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Local-to-Global-rigidity of lattices in SLn(𝕂)

Amandine Escalier

May 17, 2021

Abstract

A vertex-transitive graph 𝒢 is called Local-to-Global rigid if there exists R > 0 such that every other
graph whose balls of radius R are isometric to the balls of radius R in 𝒢 is covered by 𝒢. An example
of such a graph is given by the Bruhat-Tits building of PSLn(𝕂) with n ≥ 4 and 𝕂 a non-Archimedean
local field of characteristic zero. In this paper we extend this rigidity property to a class of graphs
quasi-isometric to the building including torsion-free lattices of SLn(𝕂).
The proof is the occasion to prove a result on the local structure of the building. We show that if we
fix a PSLn(𝕂)-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this
orbit.
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1 Introduction
A recurring theme in geometric group theory is that local properties of an object can have global impli-
cation for its geometry. A classical example is given by Lie groups and their locally defined Lie algebras.
Another striking illustration is provided by the work of Tits [Tit81] who gave a local characterization of
a particular family of graphs called “buildings of type Ãd−1” (see Section 2.1 for a definition). Precisely,
graphs and their local-to-global properties are the objects we focus on in this article. All graphs will be
equipped with the usual metric, fixing the length of an edge to one.

A natural local condition to impose on a graph is to be d-regular for some d ∈ ℕ, which means that
all the vertices must have degree d. A well-known result about such a graph is that the d-regular tree is
its universal convering. This is a first example of a global information deduced only by a local knowledge
of the graph.

One can now ask what happens if we impose a local condition which is stronger than d-regularity.
We formalize this in the next definition.
Definition 1.1

Let R > 0 and let X and Y be two graphs.
We say that Y is R-locally X if every ball of radius R in Y is isometric to a ball of radius R in X.
If Y is R-locally X and X is R-locally Y then we say that they are R-locally the same.

Example 1.2. In the following example, BX(x0, 2) is isometric to BY(y0, 2).

X

x0

Y

y0

Figure 1: Two graphs 2-locally the same.

The previous covering result on the d-regular tree is a first example of a more general notion called
the Local-to-Gobal rigidity, also named LG-rigidity.

Definition 1.3

Let R > 0. We say that X is Local-to-Global-rigid at scale R (or R-LG-rigid for short) if every graph Y
which is R-locally X is covered by X.
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1 Introduction

We say that a graph X is LG-rigid if there exists R > 0 such that X is R-LG-rigid.

Example 1.4. Benjamini and Ellis [BE16] showed that for any d ≥ 2 the Cayley graph of ℤd endowed with
its usual generating set is 3-LG-rigid. They also proved that 3was optimal showing that ℤ3 is not LG-rigid
at scale 2.

Example 1.5. De la Salle et Tessera [dlST19, Theorem C] proved that every graph quasi-isometric to a tree
is LG-rigid.

Benjamini [Ben13] and Georgakopoulos [Geo17] conjectured that any Cayley graph of a finitely pre-
sented group is LG-rigid at some scale R > 0. That conjecture was proven to be false in [dlST19, Theorem
B], where the authors built counter-examples using groups with torsion elements.

Counter-example 1.6. The groups F2 × F2 × ℤ/2ℤ and SL4(ℤ) admit Cayley graphs that are not LG-rigid.

Remark here that we do not state that every Cayley graph of these groups is non-LG-rigid, but that
each group admits a non-LG-rigid Cayley graph. Indeed, in [dlST19, Theorem J] the authors also showed
that every finitely presented group with an element of infinite order has a Cayley graph which is LG-
rigid. Hence, LG-rigidity for a Cayley graph depends on the generating set. In particular LG-rigidity is
not invariant under quasi-isometries.

With a little bit more of material, we will be able to give a topological interpretation of Local-to-
Global rigidity (see page 10).

That rigidity notion can be refined in what is called the Strong Local-to-Global rigidity, also named
SLG-rigidity.

Definition 1.7

Let r, R > 0. We say that X is SLG-rigid at scale (r, R) if for all Y which is R-locally X and for all
isometry f from BX(x, R) to BY(y, R), the restriction of f to BX(x, r) extends to a covering of Y by X.
We say that X is SLG-rigid if there exist two radii r and R such that X is SLG-rigid at scale (r, R).

Such a refinement is far more than just a subtlety: it actually proves necessary to obtain our main result
(see page 23 for more details).

The following proposition gives us many examples of SLG-rigid graphs.

Proposition 1.8 (de la Salle, Tessera [dlST19, Proposition 3.8])

A graph with cocompact isometry group is LG-rigid if and only if it is SLG-rigid.

For example, any LG-rigid Cayley graph is actually SLG-rigid. In the same article, de la Salle and
Tessera proved a powerful condition relating to the isometry group of a Cayley graph. We will refer to
the isometry group of a Cayley graph (Γ , S) as Isom(Γ , S).
Theorem 1.9 (de la Salle, Tessera [dlST19, Theorem E])

Let Γ be a finitely presented group and S be a symmetric generating set and denote by (Γ , S) the
corresponding Cayley graph. If Isom(Γ , S) is discrete, then (Γ , S) is SLG-rigid.

As stated in [dlST19, Corollary F], we can deduce two new classes of examples from the above theorem.
But before, let us introduce what we call LG-rigid groups.

Definition 1.10

We say that a finitely presented group is LG-rigid (resp. SLG-rigid) if all its Cayley graphs are LG-
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1 Introduction

rigid (resp. SLG-rigid).

Example 1.11. Torsion-free groups of polynomial growth are SLG-rigid.

Example 1.12. Torsion-free, non-virtually free lattices in connected simple real Lie groups are SLG-rigid.

So far, the graphs chosen as examples are mostly Cayley graphs, but these are not the only LG-rigid
ones. Indeed, besides the case of quasi-trees seen above, another interesting example is given by Bruhat-
Tits buildings (see Section 2.1 for a definition).

Theorem 1.13 (de la Salle, Tessera, [dlST16, Theorem 0.1])

Let 𝕂 be a non-Archimedean local skew field.
If 𝕂 has positive characteristic and n ≥ 3, then the Bruhat-Tits building of PSLn(𝕂) is not LG-rigid.
If 𝕂 has characteristic zero and n ≥ 4, then the Bruhat-Tits building of PSLn(𝕂) is SLG-rigid.

Keeping in mind the above theorem, consider the following question asked in [dlST19].

Question 1.14. Among lattices in semi-simple Lie groups, which ones are LG-rigid?

This question concerns real Lie groups but one can also wonder what happens for the p-adic case. In-
deed, by a well known result of Svarc andMilnor, any lattice of SLn(𝕂) is quasi-isometric to the associated
building (see Lemma 5.2 for more details). The fact that such a lattice is “almost” a building encouraged
us to study the p-adic version of Question 1.14.

Question 1.15. Among lattices in p-adic Lie groups, which ones are LG-rigid?

De la Salle and Tessera showed [dlST16] that if 𝕂 has positive characteristic, then there exist p-adic
lattices that are torsion-free, cocompact but not LG-rigid.

Example 1.16. Let n ≥ 3. There exists a torsion-free cocompact lattice in PGLn(𝔽p) that is not LG-rigid.

When 𝕂 is a non-Archimedean local skew field of characteristic zero, an element of response to Ques-
tion 1.15 is provided by our first result hereunder.

Theorem 1.17

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLn(𝕂) are SLG-rigid.

This result is actually a corollary of ourmain theorem belowwhich goes beyond the lattices framework
and gives a rigidity result in a more general case.

Theorem 1.18

Let n ≠ 3 and𝕂 be a non-Archimedean local skew field of characteristic zero. Let𝒳 be the Bruhat-Tits
building of PSLn(𝕂) and X be a transitive graph. If X verifies that

• There is an injective homomorphism ρ from Isom(X) to Isom(𝒳) such that ρ(Isom(X)) is of finite
index in Isom(𝒳);

• There is a Isom(X)-equivariant injective quasi-isometry q from X to 𝒳;

then X is SLG-rigid.
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Let us discuss the hypothesis, starting with the assumption made on n. If n = 2 then 𝒳 is the (p + 1)-
regular tree, thus by Example 1.5 any graph quasi-isometric to 𝒳 is LG-rigid which proves the theorem.
Now, as we will see in the sketch of the proof, the main tool of our demonstration is the LG-rigidity of the
building. But if n = 3 the question of the rigidity of 𝒳 is still open. Indeed in that case a lot of flexibility
seems to be allowed (see [BP07]). Thus our demonstration deals mainly with the case where n ≥ 4.

Secondly, let us look at the hypothesis made on the characteristic of𝕂. According to [dlST16,Theorem
0.4] and more precisely according to its proof, we get Counter-example 1.19 below. It implies in particular
that if we omit the characteristic zero hypothesis, then Theorems 1.17 and 1.18 are not true.

Counter-example 1.19. There exists a non-LG-rigid torsion-free cocompact lattice in PGLn(𝔽((T))).

Finally, before moving to the sketch of the proof let us discuss the hypothesis made on the torsion
in Theorem 1.17. First, introducing torsion in a group is in some case a useful way to build non-LG-rigid
graphs. Indeed the Counter-example 1.6 is built this way. Second, in order to link (Γ , S) to 𝒳 we will
need an injection of Isom(Γ , S) into Isom(𝒳). Using a famous result of Kleiner and Leeb we will show that
Isom(Γ , S) acts on the buildings by isometries. The injection into Isom(𝒳) will then be allowed by the
following proposition.

Proposition 1.20 (de la Salle, Tessera [dlST19, Proposition 6.2])

Let Γ be an infinite, torsion-free, finitely generated group and let S be a finite symmetric generating
subset of Γ . Then the isometry group of (Γ , S) has no non-trivial compact normal subgroup.

For more details on how we use this proposition, see the proof of Lemma 5.3.

Sketch of the proof of Theorem 1.18 As stated in the discussion below Theorem 1.18, the proof deals
mainly with the case where n ≥ 4. So, Let n ≥ 4 and 𝕂 be non-Archimedean local skew field of charac-
teristic zero and denote by 𝒳 the Bruhat-Tits building of PSLn(𝕂). Let X be the studied graph and Y be a
graph R-locally the same as X and denote by q a quasi-isometry from X to 𝒳. The main idea of the proof
is to use the rigidity of 𝒳 to build the wanted covering from X to Y (see Figure 2), thus we need to build a
graph locally the same as 𝒳. We will denote such a graph 𝒴.

X

Y

R-loc

𝒴

𝒳

covering

q
quasi-isom.

R𝒳-loc

Goal:
induce a convering from X to Y

Figure 2: Sketch of the proof

Moreover, for the rigidity of the building to induce a covering between X and Y, we want 𝒴 to contain
a copy of the vertices of Y. Hence the goal is to define the vertices of 𝒴 to be composed of the vertices
of Y and a copy of each vertex in 𝒳\q(X) and define the edges to correspond to edges in X. With such
a description 𝒴 is a “hybrid” graph and to define its edges we might need to understand how to link a
vertex coming from Y to a vertex coming from 𝒳. Hence, to avoid such a hybridation we chose to define
the vertices only with informations encoded in Y. That is why we introduce the notion of print in the
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building (see Section 3.1). It allows us to characterize a vertex in 𝒳 by a set of neighbouring vertices in
im(q) and, using a well chosen set of isometries from Y to X, to transfer this print notion to Y. Each print
in Y corresponds to a vertex in 𝒳\q(X). The vertices of the wanted graph 𝒴will be composed of the vertices
of Y and of prints in Y. It will now be easier to build edges between these vertices; the key argument to
construct such edges is presented in Section 2.3.

Using the rigidity of the building we will obtain an isometry between 𝒳 and 𝒴. To conclude the proof
we will show that this isometry induces the wanted covering between Y and X.

Organization of the paper The first section is devoted to the definition of our framework. We recall
some material about Bruhat-Tits buildings and large scale simple connectedness and present a fundamen-
tal result on isometries’ extension. The second and third sections are devoted to the proof ofTheorem 1.18.
In the second section we develop the necessary engineering to build a graph locally the same as the build-
ing —this is where we define and study prints— while in the third one we use the rigidity of the building
to prove the rigidity of the studied graph. We prove Theorem 1.17 in the fourth section where we check
that the lattice verifies the hypothesis of our main theorem.
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2 Framework

Let us start by setting up the framework of the next sections. We first recall some material about Bruhat-
Tits buildings, and large scale simple connectedness. Then we present a usefull tool concerning the exten-
sion of isometries. We conclude by a result one step further in to the proof of our main theorem, linking
the PSLn(𝕂)-orbits in the building and the image q(X) of the graph studied.

2.1 Bruhat-Tits building

Let n ≥ 2. Since it is the object at the center of our proof, let us recall the description of the Bruhat-Tits
building associated to PSLn(𝕂) where n ≥ 2, see [AB18] for more details.

Non-Archimedean local skew fields Let 𝕂 be a field (not necessarily commutative). A discrete valuation
on 𝕂 is a surjective homomorphism v ∶ 𝕂∗ → ℤ satisfying v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ 𝕂∗ such
that x + y ≠ 0. If 𝕂 is endowed with such a valuation, we can extend v on all 𝕂 by setting v(0) = +∞.
We say that 𝕂 is a non-Archimedean local skew field if it is locally compact for the topology associated to a
discrete valuation.

Example 2.1. If 𝕂 = ℚ and p is a prime, then every x ∈ 𝕂 can be written as x = pna/b where a and b are
integers non-divisible by p. The map defined by v(pna/b) ∶= n is a discrete valuation over 𝕂. The field ℚp
is the completion of ℚ with respect to the p-adic absolute value defined by |x|p = p−v(x).
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Example 2.2. Let 𝕂 = 𝔽p((T)), the field of formal Laurent series over 𝔽p. Denote by f = ∑k∈ℤ akTk an
element in 𝔽p((T)) then the map defined by v(f) ∶= min {k ∶ ak ≠ 0} is a valuation over 𝕂.

Let 𝒪 denote the ring of integers of 𝕂 with respect to v, that is to say 𝒪 ∶= {x ∈ 𝕂 ∶ v(x) ≥ 0}. This ring
has a unique prime ideal 𝔪 ∶= {x ∈ K ∶ v(x) > 0}. Finally, let π be a generator of 𝔪 as an 𝒪-module.

Example 2.3. If 𝕂 = ℚp then its ring of integers is 𝒪 = ℤp. Moreover 𝔪 = pℤp and π = p.

Example 2.4. If K = 𝔽p((T)) then 𝒪 = 𝔽p[[T ]]. Moreover 𝔪 = X𝔽p[[T ]] and π = X.

Buildings Let 𝕂 be a non-Archimedean local skew field endowed with a valuation v. An 𝒪-lattice of 𝕂n
is an 𝒪-submodule which generates 𝕂n as a 𝕂 vector space. Such a lattice can be written as 𝒪e1+⋯+𝒪en
for a basis (e1, … , en) of 𝕂n. Since for any a ∈ 𝕂∗ and any lattice L, the module aL is also a lattice, we can
define the equivalence relation of lattices modulo homothety. We denote by [L] the class of a lattice L.
The Bruhat-Tits building of PSLn(𝕂) is a simplicial complex of dimension n − 1 denoted by 𝒳̂ whose
1-skeleton (denoted by 𝒳) is described as follows. The vertices are the classes of 𝒪-lattices modulo homo-
thety. Two vertices x1 and x2 are linked by an edge if there exists representatives L1 of x1 and L2 of x2
such that:

pL1 ⊂ L2 ⊂ L1.

Example 2.5. One can show that the building of PSL2(ℚp) is a (p + 1)-regular tree. Figure 3a gives a
representation of the building when p = 2.

(a) The building has two SL2(ℚ2)-orbits (b) Representation of one apartment

Figure 3: The building of PSL2(ℚ2)

Orbits and types The usual action of GLn(𝕂) on 𝕂n induces an action of PGLn(𝕂) on 𝒳 by isometry.
Since GLn(𝕂) acts transitively on the bases, the action of PGLn(𝕂) on the vertices of 𝒳 is also transitive.

If L = ⊕i𝒪ei is a lattice we define its type to be v (det(e1, … , en)). Since:

∀a ∈ 𝕂∗ v (det(ae1, … , aen)) = v (det(e1, … , en)) mod n,
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one can define the type of a vertex x in 𝒳 to be the value modulo n of the type of one of its representatives.
We denote by τ(x) the type of x.
If L′ is a second lattice, we can choose our basis e1, … , en for L in such a way that L′ admits a basis of the
form a1e1, … , anen for some ai ∈ 𝕂∗. The scalars ai can be taken to be powers of π. The incidence relation
defined above implies that if the classes of L and L′ are linked by an edge in 𝒳, then they have different
types.

Remark 2.6. Remark that if L = ⊕i𝒪ei and

L′ = 𝒪πe1 ⊕⋯⊕𝒪πej ⊕ ej+1 ⊕⋯⊕ en,

then τ([L′]) = τ([L′]) + j mod n.

The action of SLn(𝕂) on 𝒳 preserves the determinant and is transitive on the pairs of vertices of
the same type. So there are exactly n orbits under the action of SLn(𝕂) (see Figure 3a and Figure 4 for
examples).

Apartments If 𝐞 is a basis of𝕂n then the sub-complex𝒜 induced by the set of vertices {⊕ni=1𝒪πkiei | ki ∈ ℤ}
is isometric to a (n− 1)-dimensional Euclidean space tiled by regular (n− 1)-simplices. We call such sub-
complexes apartments. For example an apartment in the building of PSL2(ℚ2) is isometric to ℝ1 tiled with
segments of length 1 (see Figure 3b), whereas for PSL3(ℚ2) the apartment are isometric to ℝ2 and tiled
with triangles (see Figure 4).

Figure 4: Apartment in the building of PSL3(ℚ2). The colors correspond to SL3(ℚ2)-orbits.

For any two points in 𝒳̂ there exists an apartment containing them. If x, y ∈ 𝒳̂ let 𝒜 be an apartment
containing x and y and define d𝒳̂(x, y) to be equal to the euclidean distance d𝒜(x, y). This definition does
not depend on the choice of apartment 𝒜 and thus endows 𝒳̂ with a well defined distance. Moreover, this
distance verifies the negative curvature inequality: for all x, y, z ∈ 𝒳̂ and t ∈ [0, 1]

d2𝒳̂(z, tx + (1 − t)y) ≤ td
2
𝒳̂(z, x) + (1 − t)d

2
𝒳̂(z, y) − t(1 − t)d

2
𝒳̂(x, y). (1)

Denote by d𝒳 the distance on the 1-skeleton 𝒳 assigning length 1 to an edge. Then d𝒳(x, y) is greater than
d𝒳̂(x, y) for all vertices x and y in 𝒳.

Contractibility Using the above inequality one can show that the building is contractible (see [AB18]
for more details). We can actually show that convex sets in 𝒳̂ are themselves contractible.

Claim 2.7. Let r > 0. Any convex set in 𝒳̂ is contractible.
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Proof. Let r > 0 and 𝒞 a convex set in 𝒳̂ and endow it with the distance induced by d𝒳̂. Take x0 ∈ 𝒞 and
define,

ℋ ∶
⎧
⎨⎩

[0, 1] × 𝒞 → 𝒞,
(t, x) ↦ tx + (1 − t)x0.

Since 𝒞 is convex, the map ℋ is well-defined. Moreover ℋ(0, ⋅) = id𝒞 and ℋ(1, x) = x0 for all x in 𝒞. Let
us show that ℋ is continuous. Take x, x′ ∈ 𝒞 and t, t′ ∈ [0, 1] and let z = t′x′ + (1 − t′)x0. By eq. (1)

d2𝒳̂(z, tx + (1 − t)x0) ≤ td
2
𝒳̂(z, x) + (1 − t)d

2
𝒳̂(z, x0) − t(1 − t)d

2
𝒳̂(x, x0). (2)

But if 𝒜 is a an apartment containing z and x0, then by property of the Euclidean distance d𝒜

d𝒳̂(z, x0) = d𝒜(t′x′ + (1 − t′)x0, x0) = t′d𝒜(x′, x0) = t′d𝒳̂(x′, x0),

which tends to td𝒳̂(x, x0) as (t′, x′) tends to (t, x). Similarly

d𝒳̂(z, x) ≤ d𝒳̂(z, x′) + d𝒳̂(x′, x) = d𝒳̂(t′x′ + (1 − t′)x0, x′) + d𝒳̂(x′, x),
= (1 − t′)d𝒳̂(x′, x0) + d𝒳̂(x′, x),

which converges to (1 − t)d𝒳̂(x, x0) + d𝒳̂(x′, x) as (t′, x′) tends to (t, x). Thus the right term of eq. (2)
converges to 0 as (t′, x′) tends to (t, x). Hence the continuity of ℋ and the contractibility of 𝒞.

2.2 Large scale simple connectedness

For a graph 𝒢 and k ∈ ℕ, we define a 2-complex, noted Pk(𝒢), such that:

• Its 1-skeleton is given by 𝒢 ;

• Its 2-skeleton is composed of m-gons (for m ∈ [0, k]) defined by the simple loops of length m in 𝒢
(up to cyclic permutations).

Definition 2.8

We say that 𝒢 is k-simply connected or simply connected at scale k if Pk(𝒢) is simply connected.

Example 2.9. Let G be a finitely generated group and T a finite symmetric generating set. The Cayley
graph (G, T) is simply connected at scale k if and only if G has a presentation ⟨T , ℛ⟩ with relations of
length at most k.

Example 2.10. Let n ≥ 2. The Bruhat-Tits building of PSLn(𝕂) is simply connected at scale 3.

Remark 2.11. If k ≤ k’, then every k-simply connected graph is k′-simply connected.

The following proposition allows us to restrict the study of the LG-rigidity of a graph 𝒢 to some
smaller class of graphs.

Proposition 2.12 (de la Salle, Tessera, [dlST16, Proposition 1.5])

Let k ∈ ℕ and 𝒢 be a k-simply connected graph, with cocompact isometry group. Then 𝒢 is LG-rigid
if and only if there exists R such that every k-simply connected graph which is R-locally 𝒢 is isometric
to 𝒢.

To apply this result to our proof we will need to show that the studied graph X is simply connected.
The following proposition shows that being simply connected is invariant under quasi-isometry.
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Proposition 2.13 (de la Salle, Tessera, [dlST16, Theorem 2.2])

Let k ∈ ℕ∗ and let 𝒢 be a k-simply connected graph. If ℋ is quasi-isometric to 𝒢, then there exists
k′ ∈ ℕ∗ such that ℋ is simply connected at scale k′.

Before moving to the next section, let us mention a consequence of Proposition 2.12. Indeed, this
result allows us to look at the LG-rigidity notion with a topological point of view. Let’s denote 𝔊k the set
of isometry classes of locally finite k-simply connected graphs. We can define a distance on this set by:

d𝔊k(X, Y) ∶= inf{2−R ∶ X and Y are R-close} ,

which endows 𝔊k with a topology. Proposition 2.12 implies that a graph is LG-rigid if and only if its
isometry class in 𝔊k is isolated for this topology.

2.3 Extension of isometries

In order to build the “hybrid” graph mentionned above, we will need some result to extend globally our
local definition of edges. We recall here the result of de la Salle and Tessera [dlST19, Lemma 4.1] that will
serve our purpose.

Proposition 2.14 (de la Salle, Tessera)

Let 𝒢 be a graph with cocompact discrete isometry group. Given some r1 ≥ 0, there exists r2 > 0 such
that: for every g ∈ 𝒢, the restriction to B𝒢(g, r1) of an isometry f : B𝒢(g, r2) → 𝒢 coincides with the
restriction of an element of Isom(𝒢).

It is however not necessarily true that f coincides on the whole B(g, r2) with an isometry of 𝒢. Indeed,
truncating the entire graph to some ball might allow some kind of flexibility near the boundary of the
ball (see Example 2.15 and Figure 5). Hence, in order to coincide with a global isometry we need to restrict
the local isometry f to a smaller ball which do not contain the flexible area.

Example 2.15. Let 𝒢 be the Cayley graph of ℤ2 endowed with its usual generating part. We consider in
Figure 5 an isometry f defined on B((0, 0), 1) such that f fixes (0, 0), (−1, 0) and (0,−1) (represented by the
blue vertices) and exchange (1, 0) with (0, 1) (the orange and brown vertices). Then f is an isometry from
B((0, 0), 1) to B((0, 0), 1), but can not coincide with a global isometry of 𝒢 on that ball. Indeed, if such
a global isometry existed, then it should send the vertex (−1, 1) (represented by the light brown vertex
on the left part of the figure) at distance 1 from both f(−1, 0) = (−1, 0) and f(0, 1) = (1, 0). Which is
impossible since the only point at distance 1 from (1, 0) and (−1, 0) is (0, 0) and it is already the image of
(0, 0).

f

Figure 5: Local isometry that can not coincide with a global isometry on its entire domain of definition
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3 Tracking vertices through their prints

2.4 Preliminary results on X
Lemma 2.16

If X verifies the hypothesis of Theorem 1.18, then PSLn(𝕂) is included in ρ(Isom(X)). Moreover, if
q(X) contains a vertex of a certain type i, then q(X) contains all the vertices of type i.

Proof. Since ρ (Isom(X)) is of finite index in the isometry group of the building 𝒳, the same goes for its
normal core ∩g∈Isom(𝒳)gρ (Isom(X)) g−1. Then, by simplicity of PSLn(𝕂), the normal core of ρ (Isom(X))
contains PSLn(𝕂). Hence the result.

Then, the second part of the lemma follows from the equivariance of q and the transitivity of PSLn(𝕂)
on vertices of the same type.

Without loss of generality, we can assume that im(q) contains type 0 vertices, that is to say τ−1(0) ⊂ im(q).
Moreover, using Proposition 2.13 we obtain that X is simply connected at some scale k > 0.

8

The aim of the next two sections is to proveTheorem 1.18 for n ≥ 4. For the sake of clarity we recapitulate
here the needed assumptions for the proof.

Hypothesis (H)

1. Let X be a k-simply-connected transitive graph;

2. Let Y be a graph R-locally X and k-simply connected;

3. Let n ≥ 4 and 𝕂 a non-Archimedean local skew field of characteristic zero. Denote by
𝒳 the Bruhat-Tits building of PSLn(𝕂);

4. Let ρ : Isom(X) → Isom(𝒳) be an injective homomorphism and q : X → 𝒳 an
Isom(X)-equivariant injective quasi-isometry;

5. Assume that ρ(Isom(X)) is of finite index in Isom(𝒳) and that q(X) contains τ−1(0).

3 Tracking vertices through their prints
This section is dedicated to the definition of a graph locally the same as 𝒳 which we will call 𝒴. Before
moving to the detailed definition let us explain the idea of the construction. Recall that the vertices of 𝒳
are partitioned into different types (see Section 2.1) denoted by integers in {0,… , n−1}. By Lemma 2.16, if
q(X) contains a vertex of a certain type then it contains all the vertices of that type. Denote by Τ the set
of types that are not contained in q(X), namely Τ = {0,… , n − 1}\τ(q(X)). We have the following partition

𝒳 = q(X)⊔ (⊔i∈T τ−1(i)) . (3)

Example 3.1. Take 𝕂 = ℚ2 and assume that im(q) is composed only of type zero vertices.
When n = 2 we have T = {1} and the building is represented in Figure 3a. The partition in eq. (3) corre-
sponds to the partition of vertices in two different colors.
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3 Tracking vertices through their prints

When n = 3, we get T = {1, 2}. An apartment of 𝒳 is represented in Figure 4 and the partition of this part
of 𝒳 corresponds to the partition in three different colors.

Example 3.2. Let n = 4 and 𝕂 = ℚ2 and assume that im(q) contains type zero and type 2 vertices. Then
T = {1, 3}. We will not try to represent 𝒳 or an apartment but recall that it is tiled by tetrahedrons. The
partition is illustrated on a tetrahedron in Figure 6, where im(q) corresponds to the two blue vertices.

Type 3

Type 1

im(q) (Type 0 and 2)

Figure 6: Partition of a simplex

The idea of the construction of 𝒴 is to take the vertices of Y and add to them vertices of the missing
types, ie. vertices with type in Τ (see Figure 10 for an example). But we want to build this vertices only
with informations encoded in V(Y). That is why we introduce the local characterization of a vertex in the
building (see Section 3.1). Then, using a well chosen set of isometries from Y to X, we transfer this print
notion to Y, each print in Y corresponding to a vertex of a missing type.

3.1 Prints in a building

In this section we show that a vertex in 𝒳 can be determined by a part of its 1-neighbourhood. More pre-
cisely, we prove that a vertex in the building is entirely determined by the vertices in its 1-neighbourhood
having type zero.

Definition 3.3

Let x be a vertex of 𝒳. We define the print of x, denoted by 𝒫(x), to be the intersection of the
1-neighbourhood of x with the vertices of type zero, viz. 𝒫(x) ∶= B𝒳(x, 1) ∩ τ−1(0).

Remark 3.4. We choose to define print as a set of vertices of type zero because (in order to simplify
notations and proofs) we assumed from the beginning that τ−1(0) was contained in im(q). But we could
have taken any other type.

Example 3.5. Figure 7 represents a ball of radius 1 in two different cases. The case when n = 2 and
|𝒪/π𝒪| = 2 (for example when 𝕂 = ℚ2) is represented on the left figure. The case when 𝕂 = ℚ2 and n = 3
is represented on the right figure. In each case, the print of x corresponds to the set of blue vertices.

The following result proves that a vertex in 𝒳 is uniquely determined by its print.

Proposition 3.6

Let x1, x2 ∈ 𝒳. If 𝒫(x1) = 𝒫(x2), then x1 = x2.

Before showing the above property, let us recall (and prove) a usefull fact concerning the choice of repre-
sentative of a vertex.
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3 Tracking vertices through their prints

x1

x3

x2

x

𝒫(x) = {x1, x2, x3}

B(x, 1) for n = 2 = p

Type 0 vertices
Type 1 vertices
Type 2 vertices

x

B(x, 1) for p = 2 and n = 3

Figure 7: Prints and 1-neighbourhood of a vertex in 𝒳

Claim 3.7. For any vertex in 𝒳, we can always find a representative ⊕i𝒪πkiei of the vertex such that

⎧
⎨⎩

∀i ∈ {1,… , n} ki ≥ 0,
∃i0 ∈ {1,… , n} ki0 = 0.

(4)

Proof of the claim. Indeed, let x ∈ 𝒳 and let (l1, … , ln) be a representative of x and let i0 be such that
li0 = mini li, then

[⊕ni=1𝒪πliei] = π−li0 [⊕ni=1𝒪πli−li0ei] = [⊕ni=1𝒪πli−li0ei] .

Thus (l1 − li0 , … , l1 − li0) is a representative of x and verifies eq. (4).

Now, let us prove that the print determines the vertex.

Proof of Proposition 3.6. Let x1, x2 ∈ 𝒳 such that 𝒫(x1) = 𝒫(x2).
First remark that if τ(x1) = 0 then 𝒫(x1) = {x1} which implies that 𝒫(x2) = 𝒫(x1) = {x1}. But then

x2 has only one neighbour of type 0, which is only possible if τ(x2) = 0. Thus {x2} = 𝒫(x2) = {x1} and so
x1 = x2.

Now assume that τ(x1) ≠ 0 and take 𝒜 to be an apartment containing x1 and x2. Define P ∶= 𝒫(x) ∩𝒜
and let 𝐞 be a basis such that

𝒜 = {⊕ni=1𝒪πkiei | ki ∈ ℤ} and x1 = (0,… , 0).

By Claim 3.7, we can choose a representative (k1, … , kn) of x2 such that ki ≥ 0 for all i and there exists
j ∈ {1,… , n} such that kj = 0. Now define the sequence i1, … , in of indices such that kin ≥ ⋯ ≥ ki1 = 0 and
let

li1 = ⋯ = liτ(x) = 1 lin−τ(x)+1 = ⋯ = lin = 0.

Then by remark 2.6 the vertex z = (l1, … , ln) has type 0. Moreover it is at distance 1 from x1, so z belongs
to P. But if kin > 0, then d(z, x2) > 1 thus z can not belong to 𝒫(x2). Hence ki1 ≤ 0, that is to say ki = 0
for all i and thus x2 = x1.

This proves that a vertex in𝒳 is uniquely determined by its print. Thus, we can introduce the following
definition without ambiguity.

Definition 3.8

Let x to be a vertex in 𝒳. We say that x is the source of 𝒫(x).
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3 Tracking vertices through their prints

In order to proveTheorem 1.18, we will need to know how prints behave under the action of PSLn(𝕂).
So, let x ∈ 𝒳 and let α ∈ PSLn(𝕂). Since α is an isometry, we get

α(𝒫(x)) = α(B(x, 1) ∩ τ
−1(0)) = α(B(x, 1)) ∩ ατ

−1(0) = B (α(x), 1) ∩ τ−1(0).

We deduce the following lemma.

Lemma 3.9

Let x ∈ 𝒳. If α belongs to PSLn(𝕂), then α (𝒫(x)) = 𝒫 (α(x)).

3.2 Atlas of local isometries

To build our graph locally the same as 𝒳, we need to restrict ourselves to a particular set of local isometries
from Y to X. More precisely, if y1 and y2 are close in Y and f1 (resp. f2) is an isometry from BY(y1, R)
(resp. BY(y2, R)) to X, we want the transition map f2f−11 to coincide with an element in ρ−1PSLn(𝕂) on a
small ball. This is what we formalize here and schematize in Figure 8.

In order to avoid any ambiguity regarding the notion of center of a ball, let us precise our definition
of ball in a graph. What we mean when we talk of “a ball of radius R” is actually a pointed ball of radius
R that is to say, a couple (ℬ, y) such that y is a vertex in Y and ℬ = BY(y, R). We will abuse notation by
denoting such a pointed ball BY(y, R) (instead of (BY(y, R), y)). This way, the center of a ball is always well
defined.
Definition 3.10

Let 𝔄 be a set of isometries from balls of radius R in Y to X, We say that 𝔄 is an atlas of local isometries
from Y to X if the map that associates to each isometry in 𝔄 the center of its ball of definition is a
bijection from 𝔄 to Y. That is to say, we can write

𝔄 ∶= {fy ∶ BY(y, R) → X | y ∈ Y} ,

where the map that associates fy to y is bijective.
We say that fy is the isometry associated to y in 𝔄.

Let H0 ∶= ρ−1PSLn(𝕂). Now, we show that we can construct an atlas of local isometries from Y
to X such that the transition maps between two isometries defined on balls with neighbouring centers
coincide with elements of H0. We will note a path between two vertices v1 and v2 as a sequence (v1, … , vl)
of adjacent vertices.

Lemma 3.11

Let rA > 0 and let H0 ∶= ρ−1PSLn(𝕂). For R large enough, if Y is R-locally X, then there exists an atlas
𝔄 such that for any two neighbours y and z in Y

∃a ∈ H0 fy ⋅ f−1z |B(fz(z),rA) = a|B(fz(z),rA). (5)

Before proving it, let us schematize the framework of this lemma. In Figure 8 we represent two isometries
fy and fz with z neighbour to y. The larger discs correspond to balls of radius R and the smaller ones to
balls of radius rA. The map fyf−1z restricted to B(fz(z), rA) takes fz(z) to fy(z) which is a neighbour of
fy(y) and coincides on this ball with and element in H0. Let us discuss the idea of the proof. First, for two
neighbours y and z we use Proposition 2.14 to prove that fyf−1z coincides on a small ball with an element
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Y
y

X

fz(z)

fy(z)

fy(y)

fyf−1z

z

fy

fz

f−1z

fy

Figure 8: Composition of isometries with neighbouring centers

a in Isom(X). This isometry corresponds to the “default” of belonging to H0 we want to correct. Hence,
we consider in our atlas the new isometry defined on B(z, R) by afz. Finally, we extend this construction
along paths in Y and prove that the wanted property for 𝔄 does not depend on the choice of path.

Proof. Let rA > 0 and let H0 ∶= ρ−1PSLn(𝕂). Now, let y ∈ Y and fy be an isometry from B(y, R) to X. Let z
be a neighbour of y in Y and ̃fz be an isometry from B(z, R) to X. Then the map

fy ⋅ ̃f−1z ∶ BX( ̃fz(z), R − 1) → BX (fy(z), R − 1)

is a well defined local-isometry of X. By Proposition 2.14 if R is large enough, there exists a in Isom(X)
such that fy ⋅ ̃f−1z coincides with a on BX ( ̃fz(z), rA + k), where we recall that k refers to the scale at which
Y is simply connected. We will see below why we need to consider such a radius.

Now let fz ∶= a ̃fz. By definition we have

fz ∶
⎧
⎨⎩

BY(z, R) → BX (fy(z), R) ,
z ↦ a ̃fz(z) = fy(z),

thus the transition map fyf−1z is well defined on BX(fz(z), R − 1). Moreover, by choice of fz we get that
fyf−1z restricted to B(fy(z), rA + k) coincides with the identity and thus belongs to H0.

Extending this construction along paths in Y we get an atlas 𝔄 of local isometries from Y to X.
Now if y ∈ Y and fy is the associated isometry in 𝔄, we want to show that (up to a multiplication

by an element in PSLn(𝕂)) this isometry does not depend on the choice of path. So let y ∈ Y and (y0 =
y, y1, … , yl = y) be a loop of length l. Take f0 to be an isometry from BY(y0, R) to X and using the process
detailed above, build a sequence of isometries f1, … , fl such that fi is defined on BY(yi, R) and

∀i ∈ {1,… , l} ∃ai ∈ H0 | (fi−1f−1i )|B(fi(yi),rA+k) = ai|B(fi(yi),rA+k).

We have to prove that the restrictions to B(y0, rA) of f0 and fl are equal up to a multiplication by an
element in H0. Since Y is simply connected at scale k, we only have to prove this for loops of length
smaller than k. Hence, we assume that l ≤ k.

First, remark that for all i ∈ {0,… , l − 1}
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⎧
⎨⎩

fi−1f−1i ∶ BX (fi(yi), rA + k) → BX (fi−1(yi), rA + k) ,
fif−1i+1 ∶ BX (fi+1(yi+1), rA + k) → BX (fi(yi+1), rA + k) .

Now since yi and yi+1 are at distance 1, the ball BX (fi(yi+1), rA + k − 1) is included in BX(fi(yi), rA + k).
Hence the map (fi−1f−1i ) (fif−1i+1) is well defined and coincides with aiai+1 on BX (fi+1(yi+1), rA + k − 1).
By induction we get that for all x in BX (fi+1(yi+1), rA + k − l + 1)

f0f−1l (x) = (f0f−11 )⋯ (fl−1f−1l ) (x) = a1⋯al(x).

Since ∏l
i=1 ai belongs to H0 and l is smaller than k, it implies that f0 is equal to fl on BY(y0, rA) up to

multiplication by an element in H0.

The atlas is defined such that a transition map between two isometries defined on balls with neigh-
bouring centers belongs to H0. But in fact, this property is also true when the centers are at a slightly
bigger distance.
Lemma 3.12

Let r > 0 and 𝔄 be an atlas verifiying the conditions of Lemma 3.11 with rA > 3r. Let y and z in Y be
at distance less than 2r and fy, fz the associated isometries in 𝔄. Then

∃a ∈ H0 (fyf−1z )|BY(z,r) = a|BY(z,r). (6)

Proof. Let r > 0 and assume rA > 3r. Let y, z ∈ Y be at distance l ≤ 2r and let fy, fz be two elements of 𝔄
such that

fy ∶ BY(y, R) → X fz ∶ BY(z, R) → X.

Take (y0 = y, y1, … , yl = z) to be a geodesic between y and z, and for all i ∈ {0,… , l}, let fi ∈ 𝔄 be the
isometry associated to yi. Remark that by definition of an atlas, it implies f0 = fy and fl = fz and

∀i ∈ {0,… , l − 1} ∃ai ∈ H0 (fif−1i+1)|B(fi+1(yi+1),rA) = ai|B(fi+1(yi+1),rA).

Now, if rA > 3r and l ≤ 2r, then BY(z, r) is contained in BY(y, rA). Hence the composition of transition
maps (f0f−11 )⋯ (f−1f−1r ) is well defined on BY (fl(yl), rA − l) and verifies on that ball

f0f−1l = (f0f−11 )⋯ (fl−1f−1l ) = a0⋯al−1. (7)

Hence the result.

3.3 Prints in Y
Using the atlas built above, we can now transfer this print notion to the graph Y. Let r𝒫 > 0 and assume
that Y is endowed with an atlas of isometries 𝔄 as given by Lemma 3.11 with rA > 3r𝒫. Hence, we have

R > rA > 3r𝒫 > r𝒫.

Definition 3.13

Let P be a set of vertices in Y. We say that P is a print if there exists y in Y and f ∈ 𝔄 an isometry
from BY(y, R) to X such that
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• The set P is contained in BY(y, r𝒫);

• There exists x ∈ 𝒳\im(q) such that 𝒫(x) = qf(P).

Remark 3.14. Note that in the definition above we ask that x does not belong to im(q). The definition
would alsomake sense if x belonged to im(q) but the purpose of these prints is to reconstruct the ”missing”
vertices, namely vertices that are not in the image of q. Thus to simplify formalism in the next pages, we
chose to restrict now the definition to prints of vertices in 𝒳\im(q).

Example 3.15. If n = 3 and p = 2 there are exactly 3 types of vertices, each represented in Figure 9 by a
different color. The 1-neighbourhood of a vertex x in 𝒳 is then composed of fourteen vertices, represented
on the right side of the aforementioned figure (where x is the brown vertex at the center). If x ∈ 𝒳\im(q)
then seven of these fourteen vertices are in im(q) (the blue vertices). On the left side of the figure is
represented P (the black dots) inside B(y, r𝒫) (the darker disc). The set qf(P) is exactly the set of blue
vertices. Hence P is a print.

Y
qf

𝒳

B(y, R)
B(y, r𝒫)
Elements of P

qf(B(y, R))
qf(B(y, r𝒫))
qf(P) = 𝒫(x)

x
B(x, 1)\qf(P)

Figure 9: Definition of a print in 𝒴

For now, let’s say that P verifying the definition above is a print associated to y and f. We are going to
show that this definition depends neither on y nor f.
Lemma 3.16

Let y1, y2 ∈ Y and f1, f2 be the associated isometries in 𝔄. Let P be a print associated to y1 and f1. If
P ⊂ B(y2, r𝒫) then P is a print associated to y2 and f2.

Proof. First, remark that since P ⊂ B(y2, r𝒫) ∩ B(y1, r𝒫), then taking any y in P we get

dY(y1, y2) ≤ dY(y1, y) + dY(y, y2) ≤ 2r𝒫.

Applying Lemma 3.12 with r = r𝒫, we get that there exists a ∈ H0 such that (f1f−12 )|BX(f2(y2),r𝒫) =
a|BX(f1(y2),r𝒫). Now let x ∈ 𝒳 be such that 𝒫(x) = qf1(P). Using the equivariance of q and Lemma 3.9, we
get

qf2(P) = ρ(a)−1qf1(P) = ρ(a)−1𝒫(x) = 𝒫 (ρ(a)−1(x)) .

Hence P is a print associated to y2 and f2.

This last lemma proves that being a print does not depend on the choice of local isometry.
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Remark 3.17. In the above proof ρ(a)−1(x) has same type as x since ρ(a) is type preserving. Thus, once we
have taken our atlas in PSLn(𝕂), the type of the source of qf(P) does not depend on the choice of local
isometry f.

3.4 Definition of 𝒴: a building’s replica
The following property defines the graph 𝒴 we will demonstrate to be locally the same as 𝒳.
Proposition 3.18

Let r𝒫 > 0 and 𝔄 be the atlas given by Lemma 3.11 for rA > 3r𝒫. If R is large enough, then the following
graph is well defined.
Let 𝒴 be the graph whose vertices are given by

V(𝒴) ∶= V(Y)⊔ {P ∶ ∃x ∈ 𝒳\im(q), 𝒫(x) = P} ,

and edges are given by:

• If y1, y2 ∈ V(𝒴), then (y1, y2) is an edge if there exists z in Y and f ∈ 𝔄 defined on BY(z, R) such
that y1, y2 ∈ B(z, r𝒫) and d𝒳(qf(y1), qf(y2)) = 1.

• If y ∈ V(𝒴) and P is a print, then (y, P) is an edge if there exists z in Y and f ∈ 𝔄 defined on
BY(z, R) cointaining y and P and such that qf(y) is at distance 1 from the source of qf(P).

• If P1 and P2 are two prints, then (P1, P2) is an edge if there exists z in Y and f ∈ 𝔄 defined on
BY(z, R) such that P1, P2 ⊂ BY(z, r𝒫) and such that the source of qf(P1) is at distance 1 from the
source of qf(P2).

Before looking at the proof of this property, let us sketch some part of this graph.

Example 3.19. If n = 4 then 𝒳 is composed of vertices of type 0, 1, 2 and 3. Assume that q(X) is composed
of vertices of type 0 and 2, then T = {1, 3} and we saw the corresponding partition of 𝒳 in Example 3.2 and
Figure 6. The appearance of the corresponding V(𝒴) is represented in Figure 10.

Prints

V(Y)

Figure 10: Schematic view of V(𝒴) in the case of Example 3.19

Proof. Let 𝒴 be as in Proposition 3.18 and let us show that the definition of the edges does not depend on
the choice of f in the atlas.

First, let y1, y2 ∈ Y and y, z ∈ Y such that y1 and y2 belong to B(y, r𝒫) ∩ B(z, r𝒫). Then, take two local
maps fy, fz in 𝔄 associated to y and z respectively. Then d(y, z) ≤ 2r𝒫 and by Lemma 3.12 there exists
a ∈ Isom(X) verifying eq. (6). Hence, by Isom(X)-equivariance of q we get

d𝒳(qfz(y1), qfz(y2)) = d𝒳(ρ(a)qfz(y1), ρ(a)qfz(y2))
= d𝒳(q (afz(y1)) , q (afz(y2)) ) = d𝒳(qfy(y1), qfy(y2)).
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4 From one graph to the other

Thus d𝒳(qfz(y1), qfz(y2)) = 1 if and only if d𝒳(qfy(y1), qfy(y2)) = 1 and the definition of edges between
two vertices of Y does not depend on the choice of local isometry.

Now take y ∈ Y and let P ⊂ Y be a print. Let z and z′ such that y and P are contained in B(z, r𝒫) ∩
B(z′, r𝒫) and take f (resp. f′) in 𝔄 defined on B(z, R) (resp. B(z′, R)). Then d(z, z′) ≤ 2r𝒫 and by Lemma 3.12
there exists a ∈ Isom(X) verifying eq. (6). Hence,

d𝒳(qf(y), x) = d𝒳(ρ(a)qf(y), ρ(a)(x))
= d𝒳(q (af(y)) , ρ(a)(x)) = d𝒳(qf′(y), ρ(a)(x)).

If x is the source of qf(P) then, by Lemma 3.9 we get

𝒫(ρ(a)(x)) = ρ(a) (𝒫(x)) = ρ(a)qf(P) = qf′(P).

Thus, the existence of en edge between y and P in 𝒴 does not depend of the choice of map in 𝔄.
Finally, take P1, P2 ⊂ Y two prints and let z, z′ in Y and f ∈ 𝔄 (resp. f′) defined on BY(z, R) (resp. B(z′, R))

such that P1, P2 ⊂ BY(z, r𝒫) ∩ BY(z′, r𝒫). Again d(z, z′) ≤ 2r𝒫 and by Lemma 3.12 there exists a ∈ Isom(X)
verifying eq. (6). Hence if x1 is the source of qf(P1) and x2 the source of qf(P2), then d(x1, x2) = 1 if and
only if d(ρ(a)(x1), ρ(a)(x2)) = 1. Moreover, by Lemma 3.9

∀i = 1, 2 𝒫(ρ(a)(xi)) = ρ(a) (𝒫(x1)) = ρ(a)qf(Pi) = qf′(Pi).

Hence the existence of en edge between P1 and P2 in 𝒴 does not depend of the choice of map in 𝔄.

4 From one graph to the other
In this section we prove the isometry between the graph 𝒴 built and the Bruhat-Tits building and show
that it induces an isometry between X and Y.

4.1 Isometry with the building

We can now prove that 𝒴 is isometric the Bruhat-Tits building. Recall that rA is the radius used to define
our atlas 𝔄 (see Lemma 3.11) and r𝒫 is the radius used to define prints in 𝒴 (see Definition 3.13). These
constants verify R > rA > 3r𝒫 > r𝒫.
Lemma 4.1

Let R𝒳 > 0. If r𝒫 (and hence R) is large enough, then 𝒴 is R𝒳-locally 𝒳.

To prove this lemma, we define explicitely the local isometries on balls of radius R𝒳 and prove that
these maps are well defined injections. Then, we compute the minimal value of r𝒫 necessary for these
applications to be surjective on balls of radius R𝒳. We conclude by showing that these maps preserve the
distance.

Proof. Let v ∈ V(𝒴). If v ∈ V(Y) let f ∈ 𝔄 be the isometry defined on BY(v, R). If v is a print P let y and
f ∈ 𝔄 be such that P is a print associated to y and f. Our goal is to show that the map

ϕf ∶
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

B𝒴(v, R𝒳) → 𝒳,
z ∈ Y ↦ qf(y),
Q ↦ x where 𝒫(x) = qf(Q),
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4 From one graph to the other

is an isometry.
By Proposition 3.6, it is a well defined map. Moreover, using the injectivity of q and Proposition 3.6

and eq. (3) we get that ϕf is an injective map.
Now, recall that since q is a quasi-isometry, two elements q(x1) and q(x2) joined by an edge in 𝒳might

be at distance greater than 1 in X. If we want to prove that ϕf is surjective on B𝒳(ϕf(v), R𝒳) and preserves
the distance, we have to show that there exists a radius r𝒫 allowing us to “reconstruct” all the edges of
B𝒳(ϕf(v), R𝒳) in B𝒴(v, R𝒳). Let L, ε > 0 be such that q is a (L, ε)-quasi-isometry. We distinguish three cases,
represented in Figure 11.
If χ1, χ2 ∈ im(q), then let x1, x2 ∈ X such that q(xi) = χi. They verify dX(x1, x2) ≤ Ld𝒳(χ1, χ2) + ε. This
case is represented in Figure 11a.
If χ1 ∈ im(q) and χ2 ∉ im(q), let x1 = q−1(χ1). For all x2 ∈ X such that q(x2) ∈ 𝒫(χ2), we have (see
Figure 11b)

d𝒳(q(x1), q(x2)) ≤ 1 + d𝒳(χ1, χ2) ⇒ dX(x1, x2) ≤ Ld𝒳(χ1, χ2) + L + ε.

If χ1, χ2 ∉ im(q), let xi ∈ X such that q(xi) ∈ 𝒫(χi) for i = 1, 2. Then (see Figure 11b)

d𝒳(q(x1), q(x2)) ≤ 2 + d𝒳(χ1, χ2) ⇒ dX(x1, x2) ≤ Ld𝒳(χ1, χ2) + 2L + ε.

Hence, assume r𝒫 > LR𝒳 + 2L + ε and let us show that ϕf is an isometry.

χ2

χ1

(a) First case

χ2

q(x2)

χ1

𝒫(χ2)

(b) Second case

χ2

q(x2)

χ1

𝒫(χ1) q(x1)

𝒫(χ2)

(c) Third case

Figure 11: The three cases (im(q) is represented by the blue vertices)

Let χ ∈ B𝒳(ϕf(v), R𝒳), by choice of r𝒫 either χ ∈ im(q) and then there exists z ∈ BY(y, r𝒫) such that
qf(z) = χ or χ ∉ im(q) and then there exists P ⊂ BY(y, r𝒫) such that qf(P) = 𝒫(χ). Hence, in both cases
χ ∈ im(ϕf) and thus, ϕf is a bijection from B𝒴(v, R𝒳) to B𝒳(ϕf(v), R𝒳). Now take v1, v2 in B𝒴(v, R𝒳) at
distance l in 𝒴 and let (w0 = v1, w1, … ,wl = v2) be a geodesic in 𝒴. By definition of 𝒴 and choice of
r𝒫, for all i ∈ {0,… , l − 1} if there is an edge between wi and wi+1, then d(ϕf(wi), ϕf(wi+1)) = 1. Hence
d𝒳(ϕf(v1), ϕf(v2)) ≤ l. To get the reversed inequality, take χ1, χ2 in B𝒳(ϕf(v), R𝒳). Since ϕf is bijective
there exists v0, … , vl in 𝒴 such that (ϕf(v0), … ,ϕf(vl)) is a geodesic between χ1 and χ2. Again, by definition
of 𝒴 and choice of r𝒫, an edge between ϕf(vi) and ϕf(vi+1) gives an edge between vi and vi+1 in 𝒴 and
thus d𝒴(v1, v2) ≤ l.

Hence, if r𝒫 > LR𝒳 + 2L + ε then ϕf is an isometry.

The LG-rigidity of the building will give us a covering from 𝒳 to 𝒴. In order to obtain an isometry we
need to prove (by Proposition 2.12) that 𝒴 is simply connected at the same scale as 𝒳.
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4 From one graph to the other

Lemma 4.2

If R𝒳 (and hence R) is large enough, then 𝒴 is simply connected at scale 3.

We first prove that 𝒴 is quasi-isometric to Y and use it to show that 𝒴 is simply connected at some scale
k′. We conclude using the contractibility of the building and the fact that 𝒴 is locally the same as the
building. But before looking at the detail of the proof, let us make a remark.

Remark 4.3. Let P be a print associated to some z ∈ Y and f ∈ 𝔄 and let y ∈ P. If x is the source of qf(P),
then d𝒴(P, y) = d𝒳(x, qf(y)) = 1.

Proof of Lemma 4.2. Let us show that 𝒴 is quasi-isometric to Y. Define π ∶ 𝒴 → Y such that if y ∈ V(Y) then
π(y) = y and if P is a print then π(P) = y for some y ∈ P arbitrarily chosen. Let (v0, … , vm) be a geodesic
in 𝒴 and for all i ∈ {0,… ,m} define yi ∶= π(vi) and fi to be the isometry of 𝔄 associated to yi. Using that
q is a (L, ε)-quasi-isometry, we get

dY (π(v0), π(vm)) = dY(y0, ym) ≤
m

∑
i=0

dY (yi, yi+1) ,

≤
m

∑
i=0

[Ld𝒳 (qfi(yi), qfi(yi+1)) + ε] .

Now let i ∈ {0,… ,m}. If vi is a print, denote by xi the source of qf(vi) and if vi belongs to the copy of V(Y)
contained in 𝒴 let xi ∶= qfiπ(vi). Then d𝒴 (vi, vi+1) = d𝒳(xi, xi+1) for all i. Thus, using remark 4.3, we get

d𝒳 (qfi(yi), qfi(yi+1)) ≤ d𝒳 (qfi(yi), xi) + d𝒳(xi, xi+1) + d𝒳 (qfi(yi+1), xi+1) ,
≤ 2 + d𝒳(xi, xi+1) = 2 + d𝒴 (vi, vi+1) .

Since d𝒴 (vi, vi+1) = 1, we obtain

dY (π(v0), π(vm)) = dY(y0, ym) ≤
m

∑
i=0

[L2 + Ld𝒴 (vi, vi+1) + ε] ,

= (3L + ε)m = (3L + ε)d𝒴 (v0, vm) .

Now let v, v′ ∈ 𝒴 and let (π(v) = z0, … , π(v′) = zl) be a geodesic in Y. For all i ∈ {0,… , l} take f′i ∈ 𝔄 the
isometry associated to zi. Then

d𝒴(v, v′) ≤ d𝒴(v, z0) +
l−1
∑
i=0

d𝒴(zi, zi+1) + d𝒴(zl, v′).

But by remark 4.3 if v (resp. v′) is a print then d𝒴(v, z0) = 1 (resp. d𝒴(v′, zl) = 1). And if v (resp. v′) belongs
to V(Y) then v = z0 (resp. v′ = zl). Thus both d𝒴(v, z0) and d𝒴(v′, zl) are always smaller than 1. Hence,

d𝒴(v, v′) ≤ 2 +
l−1

∑
i=0

d𝒴(zi, zi+1) = 2 +
l−1

∑
i=0

d𝒳 (qf′i(zi), qf′(zi+1)) ,

≤ 2 +
l−1
∑
i=0

[LdY(zi, zi+1) + ε] ,

= 2 + (L + ε)l = 2 + (L + ε)dY(π(v), π(v′)).

Thus π is a quasi-isometry between 𝒴 and Y. Hence Proposition 2.13 implies that there exists k′ ∈ ℕ∗ such
that 𝒴 is simply-connected at scale k′.
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4 From one graph to the other

Finally, let ℓ be loop in 𝒴 of length less than k′. If R𝒳 is large enough then ℓ is contained in some ball
B in 𝒴. By Lemma 4.1 there exists a local isometry ϕ from B to some ball ℬ in 𝒳. But ϕ(ℓ) is contractible
inside its convex hull, by Claim 2.7. In particular it is simply-connected. Since 𝒳 is 3-simply-connected
and if R𝒳 is large enough, the convex hull of ϕ(ℓ) is contained in the complex obtained by gluing triangles
on all the loops of length 3 in ℬ. Which, by local isometry with B, proves the wanted assertion.

Thanks to the previous lemma, we can now use the rigidity of the Bruhat-Tits building.
Proposition 4.4

If R𝒳 (and hence R) is large enough, then 𝒴 is isometric to 𝒳.

Proof. Recall that we have R > rA > 3r𝒫 > r𝒫 > 3R𝒳 + 2L + ε > R𝒳.
By Theorem 1.13, the building 𝒳 is LG-rigid. Moreover, since its isometry group is transitive Proposi-
tion 2.12 gives us the existence of some radius Rsc > 0 such that every graph which is 3-simply connected
and Rsc-locally 𝒳 is isometric to 𝒳.
By definition of the edges on 𝒴, this graph is simply connected at scale 3. Taking r𝒫 (and hence R) large
enough so that R𝒳 ≥ Rsc the preceding paragraph combined with Lemma 4.1 give us the existence of an
isometry between 𝒳 and 𝒴.

4.2 Change of local map, change of global isometry

Let y ∈ Y and fy ∈ 𝔄 be the isometry defined on B(y, R). Let

ϕy ∶
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

B𝒴(y, R𝒳) → 𝒳
z ∈ Y ↦ qfy(z)
Q ↦ x where 𝒫(x) = qfy(Q).

(8)

Lemma 4.5

Let y and z be neighbours in Y and a ∈ H0 such that fyf−1z coincide with a on BX(f(z), rA). If R𝒳 is
large enough, then ϕyϕ−1z coincide with ρ(a) on B𝒳(ϕz(z), 2).

Proof. Let y and z be neighbours in Y and a ∈ H0 such that fyf−1z coincide with a on BX(f(z), rA). If R𝒳
(and hence R) is large enough, then B𝒴(z, 2) is contained in B𝒴(y, R𝒳). Thus, ϕyϕ−1z is well defined on
B𝒳(ϕz(z), 2).

Let v ∈ B𝒴(z, 2). If v ∈ V(Y), then

ϕy(v) = qfy(v) = qafz(v) = ρ(a)qfz(v) = ρ(a)ϕz(v).

If v = P with P ⊂ Y a print, then

𝒫(ϕy(v)) = qfy(P) = qafz(P) = ρ(a)qfz(P) = 𝒫(ρ(a)ϕz(v)),

Thus ϕy(v) = ρ(a)ϕz(v), since the print determines the vertex. Hence the result.

Now let r𝒳 > 0. If R𝒳 is large enough then, by SLG-rigidity of 𝒳 there exists an isometry ιy from 𝒴 to
𝒳 that coincides with ϕy on B(y, r𝒳). Thus, the lemma above allows us to work with a set of isometries
from 𝒴 to 𝒳 that differs only by a multiplication by an element of PSLn(𝕂).
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4 From one graph to the other

Lemma 4.6

If y and z belong to Y and R𝒳 is large enough, then ιyι−1z ∈ PSLn(𝕂). Hence for all y ∈ Y, the isometry ιy
sends the copy of V(Y) contained in 𝒴 to im(q) and sends prints contained in 𝒴 to vertices in 𝒳\im(q).

Proof. Let y and z be neighbours in Y. Since ιyι−1z is an isometry of 𝒳 it permutes the PSLn(𝕂)-orbits.
Recall that ιy coincides with ϕy on B(y, r𝒳). Hence, if r𝒳 (and hence R) is large enough, then B𝒴(z, 2) is
contained in B𝒴(y, r𝒳), thus

(ιyι−1z )|B𝒳(ιz(z),2) = ϕyϕ
−1z .

But ϕyϕ−1z coincides with an element of PSLn(𝕂) on B𝒳(ϕz(z), 2), by Lemma 4.5. Hence ιyι−1z restricted to
a ball of radius 2 preserves the PSLn(𝕂)-orbits. Since such a ball contains a vertex of each type, it implies
that ιyι−1z preserves the PSLn(𝕂)-orbits and thus belongs to PSLn(𝕂).

Now take y and z in Y (not necessarily neighbours), denote by (y0 = y, y1… ,yl = z) a geodesic in Y.
By the preceding paragraph, there exists a sequence α1, …, αl of elements in PSLn(𝕂) such that

∀i ∈ {1,… , l} ιyiι−1yi−1 = αi.

Thus, recalling that z = yl and y = y0, we get ιz = αl⋯α1ιy. Which proves the first assertion of the
lemma.

Let us now prove the second part of the lemma. Let y ∈ Y and v ∈ 𝒴. There exists z ∈ Y such that
v ∈ B𝒴(z, 2), and using the paragraph above, there exists α ∈ PSLn(𝕂) such that ιy = αιz. In particular,
since v belongs to B𝒴(z, R𝒳),

ιy(v) = αιz(v) = αϕz(v).

By definition of ϕz, if v ∈ V(Y) then ϕz(v) belongs to im(q) and if v = P with P ⊂ Y a print, then ϕz(v)
belongs to 𝒳\im(q). This finish the proof of the lemma.

Now we have all the tools we need to prove the isometry between Y and X.

4.3 Isometry from Y to X
Let κ be the natural injection of Y in 𝒴Z and ι an isometry given by Proposition 4.4. With the objects
constructed so far we get the diagram in Figure 12.

X

Y
y

R-loc

𝒴
κ(y)

𝒳
q

ι, isom.

κ

(a) Maps between graphs

Isom(X)
ρ(a)

PSLn(𝕂)

Isom(X)
a

ρ

H0

(b) Relations between groups

Figure 12: Relations between the different graphs and groups

The aim of this section is to prove the following result.
Proposition 4.7

For R𝒳 large enough, the graphs Y and X are isometric.
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4 From one graph to the other

Let us discuss the strategy of the proof. Using the preceding section, we chose an isometry ι from 𝒴 to
𝒳 that coincides with a ϕy on a small ball. Then, we show that κιq−1 is locally an isometry, viz. there
exists a radius rY such that q−1ικ restricted to any ball of radius rY preserves the distance. We conclude
by showing that it forces κιq−1 to be an isometry.

Proof of Proposition 4.7. By Lemma 4.6, for any y ∈ Y the map q−1ιyκ is well defined. Now fix y0 ∈ Y and
consider ι ∶= ιy0 . We want to prove that q−1ικ restricted to small balls preserves the distance. Then we
will show that it is an isometry from Y to X.

Claim 4.8. Let y ∈ Y and rY ≥ 1. If R is large enough, then q−1ικ restricted to BY(y, rY) preserves the
distance.

Proof of the claim. Let rY ≥ 1 and recall that we have R > rA > 3r𝒫 > r𝒫 > 3R𝒳 + 2L + ε > R𝒳 > r𝒳. Let
y ∈ Y and recall that L and ε are constants such that q is a (L, ε)-quasi-isometry. If r𝒳 ≥ LrY+ε (and hence
if R is large enough) then κ(BY(y, rY)) is included in B𝒴(y, r𝒳). Indeed if z ∈ BY(y, rY) then

d𝒳(qfy(y), qfy(z)) ≤ LdX(fy(y), fy(z)) + ε = LdY(y, z) + ε ≤ LrY + ε ≤ r𝒳.

Thus ϕy(κ(z)) = qfy(z) and d𝒴(κ(y), κ(z)) = d𝒳 (ϕy(κ(y)), ϕy(κ(z))) = d𝒳(qfy(y), qfy(z)) ≤ R𝒳.
Now, recall that H0 = ρ−1PSLn(𝕂). Then, by Lemma 4.6 there exists ay ∈ H0 such that ιyι−1 = ρ(ay).

Hence, using the equivariance of q we get that for all z1 and z2 in BY(y, rY)

dX(q
−1ικ(z1), q−1ικ(z1)) = dX(ayq

−1ικ(z1), ayq−1ικ(z1))
= dX(q

−1ρ(ay)ικ(z1), q−1ρ(ay)ικ(z1)) = dX(q
−1ιyκ(z1), q−1ιyκ(z1)).

But z1 and z2 belong to BY(y, rY), hence for i = 1, 2 we have ιyκ(zi) = qfy(zi). Thus,

dX(q
−1ικ(z1), q−1ικ(z1)) = dX(q

−1qfy(z1), q−1qfy(z2))
= dX(fy(z1), fy(z2)) = dY(z1, z2).

Thus q−1ικ restricted to BY(y, rY) preserves the distance.

Let’s show that the claim forces q−1ικ to be an isometry from Y to X. Take rY ≥ 2 and let y, y′ ∈ Y
and (y0 = y, y1, … , yl = y′) be a geodesic in Y. Since for all i the vertices yi and yi+1 are adjacent, then
Claim 4.8 implies that dX(q−1ικ(yi), q−1ικ(yi+1)) = 1. Hence

dX(q
−1ικ(y), q−1ικ(y′)) ≤

l−1

∑
i=0

dX(q
−1ικ(yi), q−1ικ(yi)) = l.

Moreover, if (x0 = q−1ικ(y), x1, … , xm = q−1ικ(y′)) is a geodesic in X, then by bijectivity of q−1ικ there
exists zi ∈ Y such that q−1ικ(zi) = xi for all i in {1,… ,m−1}. Denote z0 = y and zm = y′. Since for all i the
vertices xi and xi+1 are adjacent, then Claim 4.8 implies that dX(zi, zi+1) = d𝒳(q−1ικ(zi), q−1ικ(zi+1)).
Thus

dY(y, y′) ≤
m−1
∑
i=0

dY(zi, zi+1) =
m−1
∑
i=0

dX(q
−1ικ(zi), q−1ικ(zi+1)) =

m−1
∑
i=0

dX(xi, xi+1) = m.

We conclude by the proof of Theorem 1.18.
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Proof of Theorem 1.18. Let n ≠ 3 and X verifying the hypothesis of Theorem 1.18. If n = 2 then 𝒳 is the
(p + 1)-regular tree, thus by Example 1.5 if X is quasi-isometric to 𝒳 then X is LG-rigid. If n ≥ 4, let k ∈ ℕ
such that X is simply connected at scale k. Then by Proposition 4.7 for R large enough, any k-simply-
connected graph Y being R-locally the same as X is isometric to X. Thus X is LG-rigid. Finally for any
n ≠ 3, since X is assumed transitive it is actually SLG-rigid by Proposition 1.8.

5 Application to p-adic lattices
In this section we prove Theorem 1.17 which we recall below.
Corollary 5.1

Let n ≠ 3 and 𝕂 be a non-Archimedean skew field of characteristic zero.
The torsion-free lattices of SLn(𝕂) are SLG-rigid.

Let n ≠ 3, let 𝕂 be a non-Archimedean skew field of characteristic zero and Γ ≤ SLn(𝕂) be a lattice
without torsion. Denote by (Γ , S) one of its Cayley graphs. Recall that any lattice in SLn(𝕂) is uniform
(i.e. cocompact).

5.1 Quasi-isometry between the lattice and the building

To show the corollary, we first check that the lattice is quasi-isometric to the building. Then, using a
famous result of Kleiner and Leeb we show that the isometry group of the lattice acts on the building and
that the quasi-isometry can be chosen to be equivariant under this action.
Lemma 5.2

Let Λ be a lattice of SLn(𝕂). Then Λ is quasi-isometric to 𝒳.

Proof. First, recall that any lattice in SLn(𝕂) is uniform, viz. cocompact (see for example [BQ14]).
Since Λ is a lattice of SLn(𝕂), there is a natural action on the Bruhat-Tits building induced by the

action of PSLn(𝕂). Moreover, since Λ is cocompact and the PSLn(𝕂) action has exactly n orbits, the Λ
action is also cocompact. Hence by the Svarc-Milnor’s lemma Λ is quasi-isometric to X.

By a result of Kleiner and Leeb [KL97] and Cornulier [Cor18, Theorem 3.B.1] applied to our lattice
Γ , this quasi-isometry implies the existence of a homomorphism from Isom(Γ , S) to Isom(X) and a quasi-
isometry from (Γ , S) to X which is Isom(Γ , S)-equivariant. Since Γ is assumed to be torsion-free, we can
refine the informations about these two applications.
Lemma 5.3

Let Λ be a lattice of SLn(𝕂) and T a symmetric generating set. If Λ is torsion-free, then there exists
an injective homomorphism

ρ ∶ Isom(Λ, T) → Isom(X),

and an injective quasi-isometry which is Isom(Λ, T)-equivariant

q ∶ (Λ, T) → X.

Proof. Since we assumed that Λ has no torsion element, by Proposition 1.20 the isometry group of (Λ, T)
contains no non-trivial compact normal subgroup. Hence the morphism ρ given by Kleiner-Leeb’s theo-
rem is injective.
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5 Application to p-adic lattices

Assume that there exist λ1, λ2 ∈ Λ such that λ1 ≠ λ2 and q(λ1) = q(λ2). Then, the equivariance of q
implies that

q({(λ1λ
−1
2 )

n ∶ n ∈ ℕ}) = {q (e)} ,

which contradicts the fact that q is a quasi-isometry.

5.2 Relation between the isometry groups

To apply Theorem 1.18, we still need to check that Isom(Γ , S) is of finite index in Isom(𝒳). As stated in
the lemma below, this is not always the case: the lattice’s isometry group can also be discrete. But as we
will see in Section 5.3 we will be able to prove the rigidity of the lattice in that case too.
Lemma 5.4

Using the previous notations,

• Either Isom(Γ , S) is discrete.

• Or Isom(Γ , S) is of finite index in Isom(X) and contains PSLn(𝕂).

Before proving this lemma, let us recall a useful consequence of a theorem of Benoist and Quint. The
original and more general statement can be found in [BQ14, Corollary 4.5].

Proposition 5.5 (Benoist, Quint [BQ14])

Let G be p-adic Lie group and H be a finite covolume closed subgroup of G, with Lie algebra 𝔥. If G
has no proper cocompact normal subgroup, then G normalizes 𝔥.

Proof of Lemma 5.4. Let G = PSLn(𝕂) and H = Isom(Γ , S) ∩ G and note 𝔥 =∶ Lie(H) and 𝔤 ∶= Lie(G) their
respective Lie algebras. Since Γ is a lattice in SLn(𝕂), we get that ρ(Γ) ∩ PSLn(𝕂) is a lattice in PSLn(𝕂).
Hence H contains the uniform lattice ρ(Γ) ∩ G of G, thus H has finite covolume in PSLn(𝕂).
If 𝕂 is a non-Archimedean local skew field of characteristic zero then it is an extension of ℚp for some
prime p (see for example [dlST16, Section 1]). In particular G is a p-adic Lie group. Thus the above
property applied to G and H implies that G normalises 𝔥, in other words 𝔥 is an ideal of 𝔤. Since 𝔤 is
simple, we get that 𝔥 is either trivial or the full Lie algebra 𝔤. If Isom(Γ , S) isn’t discrete, then it is a closed
subgroup of Isom(X). Hence H is a closed subgroup of G and its Lie algebra is non-trivial. By the previous
point it can only be 𝔤. Hence, it implies that H is an open subgroup of G. Since it is also cocompact, it is
necessarily of finite index in G. Thus, we get that ρ (Isom(Γ , S)) is of finite index in Isom(X).

Let’s show that PSLn(𝕂) ≤ ρ (Isom (Γ , S)). First assume that ρ(Isom(Γ , S)) is strictly contained in
PSLn(𝕂). Since these two groups are of finite index in Isom(X), we get that ρ (Isom(Γ , S)) is of finite index
in PSLn(𝕂). But then the core:

∩
g∈PSLn

g ⋅ ρ (Isom(Γ , S)) ⋅ g−1

of ρ (Isom(Γ , S)) is itslef of finite index in PSLn(𝕂) (and different from PSLn(𝕂)), which contradicts the
simplicity of PSLn(𝕂).

Now, let’s go back to the general case. Assume that PSLn(𝕂) isn’t included in ρ(Isom(Γ , S)) and remark
that:

𝔥 = Lie (Isom(X)) = Lie (PSLn(𝕂)) .

In particular ρ(Isom(Γ , S)) is “locally” PSLn(𝕂) so, up to apply what precedes to an open set centered on
eΓ sufficiently small of ρ(Isom(Γ , S)), we obtain a contradiction.
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Conclusion and open problems

Hence PSLn(𝕂) is contained in ρ(Isom(Γ , S)).

5.3 Rigidity of p-adic lattices
We conclude by the proof of Corollary 5.1.

Proof of Corollary 5.1. Let n ≠ 3 and p be a prime. Let Γ be a torsion-free lattice of PSLn(𝕂) and S be a
symmetric generating part.
If n = 2, then 𝒳 is the (p + 1)-regular tree. Since by Lemma 5.2, the graph (Γ , S) is quasi-isometric to 𝒳,
Example 1.5 implies that (Γ , S) is LG-rigid.

Assume now that n > 3. If Isom(Γ , S) is discrete the LG-rigidity of the lattice is given byTheorem 1.9.
If Isom(Γ , S) is non-discrete, then by Lemma 5.4 it has finite index in Isom(X) and in this case the hypoth-
esis of Theorem 1.18 are satisfied, hence the rigidity of the lattice.

Finally, for all n ≠ 3 the lattice Γ acts transitively on (Γ , S) thus, by Proposition 1.8, it is SLG-rigid.

6 Conclusion and open problems
Our main result is proved for graphs quasi-isometric to the Bruhat-Tits building of PSLn(𝕂) and the key
idea of the proof is to use the rigidity of this building to “transfer it” to the graph quasi-isometric thereto.
One can ask wether we can generalize this idea to other LG-rigid graphs.

Question 6.1. Let 𝒢 be quasi-isometric to a LG-rigid graph ℋ, both having cocompact isometry group. If
the quasi-isometry is Isom(𝒢)-equivariant, is 𝒢 LG-rigid?

Remark that if ℋ and 𝒢 are two Cayley graphs of the same group, we can chose ℋ to be LG-rigid
and 𝒢 to be non-rigid (see the discussion below Counter-example 1.6 for more details). In that case
the hypothesis of the preceding question are satisfied without 𝒢 being LG-rigid. Thus, more restrictive
hypothesis will be needed to get the rigidity of 𝒢.

Our result on lattices is proved for n ≠ 3; when n = 3 we don’t know (yet) the answer. Indeed, our
proof is based on the rigidity of the Bruhat-Tits building of PSLn(𝕂), a result known to be true only for
n ≠ 3. In the n = 3 case, a lot of flexibility seems to be allowed (see for example [BP07]) obstructing any
local recognizability result. Hence the following question:

Question 6.2. Are torsion-free lattices of SL3(𝕂) LG-rigid?

Lattices in p-adic Lie groups can be viewed as particular cases of S-arithmetic lattices.

Definition 6.3

Let S be a set of prime.
We say that Γ is an S-arithmetic lattice if it’s a lattice in a product of the form∏iGi whereGi is either
a real Lie group or a p-adic Lie group for p ∈ S.

Hence, one we can ask what happens in that more general case.

Question 6.4. Are torsion-free S-arithmetic lattices LG-rigid?

A result by Bader, Furman and Sauer [BFS20,Theorem B] can be used to deal with irreducible torsion-
free S-arithmetic lattices. Indeed, if the product∏iGi contains at least a non-compact real factor, then
the aforementioned theorem implies that the isometry group of a Cayley graph of Γ is discrete. Thus, by
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Conclusion and open problems

Theorem 1.9 the lattice is LG-rigid. Now, if the product contains a compact real factor then the isometry
group of the Cayley graph might not be discrete and in that case, the problem is still open.

When the lattice is reducible, we now know that the projection on the p-adic factors gives LG-rigid
lattices. Moreover, if we suppose the real factors to be simple and connected, then a result by de la Salle
and Tessera [dlST19] shows that the projection on these factors are also LG-rigid. Hence it remains to
understand how to combine these results on the factors in order to get a result on the product.
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Notations

Notations Index
𝔄 Atlas of isometries from Y to X.

𝒜 An apartment in 𝒳.

(Γ , S) Cayley graph of Γ with respect to the generating part S.

H0 The group ρ−1(PSLn(𝕂)).

Isom(𝒢) Isometry group of 𝒢.

ιy Isometry from 𝒴 to 𝒳 based at y (see page 23).

κ Natural injection of Y in 𝒴 (see Section 4.3).

[L] Class modulo homothety of the lattice L.

𝒫(x) The print of the vertex x (see Definition 3.3).

P A print in Y (see Definition 3.13).

ϕy Local isometry from 𝒴 to 𝒳 based at y (see eq. (8)).

q Quasi-isometry between X and 𝒳.

R Radius such that Y is R-locally the same as X.

ρ Injective homomorphism from Isom(X) to Isom(𝒳).

rA See Lemma 3.11.

r𝒫 Radius considered to define prints (see Definition 3.13).

R𝒳 Radius such that 𝒴 is R𝒳-locally 𝒳.

r𝒳 Radius such that ιy coincide with ϕy on B𝒴(y, r𝒳) (see page 23).

rY See Claim 4.8.

τ(x) The type of the vertex x, where x belongs to the Bruhat-Tits building of PSLn(𝕂).

𝒳 The Bruhat-Tits building of PSLn(𝕂).

𝒴 Hybrid graph built to be locally the same as the building (see Section 3.4).

(y1, … , yl) A path of adjacent vertices y1, y2, …, yl.
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