → 4 → 2 t24 = t42 = 5.01 16
L4 1 → 3 t13 = 28.01 10

Table 2. Disaggregated flows resulting for assignment in example 2.

Demand Arc flows Lines used Total cost

g41 v412 = 32.54, v414 = 67.46, v424 = 32.54 L1, L2, L3 T 4
s = 39.1260

g34 v323 = 6.37, v343 = 93.63, v342 = 6.37 L1, L2, L3 T 3
s = 41.0354

g31 v312 = 21.69, v323 = 21.69, v314 = 39.38 v343 = 39.38, L1, L2, L4 T 3
s = 45.1520

v313 = 38.93, v343 = 39.38, v313 = 38.93

Table 3. Total flows and effective frequencies resulting for assignment in example 2.

Results
Arc (i, j)

(1,2) (2,3) (1,4) (4,3) (2,4) (4,2) (1,3)

Arc flows 54.24 28.06 106.83 133.01 32.54 6.37 38.93
Effective frequencies 0.0259 0.0613 0.0525 0.0526 0.0978 0.1448 0.0465

we hope that more complex and larger traffic nets and
scenarios could be analyzed with this tool. Also, we could
take into account dynamic effects, like jams, high variance
in arrival time, and pedestrian walking from stop to stop.
These additional effects are currently under work too.
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