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Abstract. The purpose of pattern mining is to help experts understand
their data. Following the assumption that an analyst expects neighbour-
ing patterns to show similar behavior, we investigate the interestingness
of a pattern given its neighborhood. We define a new way of selecting
outstanding patterns, based on an order relation between patterns and
a quality score. An outstanding pattern shows only small syntactic vari-
ations compared to its neighbors but deviates strongly in quality. Using
several supervised quality measures, we show experimentally that only
very few patterns turn out to be outstanding. We also illustrate our
approach with patterns mined from molecular data.

Keywords: Pattern selection · Structured pattern mining · Local devi-
ation

1 Introduction

The purpose of data mining is to help experts to analyze their data by provid-
ing valuable results. When those results come in the form of patterns, whether
conjunctions of attributes or items, sequences, trees, or graphs, a recurring prob-
lem is that there are simply too many of them for a human to work through.
Once this problem was recognized, research first focused on reducing the out-
put through the notion of condensed representations [11], a plethora of quality
measures [13], and pattern set mining techniques [7] were designed, all of which
fall short, however. Even when creating condensed representations, there are
typically still hundreds or even thousands of patterns left, as is the case no mat-
ter which quality measure one uses. In addition, the latter lead to the question
which measure to use for a given task. Pattern set mining, finally, works well
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enough when the goal is to create a set of non-redundant patterns to be used as
descriptors in downstream tasks such as classification or clustering, but less so
when it comes to offering an expert an interpretable result set.

Here, we start from the assumption that an analyst expects that patterns
which are neighbors in the pattern space show similar behavior. Hence, a pat-
tern showing different behavior from what one expects given similar patterns
deserves a second look. To find these patterns, which we will call outstanding
going forward, we use a Hasse Diagram (HD), a directed acyclic graph (DAG),
as a representation of the pattern space. This DAG encodes a partial order
between patterns whose interestingness is quantified by a quality measure. Pat-
terns that are scored very differently than the average of neighboring patterns
are considered outstanding.

The main contribution of the paper is a new way of selecting outstanding
patterns, given an order relation between patterns, and a quality measure on
patterns. We formulate our idea in general terms since it can be applied for
any pattern language (e.g., items, sequences, graphs). With items, we illustrate
our approach by using the lattice of formal concepts derived from data as the
encoding HD. We define the notion of a selector, a function that outputs the
set of outstanding patterns given a HD and a quality measure. Outstanding
patterns will then be those that show only small syntactic variations compared
to their neighbors but deviate strongly in quality. Notably, this deviation is
not necessarily positive: a pattern might be outstanding because it correlates
much more weakly with a class label, for instance, than its neighbors. Using
several supervised quality measures, we show experimentally that only very few
patterns turn out to be outstanding and that the number varies depending on the
measure. Our contribution is an outgrowth of the concept of activity cliffs [12] on
molecular data, which define a noticeable modification of the biological activity
for a small modification of the chemical structure. We therefore also illustrate
our method on using patterns mined from molecular data, which are the main
focus of our application interest.

The paper is organized as follows. In the next section, we discuss the literature
related to our problem setting and proposal. In Section 3, we introduce necessary
background knowledge. In Section 4, we present the selector. In Section 5, we
report experimental results on transactional data derived from UCI data sets
and on molecular data and discuss them. We conclude in Section 6.

2 Related work

Since the introduction of constraint-based pattern mining, an on-going theme
has been how to help the experts identify the most valuable patterns from result
sets containing thousands or even millions of them. A well established solution is
to find a condensed representation of the patterns such as closed [11, 17] or free
patterns [3], i.e., maximal or minimal patterns from the support-based equiva-
lence classes. Since real data are often noisy, [3] proposed error-tolerant variants.



Selecting Outstanding Patterns Based on their Neighbourhood 3

Another direction is to focus on the best patterns according to quality mea-
sures [13]. The survey [15] divides measures in two categories: absolute measures
and advanced ones. Advanced measures are based on statistical models (indepen-
dence model, partition models, MaxEnt models) having different complexities.
However, there are numerous measures and it remains difficult to clearly identify
the advantages and limitations of each one. The quality of a selected pattern can
be assessed via syntactically linked patterns during computation [4], somewhat
similar to our proposal.

Recent research has highlighted the benefits of the unexpectedness of a pat-
tern when contrasted with given information depending either on the data or on
prior knowledge of the analyst [2]. For instance, by sampling patterns fulfilling
data-independent constraints under assumptions about the symbol distribution
(i.e. null models), the authors of [1] derive a model of background noise, and
identify thresholds expected to lead to interesting results, i.e. results that di-
verge from the expected support derived from super- and sub-patterns. Another
approach combines sampling and isotonic regression in order to arrive at pat-
tern frequency spectrum for frequent itemset mining [14]. By comparing those
thresholds to ones derived from data where all items are independent, one can
identify thresholds or which the result set is expected to contain interesting pat-
terns. Self-sufficient itemsets, finally, are itemsets the support of which cannot
be predicted from their sub-sets or super-sets [16]. However, these approach are
limited to itemset data. Our method differs in that we do not make assumptions
about syntactic relationships between patterns. In addition, we do not make an
independence assumption w.r.t. pattern elements.

Also closely related to our work, in the context of web queries modeled ac-
cording to the setting of the Formal Concept Analysis, [5] uses the siblings of
a node to define the interestingness of a new query. However, the method does
not take into account the whole set of siblings and it is linked to frequencies
observed in the extents and intents of the concepts whereas our approach can
use any quality measure defined on patterns.

3 Background

As usual in the pattern mining paradigm, let us consider D a dataset, L a
pattern language and � a partial order relation on the patterns in L. The support
of a pattern p, Supp(p), is the number of transactions containing p. The pattern
space can be modelled by its Hasse diagram, a DAG whose set of vertices maps
the set of patterns and whose edges depict the order relation: there is an edge
(p, q) from a pattern p to a pattern q if p � q and if there is no other pattern
r between p and q ( p � r and r � q). From an edge (p, q), we say that p
is a parent of q, that q is a child of p. The siblings of a pattern is the set of
patterns that share a common parent with it. Figure 1 depicts an example of
these relationships: the siblings of the pattern S (in red) are Si (in purple), the
parents of S are Pi (in blue).
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In the itemset setting, D is a set of transactions, each transaction containing
one or more distinct literals called items I. A pattern X is an element of 2I . The
order relation on the patterns is the usual inclusion relation ⊆ . In the itemset
setting and considering closed itemsets [11], the Hasse diagram is then a Galois
lattice [6].

Many quality measures have been described in the literature [13, 15] and the
interestingness of a pattern will be quantified by a measure f : L ×D 7→ R.

P1 P2

SS1S2 S3 S4

Fig. 1. Retrieving siblings (purple / Si and red / S) from a source vertex (red) and
its parents (blue / Pi).

4 Outstanding Pattern Selector: how to exploit siblings

To select outstanding patterns, the method is based on the principle that an
analyst expects patterns that are neighbors in the pattern space to show simi-
lar behavior. Therefore a pattern showing different behavior from its neighbors
according to a quality measure f deserves attention. The sibling patterns being
structurally close, their quality should be similar. If a pattern is scored differ-
ently from its siblings, it is highly interesting as a outstanding sibling. Thus,
we seek for local variations of interestingness. This phenomenon is not captured
when f is applied to each pattern individually, as is usual in the frequent or
association pattern setting. Concretely, we say that a pattern X is outstanding
when its quality deviates from the mean quality of its siblings S(X). The sibling
mean µ(S(X),D) is:

µ(S(X),D) =

∑
s∈S(X)

f(s,D)

|S(X)|

Then µ(S(X),D) is compared to the standard deviation of the siblings:

σ(S(X),D) =

√∑
s∈S(X)(f(s,D)− µ(S(X),D))2

|S(X)|

The selector is defined as:
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OPS(L, f,D, δ) = {X ∈ L : |f(X,D)− µ(S(X),D)| ≥ δ ∗ σ(S(X),D)}

Thus, X is outstanding if its quality deviates at least δ standard deviations from
the mean of the qualities of its siblings, δ being a user-supplied parameter. We
consider the quality measure as a random variable, which distribution varies
locally, while staying normally distributed around a local mean. Moreover, the
behavior of the quality measure will impact the selection. A homogeneous quality
measure will lead the selector to select a few chosen ones while an heterogeneous
quality measure will produce more outliers.

One of the appeals of using the standard deviation instead of a classic thresh-
old is that the selector adjusts to its environment: if the siblings of a pattern
are all relatively close to a particular support value, a small increase over this
value can be interesting. Similarly, take the example of the growth rate [8] as
the quality measure f . Let us assume furthermore that D is partitioned into two
classes, and most of the siblings are Jumping Emerging Pattern (JEP) [8, 9], i.e.
patterns that have a support of zero in the negative class. JEPs have a tendency
to overfit; our selector, on the other hand, keeps a JEP only if it indicates a local
deviation. Moreover, it can select interesting patterns that are not JEP.

In practice, as shown in the next section, the number of outstanding patterns
is small, allowing a human domain expert to manually inspect them.

5 Experiments

In this section, we show experimental results illustrating the reduction in pat-
terns, as well as the behavior of four quality measures. In the next section, we
provide results on itemset data, and in Section 5.3 on graph data representing
molecules. We use our experiments to answer several questions:

– Does selecting outstanding patterns reduce the size of the result set signifi-
cantly?

– Does changing the quality measure change how many patterns are outstand-
ing?

– Can outstanding patterns be easily characterized in terms of the score they
receive from an interestingness measure?

– Do outstanding patterns from self-sufficient itemsets, another type of pattern
that takes itemsets’ neighborhoods into account, albeit syntactic ones?

5.1 Itemset data

The data we used are itemset data derived from UCI data sets, which we down-
loaded from the CP4IM repository4. The data have been binarized by the main-
tainers of the repository, the majority class named positive class, and minority
classes merged into a single negative class.

We performed closed frequent set mining with minimum support thresholds
(denoted by θ) of 10%, 15%, and 20%. In the resulting graph G(V, E) each vertex

4 https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Table 1. Characteristics for selected UCI datasets and their number of self-sufficient
itemsets.

Data set Mushroom Primary-tumor Soybean Splice-1

Transactions 8124 336 630 3190

Items 119 31 50 287

Density 18% 48% 32% 21%

Self-sufficient itemsets 69 16 55 38
for θ = 10%/15%/20% 69/68/53 13/11/8 49/33/30 30/9/3

Data set Tic-tac-toe Vote Zoo-1

Transactions 958 435 101

Items 27 48 36

Density 33% 33% 44%

Self-sufficient itemsets 24 39 64
for θ = 10%/15%/20% 24/24/0 39/39/39 62/60/48

is labeled with a closed itemset. We tested four quality measures: χ2, confidence,
normalized Growth Rate (NGR)5:{

NGR(X,D) = 1.0 if GR(X,D) =∞
NGR(X,D) = GR(X,D)

1+GR(X,D) otherwise

and Weighted Relative Accuracy (WRAcc). For the latter three, we chose the
positive class as target. For the OPS threshold, we chose δ = 2 since 95% of all
values of a normal distribution fall into the interval [µ− 2 · σ, µ+ 2 · σ].

As Figure 2 shows, only very few itemsets are outstanding compared to their
siblings, with at most 3.052% selected by confidence and NGR on the splice
data set for the 10% minimum support threshold. Notably, this is in addition to
the reduction achieved by mining closed itemsets. We take this as evidence that
selecting outstanding patterns results in small enough result sets that domain
experts could inspect them (and their neighborhoods) manually to gain deeper
insight into the underlying phenomena. We can also compare the behavior under
different support thresholds, i.e. the results for a single data set and a single
measure, and for different quality measures, i.e. the results in a single line.

While increasing the support threshold mostly reduces the number of out-
standing patterns as well, this is not always the case, as can be seen for the zoo-1
data set, for instance. Using confidence or GR as a quality measure leads to fewer
outstanding patterns than using χ2 and WRAcc does, with the exception of the
splice-1 (10%) and vote (10%, 15%) data sets. A particularly remarkable data
set is the tic-tac-toe one where not a single pattern stands out.

Notably, using different quality measures lead to different sets of outstanding
patterns to be selected. Figure 3 shows a heatmap representation of the Jaccard
similarity between result sets for three example data sets. For the primary-tumor

5 We normalize the growth rate because the unnormalized growth rate can have ∞ as
a value, which prevents the calculation of mean and standard deviation.
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38 / 3276 ( 1.159% )
15 / 1529 ( 0.981% )
9 / 811 ( 1.109% )
54 / 31024 ( 0.174% )
43 / 16962 ( 0.253% )
31 / 9589 ( 0.323% )
29 / 2907 ( 0.997% )
16 / 1456 ( 1.098% )
11 / 844 ( 1.303% )
23 / 1605 ( 1.433% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
22 / 35770 ( 0.061% )
17 / 14642 ( 0.116% )
10 / 7227 ( 0.138% )
10 / 3108 ( 0.321% )
10 / 2303 ( 0.434% )
8 / 1618 ( 0.494% )

4 / 3276 ( 0.122% )
3 / 1529 ( 0.196% )
3 / 811 ( 0.369% )
18 / 31024 ( 0.058% )
12 / 16962 ( 0.070% )
12 / 9589 ( 0.125% )
12 / 2907 ( 0.412% )
6 / 1456 ( 0.412% )
4 / 844 ( 0.473% )
49 / 1605 ( 3.052% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
34 / 35770 ( 0.095% )
19 / 14642 ( 0.129% )
3 / 7227 ( 0.041% )
3 / 3108 ( 0.096% )
2 / 2303 ( 0.086% )
3 / 1618 ( 0.185% )

4 / 3276 ( 0.122% )
3 / 1529 ( 0.196% )
2 / 811 ( 0.246% )
17 / 31024 ( 0.054% )
9 / 16962 ( 0.053% )
14 / 9589 ( 0.146% )
25 / 2907 ( 0.859% )
6 / 1456 ( 0.412% )
5 / 844 ( 0.592% )
49 / 1605 ( 3.052% )
5 / 419 ( 1.193% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
37 / 35770 ( 0.103% )
18 / 14642 ( 0.122% )
3 / 7227 ( 0.041% )
3 / 3108 ( 0.096% )
2 / 2303 ( 0.086% )
3 / 1618 ( 0.185% )

21 / 3276 ( 0.641% )
7 / 1529 ( 0.457% )
4 / 811 ( 0.493% )
16 / 31024 ( 0.051% )
7 / 16962 ( 0.041% )
2 / 9589 ( 0.020% )
8 / 2907 ( 0.275% )
3 / 1456 ( 0.206% )
1 / 844 ( 0.118% )
25 / 1605 ( 1.557% )
7 / 419 ( 1.670% )
1 / 243 ( 0.411% )
0 / 191 ( 0% )
0 / 111 ( 0% )
0 / 26 ( 0% )
20 / 35770 ( 0.055% )
12 / 14642 ( 0.081% )
9 / 7227 ( 0.124% )
6 / 3108 ( 0.193% )
7 / 2303 ( 0.303% )
6 / 1618 ( 0.370% )
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Fig. 2. Selection statistics (#outstanding patterns/#patterns/%) on UCI data-sets.

data set (middle), there is little similarity between the different results, for the
soybean data set (right-most figure), confidence and GR give very similar results.
The full set of figures can be found in the supplementary material.

As we mentioned in the introduction, outstanding patterns are not necessar-
ily among the best patterns in terms of class correlation, for instance. This is
shown by Fig. 4 on the primary tumor data set with the confidence measure: for
all minimum support thresholds, also itemsets with low confidence are selected.
Figures for other data sets and quality measures can be found in the supplemen-
tary material available at https://github.com/Etienne-Lehembre/Outstanding-
Pattern-Selector.git.

5.2 Comparison to self-sufficient itemsets

A method that is close in spirit to our proposal are the self-sufficient itemsets
proposed by Webb et al. [16]. Self-sufficient itemsets, can be considered inde-
pendently from each other, as can outstanding patterns, which is not the case
for patterns selected by pattern mining techniques. The full definition of self-
sufficiency is too involved to reproduce here6 but self-sufficiency includes the
requirement that the probability of itemsets’ occurrence cannot be inferred by
the probability of subsets’ and supersets’ occurrences. This requirement trans-
lates into comparing itemsets to their predecessors and successors in a DAG
where vertices are labeled with the full set of possible itemsets and edges indi-

6 We direct the interested reader to the original publication.
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mushroom primary-tumor soybean

Fig. 3. Heatmap representation of Jaccard similarity for sets of outstanding patterns
selected for different quality measures for mushroom (θ = 10%), primary-tumor (θ =
15%), soybean (θ = 15%).

Fig. 4. Distribution of confidence values for the primary tumor data set, outstanding
patterns in the bottom row, non-outstanding patterns on top. Results for minimum
support 10% in the left-most column, 15% center, 20% right-most.

cating extension of itemsets with individual items. We therefore want to know
how many of the outstanding itemsets we select are self-sufficient and vice versa.

We ran the OpusMiner implementation available at https://eda.mmci.uni-
saarland.de/prj/selfsufs/ on the UCI data sets mentioned above. The lower part
of Table 1 reports the number of self-sufficient itemsets and a comparison to
Figure 2 shows that there is no obvious relationship between the number of out-
standing and self-sufficient itemsets. Not all self-sufficient itemsets are frequent
under the minimum support thresholds we use, and the bottom-most row of
Table 1 shows their number for the three different support thresholds.

Self-sufficient itemsets also cannot expected to be closed itemsets. We there-
fore identified for each self-sufficient itemset the corresponding closed frequent
itemset, and compared this set to the set of outstanding itemsets selected. Ta-
ble 2 shows for each support and each quality measure which proportion of out-
standing itemsets are also self-sufficient (left-hand column per quality measure)
and which proportion of self-sufficient itemsets are also outstanding (right-hand
column). Missing lines correspond to settings where all values are 0.0, which
includes in particular the tic-tac-toe data set.
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Table 2. Self-sufficient and outstanding itemsets for different minimum supports θ and
different quality measures. For each measure, left-hand column shows the proportion of
outstanding itemsets that are self-sufficient, right-hand column displays the proportion
of self-sufficient that are outstanding.

Data set θ χ2 Confidence NGR WRAcc

mushroom 10 0.16 0.48 0.25 0.14 0.25 0.14 0.29 0.48

mushroom 15 0.13 0.15 0.33 0.13 0.33 0.13 0.14 0.13

primary-tumor 10 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00

primary-tumor 15 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00

primary-tumor 20 0.03 0.12 0.00 0.00 0.00 0.00 0.00 0.00

soybean 10 0.03 0.02 0.00 0.00 0.04 0.02 0.12 0.02

soybean 15 0.12 0.06 0.00 0.00 0.17 0.03 0.00 0.00

soybean 20 0.18 0.07 0.00 0.00 0.20 0.03 0.00 0.00

splice-1 10 0.13 0.10 0.06 0.10 0.06 0.10 0.12 0.10

vote 10 0.18 0.10 0.00 0.00 0.00 0.00 0.00 0.00

vote 15 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.00

vote 20 0.10 0.03 0.00 0.00 0.00 0.00 0.00 0.00

zoo-1 10 0.10 0.02 0.33 0.05 0.33 0.05 0.00 0.00

zoo-1 15 0.10 0.02 0.50 0.05 0.50 0.05 0.00 0.00

zoo-1 20 0.12 0.02 0.33 0.06 0.33 0.06 0.00 0.00

Generally speaking, we can remark that outstanding itemsets stand not to
be self-sufficient and vice versa. W.r.t. individual data sets, we can observe some
interesting phenomena. For mushroom at θ = 10% and χ2/WRAcc, only one of
the four outstanding itemsets is self-sufficient but ten of the self-sufficient item-
sets are represented by it, i.e. they are subsets that cover the same transactions.
Once we increase the minimum support to 20%, there is no itemset left that
is both self-sufficient and outstanding. For the vote data set, there is a certain
correspondence between outstanding and self-sufficient itemsets for χ2 but none
whatsoever for the other quality measures.

5.3 Structured pattern selection

This section gives an experimental illustration of our method on graph-structur-
ed data. This experiment is motivated by the study of chemical and biological
data BCR-ABL from ChEMBL23 7. In the data, every molecule is labeled as
active or inactive; their structure represented as graphs. Negative data is denoted
by D− in the following. From the 1485 graphs of the data set, we extract closed
frequent sub-graphs with at most 7 nodes, and θ = 10.

As in the case of the closed itemsets we considered above, edges in the result-
ing DAG connect two vertices u and v if u is labeled with a maximal predecessor
of the closed graph labeling v. As before, we assess the behavior of different
quality measures: χ2, confidence, NGR, WRAcc.

7 https://www.ebi.ac.uk/chembl/
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Table 3. Selection statistics on graph data.

Quality measure χ2 Confidence NGR WRAcc

Selected 247 30 32 257

Percentage 1.589% 0.193% 0.205% 1.653%

Total # patterns 15,544

As we can see in Table 3, we select at most 1.7% of mined patterns. We
also notice different behaviors for different quality measures: whereas NGR and
confidence select small sets, WRAcc and χ2 select more than six times as many,
a number of patterns that could be hard to process by a human domain expert.

Fig. 5. Selection histograms for NGR (top) and WRAcc (bottom).

Figure 5, shows histograms of the scores for GR (top), and WRAcc (bottom).
The left-most column shows the distribution of pattern scores, the center column
the mean score for neighborhoods, and the right-most one the relative relevance,
i.e. deviation of patterns from the mean of their neighborhood, normalized by
the standard deviation. Blue histograms are for outstanding patterns, red for
non-outstanding ones. As before, we see that outstanding patterns are not nec-
essarily strongly correlated with the active class but might also be those that are
unexpectedly weakly correlated (or even negatively correlated). We also see that
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while the majority of outstanding patterns are two standard deviations off their
neighborhood’s mean score, there are patterns that deviate even more strongly.

5.4 Expert analysis upon an outstanding pattern and its family

The NGR used in the preceding section tends to discount jumping emerging
patterns, which are however rather interesting in the context of activity analysis.
In the following section we will therefore use another quality measure called
GRmax, which avoids the ∞ problem but gives JEPs its due:{

GRmax(X,D) = |D−| if GR(X,D) =∞
GRmax(X,D) = GR(X,D) otherwise

We applied GRmax to the data-set BCR-ABL extracted from ChEMBL.

Table 4. Results on BCR-ABL using GRmax

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Total

Total 6 307 5 388 8 269 1 534 40 15 544

Selected 0 6 203 175 12 0 396

Percentage 0.00% 1.95% 3.77% 2.12% 0.78% 0.00% 2.55%

In Table 4, order indicates the number of nodes in the smallest free/genera-
tor sub-graph corresponding to closed graphs, allowing us to structure the graph
into several layers. A closed graph together with its generator patterns induces
an equivalence class of graph patterns covering the same data graphs. Each col-
umn correspond to a layer, numbered with its order. Rows Total indicates the
number of equivalence classes in a layer, Selected the number of selected equiva-
lence classes, and Percentage the percentage of selected equivalence classes. We
observe that most of the outstanding patterns are found in the third and fourth
layer. This is why the following analysis will be conducted on equivalence classes
extracted from the third and fourth layers.

Fig. 6. Selected outstanding pattern (centered) along with its parents, and children of
the parents. Labeled nodes are selected by OPS or important parent (373 and 676).
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Starting from the outstanding pattern, an expert can expect to gain in-
sight into structure-activity relationships (SAR) [10]. As an illustration, con-
sider the center node of Figure 6. It shows an outstanding pattern appearing in
61 molecules, as well as its parents labelled as 676 and 373, colored according
to their GRmax value with lighter colors corresponding to higher values. Larger
nodes have a higher relative relevance. One of the parents, which differs only
by one element syntactically, has significantly higher support values than the
others. On both labelled parents, we see a large amount of children that include
both patterns that do not correlate with the target class at all, and others that
correlate very strongly. Furthermore we see that this family has several selected
siblings (labelled nodes which are neither 676, nor 373). It implies that several
subsets of molecules are outstanding regarding of each individual families for
each pattern. It implies that the molecules’ super-sets of our entry point contain
cliffs [12] regarding the molecular activity. The outstanding pattern is there-
fore an entry point to visual analysis by the expert. Therefore, the outstanding
pattern is an entry point for a visual analysis by the expert.

6 Conclusion

We have proposed a new way of selecting outstanding patterns by comparing
them to neighboring patterns: a pattern is outstanding if it deviates clearly from
the average of neighboring patterns w.r.t. the value of a quality measure. Our
proposal is independent of the pattern language or the quality measure used. As
experimentally shown, our selection patterns method leads to a strong reduction
in the size of the result set, making the manual exploration by domain experts
possible. Results differ significantly between different quality measures, i.e. the
choice of quality measure becomes meaningful.

Finally, our selector puts an emphasis on the outstanding pattern’s context.
The selected pattern is interesting, but its parents, as well as its siblings, are also
objects of interest. It can lead us to siblings linked to more than one outstanding
pattern. Parents of such siblings become very interesting because outstanding
pattern can have either positive or negative qualities, depending on the underly-
ing data. Therefore, our selector offers a new way to study cleaving points inside
the pattern language, and thus, the data, putting human in the loop.
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