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Local-to-Global-rigidity of lattices in SLn(K)

Amandine Escalier

January 6, 2023

Abstract

A vertex-transitive graph G is called Local-to-Global rigid if there exists
R > 0 such that every other graph whose balls of radius R are isometric to the
balls of radius R in G is covered by G. An example of such a graph is given by
the Bruhat-Tits building of PSLn(K) with n ⩾ 4 and K a non-Archimedean
local field of characteristic zero. In this paper we extend this rigidity property
to a class of graphs quasi-isometric to the building including torsion-free lat-
tices of SLn(K).
The proof is the occasion to prove a result on the local structure of the build-
ing. We show that if we fix a PSLn(K)-orbit in it, then a vertex is uniquely
determined by the neighbouring vertices in this orbit.
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1 introduction

A recurring theme in geometric group theory is that local properties of an object can
have global implication for its geometry. A classical example is given by Lie groups
and their locally defined Lie algebras. Another striking illustration is provided by
the work of Tits [Tit81] who gave a local characterization of a particular family of
graphs called “buildings of type Ãd−1” (see Section 2.1 for a definition). Precisely,
graphs and their local-to-global properties are the objects we focus on in this article.
All graphs will be equipped with the usual metric, fixing the length of an edge to
one.

A natural local condition to impose on a graph is to be d-regular for some d ∈ N,
which means that all the vertices must have degree d. A well-known result about
such a graph is that the d-regular tree is its universal convering. This is a first
example of a global information deduced only by a local knowledge of the graph.

One can now ask what happens if we impose a local condition which is stronger
than d-regularity. We formalize this in the next definition.
Definition 1.1

Let R > 0 and let X and Y be two graphs.
We say that Y is R-locally X if every ball of radius R in Y is isometric to a ball
of radius R in X.
If Y is R-locally X and X is R-locally Y then we say that they are R-locally the
same.

Example 1.2. In the following example, BX(x0, 2) is isometric to BY(y0, 2).

The previous covering result on the d-regular tree is a first example of a more
general notion called the Local-to-Gobal rigidity, also named LG-rigidity.
Definition 1.3

Let R > 0. We say that X is Local-to-Global-rigid at scale R (or R-LG-rigid
for short) if every graph Y which is R-locally X is covered by X.
We say that a graph X is LG-rigid if there exists R > 0 such that X is R-LG-rigid.
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X

x0

Y

y0

Figure 1: Two graphs 2-locally the same.

Example 1.4. Benjamini and Ellis [BE16] showed that for any d ⩾ 2 the Cayley
graph of Zd endowed with its usual generating set is 3-LG-rigid. They also proved
that 3 was optimal showing that Z3 is not LG-rigid at scale 2.

Example 1.5. De la Salle et Tessera [dlST19, Theorem C] proved that every co-
compact graph quasi-isometric to a tree is LG-rigid.

Benjamini [Ben13] and Georgakopoulos [Geo17] conjectured that any Cayley
graph of a finitely presented group is LG-rigid at some scale R > 0. That conjecture
was proven to be false in [dlST19, Theorem B], where the authors built counter-
examples using groups with torsion elements.

Counter-example 1.6. The groups F2×F2×Z/2Z and SL4(Z) admit Cayley graphs
that are not LG-rigid.

Remark here that we do not state that every Cayley graph of these groups is
non-LG-rigid, but that each group admits a non-LG-rigid Cayley graph. Indeed,
in [dlST19, Theorem J] the authors also showed that every finitely presented group
with an element of infinite order has a Cayley graph which is LG-rigid. Hence, LG-
rigidity for a Cayley graph depends on the generating set. In particular LG-rigidity
is not invariant under quasi-isometries.

With a little bit more of material, we will be able to give a topological interpre-
tation of Local-to-Global rigidity (see page 11).

That rigidity notion can be refined in what is called the Strong Local-to-Global
rigidity, also named SLG-rigidity.
Definition 1.7

Let r,R > 0. We say that X is SLG-rigid at scale (r,R) if for all Y which is
R-locally X and for all isometry f from BX(x,R) to BY(y,R), the restriction of f
to BX(x, r) extends to a covering of Y by X.
We say that X is SLG-rigid if there exist two radii r and R such that X is
SLG-rigid at scale (r,R).

Such a refinement is far more than just a subtlety: it actually proves necessary
to obtain our main result (see page 26 for more details).

The following proposition gives us many examples of SLG-rigid graphs.
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1 Introduction

Proposition 1.8 (de la Salle, Tessera [dlST19, Proposition 3.8])
A graph with cocompact isometry group is LG-rigid if and only if it is SLG-rigid.

For example, any LG-rigid Cayley graph is actually SLG-rigid. In the same
article, de la Salle and Tessera proved a powerful condition relating to the isometry
group of a Cayley graph. We will refer to the isometry group of a Cayley graph
(Γ ,S) as Isom(Γ ,S).

Theorem 1.9 (de la Salle, Tessera [dlST19, Theorem E])
Let Γ be a finitely presented group and S be a symmetric generating set and

denote by (Γ ,S) the corresponding Cayley graph. If Isom(Γ ,S) is discrete, then
(Γ ,S) is SLG-rigid.

As stated in [dlST19, Corollary F], we can deduce two new classes of examples
from the above theorem. But before, let us introduce what we call LG-rigid groups.
Definition 1.10

We say that a finitely presented group is LG-rigid (resp. SLG-rigid) if all its
Cayley graphs are LG-rigid (resp. SLG-rigid).

Example 1.11. Torsion-free groups of polynomial growth are SLG-rigid.

Example 1.12. Torsion-free, non-virtually free lattices in connected simple real Lie
groups are SLG-rigid.

So far, the graphs chosen as examples are mostly Cayley graphs, but these are
not the only LG-rigid ones. Indeed, besides the case of quasi-trees seen above,
another interesting example is given by Bruhat-Tits buildings (see Section 2.1 for a
definition).

Theorem 1.13 (de la Salle, Tessera, [dlST16, Theorem 0.1])
Let K be a non-Archimedean local skew field.

If K has positive characteristic and n ⩾ 3, then the Bruhat-Tits building of
PSLn(K) is not LG-rigid.
If K has characteristic zero and n ⩾ 4, then the Bruhat-Tits building of PSLn(K)

is SLG-rigid.

Keeping in mind the above theorem, consider the following question asked in
[dlST19].

Question 1.14. Among lattices in semi-simple Lie groups, which ones are LG-
rigid?

This question concerns real Lie groups but one can also wonder what happens
for the p-adic case. Indeed, by a well known result of Svarc and Milnor, any lattice
of SLn(K) is quasi-isometric to the associated building (see Lemma 5.2 for more
details). The fact that such a lattice is “almost” a building encouraged us to study
the p-adic version of Question 1.14.
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1 Introduction

Question 1.15. Among lattices in p-adic Lie groups, which ones are LG-rigid?

De la Salle and Tessera showed [dlST16] that if K has positive characteristic,
then there exist p-adic lattices that are torsion-free, cocompact but not LG-rigid.

Example 1.16. Let n ⩾ 3. There exists a torsion-free cocompact lattice in
PGLn(Fp) that is not LG-rigid.

When K is a non-Archimedean local skew field of characteristic zero, an element
of response to Question 1.15 is provided by our first result hereunder.
Theorem 1.17

Let n ̸= 3 and K be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLn(K) are SLG-rigid.

This result is actually a corollary of our main theorem below which goes beyond
the lattices framework and gives a rigidity result in a more general case.
Theorem 1.18

Let n ̸= 3 and K be a non-Archimedean local skew field of characteristic zero.
Let X be the Bruhat-Tits building of PSLn(K) and X be a transitive graph. If
X verifies that

• There is an injective homomorphism ρ from Isom(X) to Isom(X) such that
ρ(Isom(X)) is of finite index in Isom(X);

• There is a Isom(X)-equivariant injective quasi-isometry q from X to X;
then X is SLG-rigid.

Let us discuss the hypothesis, starting with the assumption made on n. If n = 2
then X is the (p + 1)-regular tree, thus by Example 1.5 any graph quasi-isometric
to X is LG-rigid which proves the theorem. Now, as we will see in the sketch of the
proof, the main tool of our demonstration is the LG-rigidity of the building. But
if n = 3 the question of the rigidity of X is still open. Indeed in that case a lot of
flexibility seems to be allowed (see [BP07]). Thus our demonstration deals mainly
with the case where n ⩾ 4.

Secondly, let us look at the hypothesis made on the characteristic of K. According
to [dlST16, Theorem 0.4] and more precisely according to its proof, we get Counter-
example 1.19 below. It implies in particular that if we omit the characteristic zero
hypothesis, then Theorems 1.17 and 1.18 are not true.

Counter-example 1.19. There exists a non-LG-rigid torsion-free cocompact lat-
tice in PGLn

(
Fp((T))

)
.

Finally, before moving to the sketch of the proof let us discuss the hypothesis
made on the torsion in Theorem 1.17. First, introducing torsion in a group is in some
case a useful way to build non-LG-rigid graphs. Indeed the Counter-example 1.6
is built this way. Second, in order to link (Γ ,S) to X we will need an injection of
Isom(Γ ,S) into Isom(X). Using a famous result of Kleiner and Leeb we will show
that Isom(Γ ,S) acts on the buildings by isometries. The injection into Isom(X) will
then be allowed by the following proposition.
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Proposition 1.20 (de la Salle, Tessera [dlST19, Proposition 6.2])
Let Γ be an infinite, torsion-free, finitely generated group and let S be a finite
symmetric generating subset of Γ . Then the isometry group of (Γ ,S) has no
non-trivial compact normal subgroup.

For more details on how we use this proposition, see the proof of Lemma 5.3.

sketch of the proof of the theorem As stated in the discussion be-
low Theorem 1.18, the proof deals mainly with the case where n ⩾ 4. So, Let n ⩾ 4
and K be non-Archimedean local skew field of characteristic zero and denote by X

the Bruhat-Tits building of PSLn(K). Let X be the studied graph and Y be a graph
R-locally the same as X and denote by q a quasi-isometry from X to X. The main
idea of the proof is to use the rigidity of X to build the wanted covering from X to Y

(see Figure 2), thus we need to build a graph locally the same as X. We will denote
such a graph Y.

X

Y

R-loc

Y

X

covering

q

quasi-isom.

RX-loc

Goal:
induce a convering from X to Y

Figure 2: Sketch of the proof

Moreover, for the rigidity of the building to induce a covering between X and
Y, we want Y to contain a copy of the vertices of Y. Hence the goal is to define
the vertices of Y to be composed of the vertices of Y and a copy of each vertex in
X\q(X) and define the edges to correspond to edges in X. With such a description
Y is a “hybrid” graph and to define its edges we might need to understand how to
link a vertex coming from Y to a vertex coming from X. Hence, to avoid such a
hybridation we chose to define the vertices only with informations encoded in Y.
That is why we introduce the notion of print in the building (see Section 3.1). It
allows us to characterize a vertex in X by a set of neighbouring vertices in im(q)

and, using a well chosen set of isometries from Y to X, to transfer this print notion
to Y. Each print in Y corresponds to a vertex in X\q(X). The vertices of the wanted
graph Y will be composed of the vertices of Y and of prints in Y. It will now be easier
to build edges between these vertices; the key argument to construct such edges is
presented in Section 2.3.

Using the rigidity of the building we will obtain an isometry between X and Y.
To conclude the proof we will show that this isometry induces the wanted covering
between Y and X.
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2 Framework

organization of the paper The first section is devoted to the definition
of our framework. We recall some material about Bruhat-Tits buildings and large
scale simple connectedness and present a fundamental result on isometries’ exten-
sion. The second and third sections are devoted to the proof of Theorem 1.18. In
the second section we develop the necessary engineering to build a graph locally the
same as the building —this is where we define and study prints— while in the third
one we use the rigidity of the building to prove the rigidity of the studied graph.
We prove Theorem 1.17 in the fourth section where we check that the lattice verifies
the hypothesis of our main theorem.
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2 framework

Let us start by setting up the framework of the next sections. We first recall some
material about Bruhat-Tits buildings, and large scale simple connectedness. Then
we present a useful tool concerning the extension of isometries. We conclude by a
result one step further in to the proof of our main theorem, linking the PSLn(K)-
orbits in the building and the image q(X) of the graph studied.

2.1 Bruhat-Tits building

Let n ⩾ 2. Since it is the object at the center of our proof, let us recall the
description of the Bruhat-Tits building associated to PSLn(K) where n ⩾ 2, see
[AB18] for more details.

non-archimedean local skew fields Let K be a field (not necessarily
commutative). A discrete valuation on K is a surjective homomorphism v : K∗ → Z
satisfying v(x + y) ⩾ min{v(x), v(y)} for all x,y ∈ K∗ such that x + y ̸= 0. If K is
endowed with such a valuation, we can extend v on all K by setting v(0) = +∞.
We say that K is a non-Archimedean local skew field if it is locally compact for the
topology associated to a discrete valuation.

Example 2.1. If K = Q and p is a prime, then every x ∈ K can be written as
x = pna/b where a and b are integers non-divisible by p. The map defined by
v(pna/b) := n is a discrete valuation over K. The field Qp is the completion of Q
with respect to the p-adic absolute value defined by |x|p = p−v(x).

G 7 g



2 Framework

Example 2.2. Let K = Fp((T)), the field of formal Laurent series over Fp. De-
note by f =

∑
k∈Z akT

k an element in Fp((T)) then the map defined by v(f) :=

min {k : ak ̸= 0} is a valuation over K.

Let O denote the ring of integers of K with respect to v, that is to say O :=

{x ∈ K : v(x) ⩾ 0}. This ring has a unique prime ideal m := {x ∈ K : v(x) > 0}.
Finally, let π be a generator of m as an O-module.

Example 2.3. If K = Qp then its ring of integers is O = Zp. Moreover m = pZp

and π = p.

Example 2.4. If K = Fp((T)) then O = Fp[[T ]]. Moreover m = XFp[[T ]] and π = X.

buildings Let K be a non-Archimedean local skew field endowed with a valu-
ation v. An O-lattice of Kn is an O-submodule which generates Kn as a K vector
space. Such a lattice can be written as Oe1 + · · · + Oen for a basis (e1, . . . , en) of
Kn. Since for any a ∈ K∗ and any lattice L, the module aL is also a lattice, we can
define the equivalence relation of lattices modulo homothety. We denote by [L] the
class of a lattice L.
The Bruhat-Tits building of PSLn(K) is a simplicial complex of dimension n − 1
denoted by X̂ whose 1-skeleton (denoted by X) is described as follows. The vertices
are the classes of O-lattices modulo homothety. Two vertices x1 and x2 are linked
by an edge if there exists representatives L1 of x1 and L2 of x2 such that:

pL1 ⊂ L2 ⊂ L1.

Example 2.5. One can show that the building of PSL2(Qp) is a (p + 1)-regular
tree. Figure 3a gives a representation of the building when p = 2.

(a) The building has two SL2(Q2)-
orbits (b) Representation of one apartment

Figure 3: The building of PSL2(Q2)
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orbits and types The usual action of GLn(K) on Kn induces an action of
PGLn(K) on X by isometry. Since GLn(K) acts transitively on the bases, the action
of PGLn(K) on the vertices of X is also transitive.

If L = ⊕iOei is a lattice we define its type to be v (det(e1, . . . , en)). Since:

∀a ∈ K∗ v (det(ae1, . . . ,aen)) = v (det(e1, . . . , en)) mod n,

one can define the type of a vertex x in X to be the value modulo n of the type of
one of its representatives. We denote by τ(x) the type of x.
If L ′ is a second lattice, we can choose our basis e1, . . . , en for L in such a way that
L ′ admits a basis of the form a1e1, . . . ,anen for some ai ∈ K∗. The scalars ai can
be taken to be powers of π. The incidence relation defined above implies that if the
classes of L and L ′ are linked by an edge in X, then they have different types.

Remark 2.6. Remark that if L = ⊕iOei and

L ′ = Oπe1 ⊕ · · · ⊕ Oπej ⊕ ej+1 ⊕ · · · ⊕ en,

then τ
(
[L′]

)
= τ

(
[L′]

)
+ j mod n.

The action of SLn(K) on X preserves the determinant and is transitive on the
pairs of vertices of the same type. So there are exactly n orbits under the action of
SLn(K) (see Figure 3a and Figure 4 for examples).

apartments If e is a basis of Kn then the sub-complex A induced by the set
of vertices

{
⊕n

i=1Oπ
kiei | ki ∈ Z

}
is isometric to a (n − 1)-dimensional Euclidean

space tiled by regular (n − 1)-simplices. We call such sub-complexes apartments.
For example an apartment in the building of PSL2(Q2) is isometric to R1 tiled
with segments of length 1 (see Figure 3b), whereas for PSL3(Q2) the apartment are
isometric to R2 and tiled with triangles (see Figure 4).

Figure 4: Apartment in the building of PSL3(Q2). The colors correspond to SL3(Q2)-
orbits.

For any two points in X̂ there exists an apartment containing them. If x,y ∈
X̂ let A be an apartment containing x and y and define dX̂(x,y) to be equal to
the euclidean distance dA(x,y). This definition does not depend on the choice
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of apartment A and thus endows X̂ with a well defined distance. Moreover, this
distance verifies the negative curvature inequality: for all x,y, z ∈ X̂ and t ∈ [0, 1]

d2
X̂
(z, tx+ (1 − t)y) ⩽ td2

X̂
(z, x) + (1 − t)d2

X̂
(z,y) − t(1 − t)d2

X̂
(x,y). (1)

Denote by dX the distance on the 1-skeleton X assigning length 1 to an edge. Then
dX(x,y) is greater than dX̂(x,y) for all vertices x and y in X.

contractibility Using the above inequality one can show that the building
is contractible (see [AB18] for more details). We can actually show that convex sets
in X̂ are themselves contractible.

Claim 2.7. Let r > 0. Any convex set in X̂ is contractible.

Proof. Let r > 0 and C a convex set in X̂ and endow it with the distance induced
by dX̂. Take x0 ∈ C and define,

H :

{
[0, 1]× C → C,
(t, x) 7→ tx+ (1 − t)x0.

Since C is convex, the map H is well-defined. Moreover H(0, ·) = idC and H(1, x) =
x0 for all x in C. Let us show that H is continuous. Take x, x′ ∈ C and t, t′ ∈ [0, 1]
and let z = t′x′ + (1 − t′)x0. By eq. (1)

d2
X̂
(z, tx+ (1 − t)x0) ⩽ td2

X̂
(z, x) + (1 − t)d2

X̂
(z, x0) − t(1 − t)d2

X̂
(x, x0). (2)

But if A is a an apartment containing z and x0, then by property of the Euclidean
distance dA

dX̂(z, x0) = dA(t
′x′ + (1 − t′)x0, x0) = t′dA(x

′, x0) = t′dX̂(x
′, x0),

which tends to tdX̂(x, x0) as (t′, x′) tends to (t, x). Similarly

dX̂(z, x) ⩽ dX̂(z, x
′) + dX̂(x

′, x) = dX̂(t
′x′ + (1 − t′)x0, x′) + dX̂(x

′, x),
= (1 − t′)dX̂(x

′, x0) + dX̂(x
′, x),

which converges to (1 − t)dX̂(x, x0) + dX̂(x
′, x) as (t′, x′) tends to (t, x). Thus the

right term of eq. (2) converges to 0 as (t′, x′) tends to (t, x). Hence the continuity
of H and the contractibility of C.

2.2 Large scale simple connectedness

For a graph G and k ∈ N, we define a 2-complex, noted Pk(G), such that:
• Its 1-skeleton is given by G ;
• Its 2-skeleton is composed of m-gons (for m ∈ [0,k]) defined by the simple

loops of length m in G (up to cyclic permutations).

G 10 g
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Definition 2.8

We say that G is k-simply connected or simply connected at scale k if Pk(G)

is simply connected.

Example 2.9. Let G be a finitely generated group and T a finite symmetric gener-
ating set. The Cayley graph (G, T) is simply connected at scale k if and only if G
has a presentation ⟨T ,R⟩ with relations of length at most k.

Example 2.10. Let n ⩾ 2. The Bruhat-Tits building of PSLn(K) is simply con-
nected at scale 3.

Remark 2.11. If k ⩽ k′, then every k-simply connected graph is k′-simply con-
nected.

The following proposition allows us to restrict the study of the LG-rigidity of a
graph G to some smaller class of graphs.
Proposition 2.12 (de la Salle, Tessera, [dlST16, Proposition 1.5])

Let k ∈ N and G be a k-simply connected graph, with cocompact isometry
group. Then G is LG-rigid if and only if there exists R such that every k-simply
connected graph which is R-locally G is isometric to G.

To apply this result to our proof we will need to show that the studied graph X

is simply connected. The following proposition shows that being simply connected
is invariant under quasi-isometry.
Proposition 2.13 (de la Salle, Tessera, [dlST16, Theorem 2.2])

Let k ∈ N∗ and let G be a k-simply connected graph. If H is quasi-isometric to
G, then there exists k′ ∈ N∗ such that H is simply connected at scale k′.

Before moving to the next section, let us mention a consequence of Proposi-
tion 2.12. Indeed, this result allows us to look at the LG-rigidity notion with a
topological point of view. Let’s denote Gk the set of isometry classes of locally
finite k-simply connected graphs. We can define a distance on this set by:

dGk
(X, Y) := inf

{
2−R : X and Y are R-close

}
,

which endows Gk with a topology. Proposition 2.12 implies that a graph is LG-rigid
if and only if its isometry class in Gk is isolated for this topology.

2.3 Extension of isometries

In order to build the “hybrid” graph mentionned above, we will need some result to
extend globally our local definition of edges. We recall here the result of de la Salle
and Tessera [dlST19, Lemma 4.1] that will serve our purpose.

G 11 g
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Proposition 2.14 (de la Salle, Tessera)
Let G be a graph with cocompact isometry group. Given some r1 ⩾ 0, there exists
r2 > 0 such that: for every g ∈ G, the restriction to BG(g, r1) of an isometry f :
BG(g, r2) → G coincides with the restriction of an element of Isom(G).

It is however not necessarily true that f coincides on the whole B(g, r2) with an
isometry of G. Indeed, truncating the entire graph to some ball might allow some
kind of flexibility near the boundary of the ball (see Example 2.15 and Figure 5).
Hence, in order to coincide with a global isometry we need to restrict the local
isometry f to a smaller ball which does not contain the flexible area.

Example 2.15. Let G be the Cayley graph of Z2 endowed with its usual generating
part. We consider in Figure 5 an isometry f defined on B

(
(0, 0), 1

)
such that f fixes

(0, 0), (−1, 0) and (0,−1) (represented by the blue vertices) and exchange (1, 0) with
(0, 1) (the orange and brown vertices). Then f is an isometry from B

(
(0, 0), 1

)
to

B
(
(0, 0), 1

)
, but can not coincide with a global isometry of G on that ball. Indeed, if

such a global isometry existed, then it should send the vertex (−1, 1) (represented
by the light brown vertex on the left part of the figure) at distance 1 from both
f(−1, 0) = (−1, 0) and f(0, 1) = (1, 0). Which is impossible since the only point at
distance 1 from (1, 0) and (−1, 0) is (0, 0) and it is already the image of (0, 0).

f

Figure 5: Local isometry that can not coincide with a global isometry on its entire
domain of definition

2.4 Preliminary results on X

Lemma 2.16

If X verifies the hypothesis of Theorem 1.18, then PSLn(K) is included in
ρ(Isom(X)). Moreover, if q(X) contains a vertex of a certain type i, then q(X)

contains all the vertices of type i.

Proof. Since ρ (Isom(X)) is of finite index in the isometry group of the building X,
the same goes for its normal core ∩g∈Isom(X)gρ (Isom(X))g−1. Then, by simplicity
of PSLn(K), the normal core of ρ (Isom(X)) contains PSLn(K). Hence the result.

Then, the second part of the lemma follows from the equivariance of q and the
transitivity of PSLn(K) on vertices of the same type.
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3 Tracking vertices through their prints

Without loss of generality, we can assume that im(q) contains type 0 vertices, that
is to say τ−1(0) ⊂ im(q). Moreover, using Proposition 2.13 we obtain that X is
simply connected at some scale k > 0.

8

The aim of the next two sections is to prove Theorem 1.18 for n ⩾ 4. For the sake
of clarity we recapitulate here the needed assumptions for the proof.

Hypothesis (H)
1. Let X be a k-simply-connected transitive graph;
2. Let Y be a graph R-locally X and k-simply connected;
3. Let n ⩾ 4 and K a non-Archimedean local skew field of characteristic

zero. Denote by X the Bruhat-Tits building of PSLn(K);
4. Let ρ : Isom(X) → Isom(X) be an injective homomorphism and q :

X → X an Isom(X)-equivariant injective quasi-isometry;
5. Assume that ρ(Isom(X)) is of finite index in Isom(X) and that q(X)

contains τ−1(0).

3 tracking vertices through their prints

This section is dedicated to the definition of a graph locally the same as X which
we will call Y. Before moving to the detailed definition let us explain the idea of the
construction. Recall that the vertices of X are partitioned into different types (see
Section 2.1) denoted by integers in {0, . . . ,n− 1}. By Lemma 2.16, if q(X) contains
a vertex of a certain type then it contains all the vertices of that type. Denote by T

the set of types that are not contained in q(X), namely T = {0, . . . ,n− 1}\τ(q(X)).
We have the following partition

X = q(X) ⊔
(
⊔i∈T τ

−1(i)
)
. (3)

Example 3.1. Take K = Q2 and assume that im(q) is composed only of type zero
vertices.
When n = 2 we have T = {1} and the building is represented in Figure 3a. The
partition in eq. (3) corresponds to the partition of vertices in two different colors.
When n = 3, we get T = {1, 2}. An apartment of X is represented in Figure 4 and
the partition of this part of X corresponds to the partition in three different colors.

Example 3.2. Let n = 4 and K = Q2 and assume that im(q) contains type
zero and type 2 vertices. Then T = {1, 3}. We will not try to represent X or an
apartment but recall that it is tiled by tetrahedrons. The partition is illustrated on
a tetrahedron in Figure 6, where im(q) corresponds to the two blue vertices.
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3 Tracking vertices through their prints

Type 3

Type 1

im(q) (Type 0 and 2)

Figure 6: Partition of a simplex

The idea of the construction of Y is to take the vertices of Y and add to them
vertices of the missing types, ie. vertices with type in T (see Figure 10 for an
example). But we want to build this vertices only with informations encoded in
V(Y). That is why we introduce the local characterization of a vertex in the building
(see Section 3.1). Then, using a well chosen set of isometries from Y to X, we transfer
this print notion to Y, each print in Y corresponding to a vertex of a missing type.

3.1 Prints in a building

In this section we show that a vertex in X can be determined by a part of its 1-
neighbourhood. More precisely, we prove that a vertex in the building is entirely
determined by the vertices in its 1-neighbourhood having type zero.
Definition 3.3

Let x be a vertex of X. We define the print of x, denoted by P(x), to be
the intersection of the 1-neighbourhood of x with the vertices of type zero, viz.
P(x) := BX(x, 1) ∩ τ−1(0).

Remark 3.4. We choose to define print as a set of vertices of type zero because (in
order to simplify notations and proofs) we assumed from the beginning that τ−1(0)
was contained in im(q). But we could have taken any other type.

Example 3.5. Figure 7 represents a ball of radius 1 in two different cases. The
case when n = 2 and |O/πO| = 2 (for example when K = Q2) is represented on the
left figure. The case when K = Q2 and n = 3 is represented on the right figure. In
each case, the print of x corresponds to the set of blue vertices.

The following result proves that a vertex in X is uniquely determined by its print.
Proposition 3.6

Let x1, x2 ∈ X. If P(x1) = P(x2), then x1 = x2.

Before showing the above property, let us recall (and prove) a useful fact concerning
the choice of representative of a vertex.
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3 Tracking vertices through their prints

x1

x3

x2

x

P(x) = {x1, x2, x3}

B(x, 1) for n = 2 = p

Type 0 vertices
Type 1 vertices
Type 2 vertices

x

B(x, 1) for p = 2 and n = 3

Figure 7: Prints and 1-neighbourhood of a vertex in X

Claim 3.7. For any vertex in X, we can always find a representative ⊕iOπ
kiei of

the vertex such that {
∀i ∈ {1, . . . ,n} ki ⩾ 0,
∃i0 ∈ {1, . . . ,n} ki0 = 0.

(4)

Proof of the claim. Indeed, let x ∈ X and let (l1, . . . , ln) be a representative of x
and let i0 be such that li0 = mini li, then[

⊕n
i=1Oπ

liei
]
= π−li0

[
⊕n

i=1Oπ
li−li0ei

]
=

[
⊕n

i=1Oπ
li−li0ei

]
.

Thus (l1 − li0 , . . . , l1 − li0) is a representative of x and verifies eq. (4).

Now, let us prove that the print determines the vertex.

Proof of Proposition 3.6. Let x1, x2 ∈ X such that P(x1) = P(x2).
First remark that if τ(x1) = 0 then P(x1) = {x1} which implies that P(x2) =

P(x1) = {x1}. But then x2 has only one neighbour of type 0, which is only possible
if τ(x2) = 0. Thus {x2} = P(x2) = {x1} and so x1 = x2.

Now assume that τ(x1) ̸= 0 and take A to be an apartment containing both x1

and x2. Define P := P(x) ∩A and let e be a basis such that

A =
{
⊕n

i=1Oπ
kiei | ki ∈ Z

}
and x1 = (0, . . . , 0).

By Claim 3.7, we can choose a representative (k1, . . . ,kn) of x2 such that ki ⩾ 0
for all i and there exists j ∈ {1, . . . ,n} such that kj = 0. Now define the sequence
i1, . . . , in of indices such that kin ⩾ · · · ⩾ ki1 = 0 and let

li1 = · · · = liτ(x) = 1 lin−τ(x)+1 = · · · = lin = 0.

Then by remark 2.6 the vertex z = (l1, . . . , ln) has type 0. Moreover it is at distance
1 from x1, so z belongs to P. But if kin > 0, then d(z, x2) > 1 thus z can not belong
to P(x2). Hence ki1 ⩽ 0, that is to say ki = 0 for all i and thus x2 = x1.
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3 Tracking vertices through their prints

This proves that a vertex in X is uniquely determined by its print. Thus, we can
introduce the following definition without ambiguity.
Definition 3.8

Let x to be a vertex in X. We say that x is the source of P(x).

In order to prove Theorem 1.18, we will need to know how prints behave under
the action of PSLn(K). So let x ∈ X and let α ∈ PSLn(K). Since α is an isometry,
we get

α
(
P(x)

)
= α

(
B(x, 1) ∩ τ−1(0)

)
= α

(
B(x, 1)

)
∩ ατ−1(0) = B (α(x), 1) ∩ τ−1(0).

We deduce the following lemma.
Lemma 3.9

Let x ∈ X. If α belongs to PSLn(K), then α (P(x)) = P (α(x)).

3.2 Atlas of local isometries

To build our graph locally the same as X, we need to restrict ourselves to a particular
set of local isometries from Y to X. More precisely, if y1 and y2 are close in Y and
f1 (resp. f2) is an isometry from BY(y1,R) (resp. BY(y2,R)) to X, we want the
transition map f2f

−1
1 to coincide with an element in ρ−1PSLn(K) on a small ball.

This is what we formalize here and schematize in Figure 8.
In order to avoid any ambiguity regarding the notion of center of a ball, let us

precise our definition of ball in a graph. What we mean when we talk of “a ball of
radius R” is actually a pointed ball of radius R that is to say, a couple (B,y) such
that y is a vertex in Y and B = BY(y,R). We will abuse notation by denoting such
a pointed ball BY(y,R) (instead of

(
BY(y,R),y

)
). This way, the center of a ball is

always well defined.
Definition 3.10

Let A be a set of isometries from balls of radius R in Y to X. We say that A is an
atlas of local isometries from Y to X if the map that associates to each isometry
in A the center of its ball of definition is a bijection from A to Y. That is to say,
we can write

A := {fy : BY(y,R) → X | y ∈ Y} ,

where the map that associates fy to y is bijective.
We say that fy is the isometry associated to y in A.

Let H0 := ρ−1PSLn(K). Now, we show that we can construct an atlas of local
isometries from Y to X such that the transition maps between two isometries defined
on balls with neighbouring centers coincide with elements of H0.

We will note a path between two vertices v1 and v2 as a sequence (v1, . . . , vl) of
adjacent vertices.
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3 Tracking vertices through their prints

Lemma 3.11

Let rA > 0 and let H0 := ρ−1PSLn(K). For R large enough, if Y is R-locally X,
then there exists an atlas A such that for any two neighbours y and z in Y

∃a ∈ H0 fyf
−1
z |B(fz(z),rA) = a|B(fz(z),rA). (5)

Before proving it, let us schematize the framework of this lemma. In Figure 8
we represent two isometries fy and fz with z neighbour to y. The larger discs
correspond to balls of radius R and the smaller ones to balls of radius rA. The map
fyf

−1
z restricted to B(fz(z), rA) takes fz(z) to fy(z) which is a neighbour of fy(y)

and coincides on this ball with an element in H0.

Y
y

X

fz(z)

fy(z)

fy(y)

fyf
−1
z

z

fy

fz

f−1
z

fy

Figure 8: Composition of isometries with neighbouring centers

Let us discuss the idea of the proof. First, for two neighbours y and z we use
Proposition 2.14 to prove that fyf−1

z coincides on a small ball with an element a in
Isom(X). This isometry corresponds to the “default” of belonging to H0 we want to
correct. Hence, we consider in our atlas the new isometry defined on B(z,R) by afz.
Finally, we extend this construction along paths in Y and prove that the wanted
property for A does not depend on the choice of path.

Proof. Let rA > 0 and let H0 := ρ−1PSLn(K). Now, let y ∈ Y and fy be an isometry
from B(y,R) to X. Let z be a neighbour of y in Y and f̃z be an isometry from B(z,R)
to X. Then the map

fyf̃
−1
z : BX

(
f̃z(z),R− 1

)
→ BX (fy(z),R− 1)

is a well defined local-isometry of X. By Proposition 2.14 if R is large enough, there
exists a in Isom(X) such that fyf̃

−1
z coincides with a on BX

(
f̃z(z), rA + k

)
, where

we recall that k refers to the scale at which Y is simply connected. We will see below
why we need to consider such a radius.
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3 Tracking vertices through their prints

Now let fz := af̃z. By definition we have

fz :

{
BY(z,R) → BX (fy(z),R) ,
z 7→ af̃z(z) = fy(z),

thus the transition map fyf
−1

z is well defined on BX(fz(z),R − 1). Moreover, by
choice of fz we get that fyf

−1
z restricted to B(fy(z), rA + k) coincides with the

identity and thus belongs to H0. Extending this construction along paths in Y we
get an atlas A of local isometries from Y to X.

Now if y ∈ Y and fy is the associated isometry in A, we want to show that (up
to a multiplication by an element in PSLn(K)) this isometry does not depend on
the choice of path. So let y ∈ Y and (y0 = y,y1, . . . ,yl = y) be a loop of length l.
Take f0 to be an isometry from BY(y0,R) to X and using the process detailed above,
build a sequence of isometries f1, . . . , fl such that fi is defined on BY(yi,R) and

∀i ∈ {1, . . . , l} ∃ai ∈ H0 |
(
fi−1f

−1
i

)
|B(fi(yi),rA+k)

= ai|B(fi(yi),rA+k).

We have to prove that the restrictions to B(y0, rA) of f0 and fl are equal up to a
multiplication by an element in H0. Since Y is simply connected at scale k, we only
have to prove this for loops of length smaller than k. Hence, we assume that l ⩽ k.

First, remark that for all i ∈ {0, . . . , l− 1}{
fi−1f

−1
i : BX (fi(yi), rA + k) → BX (fi−1(yi), rA + k) ,

fif
−1
i+1 : BX (fi+1(yi+1), rA + k) → BX (fi(yi+1), rA + k) .

Now since yi and yi+1 are at distance 1, the ball BX (fi(yi+1), rA + k− 1) is included
in BX(fi(yi), rA+k). Hence the map

(
fi−1f

−1
i

) (
fif

−1
i+1

)
is well defined and coincides

with aiai+1 on BX (fi+1(yi+1), rA + k− 1). By induction we get that for all x in
BX (fi+1(yi+1), rA + k− l+ 1)

f0f
−1
l (x) =

(
f0f

−1
1

)
· · ·

(
fl−1f

−1
l

)
(x) = a1 · · ·al(x).

Since
∏l

i=1 ai belongs to H0 and l is smaller than k, it implies that f0 is equal to
fl on BY(y0, rA) up to multiplication by an element in H0.

The atlas is defined such that a transition map between two isometries defined
on balls with neighbouring centers belongs to H0. But in fact, this property is also
true when the centers are at a slightly bigger distance.
Lemma 3.12

Let r > 0 and A be an atlas verifiying the conditions of Lemma 3.11 with
rA > 3r. Let y and z in Y be at distance less than 2r and fy, fz the associated
isometries in A. Then

∃a ∈ H0
(
fyf

−1
z

)
|BY(z,r) = a|BY(z,r). (6)
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3 Tracking vertices through their prints

Proof. Let r > 0 and assume rA > 3r. Let y, z ∈ Y be at distance l ⩽ 2r and let
fy, fz be two elements of A such that

fy : BY(y,R) → X fz : BY(z,R) → X.

Take (y0 = y,y1, . . . ,yl = z) to be a geodesic between y and z, and for all i ∈
{0, . . . , l}, let fi ∈ A be the isometry associated to yi. Remark that by definition of
an atlas, it implies f0 = fy and fl = fz and

∀i ∈ {0, . . . , l− 1} ∃ai ∈ H0
(
fif

−1
i+1

)
|B(fi+1(yi+1),rA)

= ai|B(fi+1(yi+1),rA).

Now, if rA > 3r and l ⩽ 2r, then BY(z, r) is contained in BY(y, rA). Hence the com-
position of transition maps

(
f0f

−1
1

)
· · · (f−1f

−1
r ) is well defined on BY (fl(yl), rA − l)

and verifies on that ball

f0f
−1
l =

(
f0f

−1
1

)
· · ·

(
fl−1f

−1
l

)
= a0 · · ·al−1. (7)

Hence the result.

3.3 Prints in Y

Using the atlas built above, we can now transfer this print notion to the graph Y.
Let rP > 0 and assume that Y is endowed with an atlas of isometries A as given by
Lemma 3.11 with rA > 3rP. Hence, we have

R > rA > 3rP > rP.

Definition 3.13
Let P be a set of vertices in Y. We say that P is a print if there exists y in Y

and f ∈ A an isometry from BY(y,R) to X such that
• The set P is contained in BY(y, rP);
• There exists x ∈ X\im(q) such that P(x) = qf(P).

Remark 3.14. Note that in the definition above we ask that x does not belong to
im(q). The definition would also make sense if x belonged to im(q) but the purpose
of these prints is to reconstruct the ”missing” vertices, namely vertices that are not
in the image of q. Thus to simplify formalism in the next pages, we chose to restrict
now the definition to prints of vertices in X\im(q).

Example 3.15. If n = 3 and p = 2 there are exactly 3 types of vertices, each
represented in Figure 9 by a different color. The 1-neighbourhood of a vertex x

in X is then composed of fourteen vertices, represented on the right side of the
aforementioned figure (where x is the brown vertex at the center). If x ∈ X\im(q)

then seven of these fourteen vertices are in im(q) (the blue vertices). On the left
side of the figure is represented P (the black dots) inside B(y, rP) (the darker disc).
The set qf(P) is exactly the set of blue vertices. Hence P is a print.
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3 Tracking vertices through their prints

Y
qf

X

B(y,R)
B(y, rP)
Elements of P

qf
(
B(y,R)

)
qf

(
B(y, rP)

)
qf(P) = P(x)

x

B(x, 1)\qf(P)

Figure 9: Definition of a print in Y

For now, let’s say that P verifying the definition above is a print associated to y

and f. We are going to show that this definition depends neither on y nor f.

Lemma 3.16
Let y1,y2 ∈ Y and f1, f2 be the associated isometries in A. Let P be a print

associated to y1 and f1.
If P ⊂ B(y2, rP) then P is a print associated to y2 and f2.

Proof. First, remark that since P ⊂ B(y2, rP) ∩ B(y1, rP), then taking any y in P

we get
dY(y1,y2) ⩽ dY(y1,y) + dY(y,y2) ⩽ 2rP.

Applying Lemma 3.12 with r = rP, we get that there exists a ∈ H0 such that(
f1f

−1
2

)
|BX(f2(y2),rP)

= a|BX(f1(y2),rP).

Now let x ∈ X be such that P(x) = qf1(P). Using the equivariance of q and
Lemma 3.9, we get

qf2(P) = ρ(a)−1qf1(P) = ρ(a)−1P(x) = P
(
ρ(a)−1(x)

)
.

Hence P is a print associated to y2 and f2.

This last lemma proves that being a print does not depend on the choice of local
isometry.

Remark 3.17. In the above proof ρ(a)−1(x) has same type as x since ρ(a) is type
preserving. Thus, once we have taken our atlas in PSLn(K), the type of the source
of qf(P) does not depend on the choice of local isometry f.
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3 Tracking vertices through their prints

3.4 Definition of Y: a building’s replica

The following property defines the graph Y we will demonstrate to be locally the
same as X.
Proposition 3.18

Let rP > 0 and A be the atlas given by Lemma 3.11 for rA > 3rP. If R is large
enough, then the following graph is well defined.
Let Y be the graph whose vertices are given by

V(Y) := V(Y) ⊔ {P : ∃x ∈ X\im(q), P(x) = P} ,

and edges are given by:
• If y1,y2 ∈ V(Y), then (y1,y2) is an edge if there exists z in Y and f ∈ A

defined on BY(z,R) such that y1,y2 ∈ B(z, rP) and dX(qf(y1),qf(y2)) = 1.
• If y ∈ V(Y) and P is a print, then

(
y,P

)
is an edge if there exists z in Y

and f ∈ A defined on BY(z,R) cointaining y and P and such that qf(y) is
at distance 1 from the source of qf(P).

• If P1 and P2 are two prints, then
(
P1,P2

)
is an edge if there exists z in Y

and f ∈ A defined on BY(z,R) such that P1,P2 ⊂ BY(z, rP) and such that
the source of qf(P1) is at distance 1 from the source of qf(P2).

Before looking at the proof of this property, let us sketch some part of this graph.

Example 3.19. If n = 4 then X is composed of vertices of type 0, 1, 2 and 3.
Assume that q(X) is composed of vertices of type 0 and 2, then T = {1, 3} and we
saw the corresponding partition of X in Example 3.2 and Figure 6. The appearance
of the corresponding V(Y) is represented in Figure 10.

Prints

V(Y)

Figure 10: Schematic view of V(Y) in the case of Example 3.19

Proof. Let Y be as in Proposition 3.18 and let us show that the definition of the
edges does not depend on the choice of f in the atlas.

First, let y1,y2 ∈ Y and y, z ∈ Y such that y1 and y2 belong to B(y, rP)∩B(z, rP).
Then, take two local maps fy, fz in A associated to y and z respectively. Then
d(y, z) ⩽ 2rP and by Lemma 3.12 there exists a ∈ Isom(X) verifying eq. (6). Hence,
by Isom(X)-equivariance of q we get

dX

(
qfz(y1),qfz(y2)

)
= dX

(
ρ(a)qfz(y1), ρ(a)qfz(y2)

)
= dX

(
q (afz(y1)) ,q (afz(y2))

)
= dX

(
qfy(y1),qfy(y2)

)
.
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4 From one graph to the other

Thus dX

(
qfz(y1),qfz(y2)

)
= 1 if and only if dX

(
qfy(y1),qfy(y2)

)
= 1 and the

definition of edges between two vertices of Y does not depend on the choice of local
isometry.

Now take y ∈ Y and let P ⊂ Y be a print. Let z and z′ such that y and P

are contained in B(z, rP) ∩ B(z′, rP) and take f (resp. f′) in A defined on B(z,R)
(resp. B(z′,R)). Then d(z, z′) ⩽ 2rP and by Lemma 3.12 there exists a ∈ Isom(X)

verifying eq. (6). Hence,

dX

(
qf(y), x

)
= dX

(
ρ(a)qf(y), ρ(a)(x)

)
= dX

(
q (af(y)) , ρ(a)(x)

)
= dX

(
qf′(y), ρ(a)(x)

)
.

If x is the source of qf(P) then, by Lemma 3.9 we get

P(ρ(a)(x)) = ρ(a) (P(x)) = ρ(a)qf(P) = qf′(P).

Thus, the existence of en edge between y and P in Y does not depend of the choice
of map in A.

Finally, take P1,P2 ⊂ Y two prints and let z, z′ in Y and f ∈ A (resp. f′)
defined on BY(z,R) (resp. B(z′,R)) such that P1,P2 ⊂ BY(z, rP)∩BY(z

′, rP). Again
d(z, z′) ⩽ 2rP and by Lemma 3.12 there exists a ∈ Isom(X) verifying eq. (6). Hence
if x1 is the source of qf(P1) and x2 the source of qf(P2), then d(x1, x2) = 1 if and
only if d(ρ(a)(x1), ρ(a)(x2)) = 1. Moreover, by Lemma 3.9

∀i = 1, 2 P(ρ(a)(xi)) = ρ(a) (P(x1)) = ρ(a)qf(Pi) = qf′(Pi).

Hence the existence of en edge between P1 and P2 in Y does not depend of the choice
of map in A.

4 from one graph to the other

In this section we prove the isometry between the graph Y built and the Bruhat-Tits
building and show that it induces an isometry between X and Y.

4.1 Isometry with the building

We can now prove that Y is isometric to the Bruhat-Tits building. Recall that rA is
the radius used to define our atlas A (see Lemma 3.11) and rP is the radius used to
define prints in Y (see Definition 3.13). These constants verify R > rA > 3rP > rP.
Lemma 4.1

Let RX > 0. If rP (and hence R) is large enough, then Y is RX-locally X.

To prove this lemma, we define explicitely the local isometries on balls of radius
RX and prove that these maps are well defined injections. Then, we compute the
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4 From one graph to the other

minimal value of rP necessary for these applications to be surjective on balls of
radius RX. We conclude by showing that these maps preserve the distance.

Proof. Let v ∈ V(Y). If v ∈ V(Y) let f ∈ A be the isometry defined on BY(v,R). If
v is a print P let y and f ∈ A be such that P is a print associated to y and f. Our
goal is to show that the map

φf :


BY(v,RX) → X,
z ∈ Y 7→ qf(y),
Q 7→ x where P(x) = qf(Q),

is an isometry.
By Proposition 3.6, it is a well defined map. Moreover, using the injectivity of

q and Proposition 3.6 and eq. (3) we get that φf is an injective map.
Now, recall that since q is a quasi-isometry, two elements q(x1) and q(x2) joined

by an edge in X might be at distance greater than 1 in X. If we want to prove that
φf is surjective on BX(φf(v),RX) and preserves the distance, we have to show that
there exists a radius rP allowing us to “reconstruct” all the edges of BX(φf(v),RX)

in BY(v,RX). Let L, ε > 0 be such that q is a (L, ε)-quasi-isometry. We distinguish
three cases, represented in Figure 11.
If χ1,χ2 ∈ im(q), then let x1, x2 ∈ X such that q(xi) = χi. They verify dX(x1, x2) ⩽
LdX(χ1,χ2) + ε. This case is represented in Figure 11a.
If χ1 ∈ im(q) and χ2 /∈ im(q), let x1 = q−1(χ1). For all x2 ∈ X such that
q(x2) ∈ P(χ2), we have (see Figure 11b)

dX(q(x1),q(x2)) ⩽ 1 + dX(χ1,χ2) ⇒ dX(x1, x2) ⩽ LdX(χ1,χ2) + L+ ε.

If χ1,χ2 /∈ im(q), let xi ∈ X such that q(xi) ∈ P(χi) for i = 1, 2. Then (see
Figure 11b)

dX(q(x1),q(x2)) ⩽ 2 + dX(χ1,χ2) ⇒ dX(x1, x2) ⩽ LdX(χ1,χ2) + 2L+ ε.

Hence, assume rP > LRX + 2L+ ε and let us show that φf is an isometry.
Let χ ∈ BX(φf(v),RX), by choice of rP either χ ∈ im(q) and then there exists

z ∈ BY(y, rP) such that qf(z) = χ or χ /∈ im(q) and then there exists P ⊂ BY(y, rP)
such that qf(P) = P(χ). Hence, in both cases χ ∈ im(φf) and thus, φf is a bijection
from BY(v,RX) to BX(φf(v),RX). Now take v1, v2 in BY(v,RX) at distance l in Y

and let (w0 = v1,w1, . . . ,wl = v2) be a geodesic in Y. By definition of Y and
choice of rP, for all i ∈ {0, . . . , l − 1} if there is an edge between wi and wi+1,
then d(φf(wi),φf(wi+1)) = 1. Hence dX(φf(v1),φf(v2)) ⩽ l. To get the reversed
inequality, take χ1,χ2 in BX(φf(v),RX). Since φf is bijective there exists v0, . . . , vl
in Y such that (φf(v0), . . . ,φf(vl)) is a geodesic between χ1 and χ2. Again, by
definition of Y and choice of rP, an edge between φf(vi) and φf(vi+1) gives an edge
between vi and vi+1 in Y and thus dY(v1, v2) ⩽ l.

Hence, if rP > LRX + 2L+ ε then φf is an isometry.
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4 From one graph to the other

χ2

χ1

(a) First case

χ2

q(x2)

χ1

P(χ2)

(b) Second case

χ2

q(x2)

χ1

P(χ1) q(x1)

P(χ2)

(c) Third case

Figure 11: The three cases (im(q) is represented by the blue vertices)

The LG-rigidity of the building will give us a covering from X to Y. In order to
obtain an isometry we need to prove (by Proposition 2.12) that Y is simply connected
at the same scale as X.
Lemma 4.2

If RX (and hence R) is large enough, then Y is simply connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y is simply
connected at some scale k′. We conclude using the contractibility of the building
and the fact that Y is locally the same as the building. But before looking at the
detail of the proof, let us make a remark.

Remark 4.3. Let P be a print associated to some z ∈ Y and f ∈ A and let y ∈ P.
If x is the source of qf(P), then dY(P,y) = dX(x,qf(y)) = 1.

Proof of Lemma 4.2. Let us show that Y is quasi-isometric to Y. Define π : Y → Y

such that if y ∈ V(Y) then π(y) = y and if P is a print then π(P) = y for some
y ∈ P arbitrarily chosen. Let (v0, . . . , vm) be a geodesic in Y and for all i ∈ {0, . . . ,m}

define yi := π(vi) and fi to be the isometry of A associated to yi. Using that q is
a (L, ε)-quasi-isometry, we get

dY (π(v0),π(vm)) = dY(y0,ym) ⩽
m∑
i=0

dY (yi,yi+1) ,

⩽
m∑
i=0

[LdX (qfi(yi),qfi(yi+1)) + ε] .

Now let i ∈ {0, . . . ,m}. If vi is a print, denote by xi the source of qf(vi) and if vi
belongs to the copy of V(Y) contained in Y let xi := qfiπ(vi). Then dY (vi, vi+1) =

dX(xi, xi+1) for all i. Thus, using remark 4.3, we get

dX (qfi(yi),qfi(yi+1)) ⩽ dX (qfi(yi), xi) + dX(xi, xi+1) + dX (qfi(yi+1), xi+1) ,
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4 From one graph to the other

⩽ 2 + dX(xi, xi+1) = 2 + dY (vi, vi+1) .

Since dY (vi, vi+1) = 1, we obtain

dY (π(v0),π(vm)) = dY(y0,ym) ⩽
m∑
i=0

[L2 + LdY (vi, vi+1) + ε] ,

= (3L+ ε)m = (3L+ ε)dY (v0, vm) .

Now let v, v′ ∈ Y and let (π(v) = z0, . . . ,π(v′) = zl) be a geodesic in Y. For all
i ∈ {0, . . . , l} take f′i ∈ A the isometry associated to zi. Then

dY(v, v′) ⩽ dY(v, z0) +

l−1∑
i=0

dY(zi, zi+1) + dY(zl, v′).

But by remark 4.3 if v (resp. v′) is a print then dY(v, z0) = 1 (resp. dY(v
′, zl) = 1).

And if v (resp. v′) belongs to V(Y) then v = z0 (resp. v′ = zl). Thus both dY(v, z0)

and dY(v
′, zl) are always smaller than 1. Hence,

dY(v, v′) ⩽ 2 +

l−1∑
i=0

dY(zi, zi+1) = 2 +

l−1∑
i=0

dX (qf′i(zi),qf
′(zi+1)) ,

⩽ 2 +

l−1∑
i=0

[LdY(zi, zi+1) + ε] ,

= 2 + (L+ ε)l = 2 + (L+ ε)dY(π(v),π(v′)).

Thus π is a quasi-isometry between Y and Y. Hence Proposition 2.13 implies that
there exists k′ ∈ N∗ such that Y is simply-connected at scale k′.

Finally, let ℓ be loop in Y of length less than k′. If RX is large enough then ℓ

is contained in some ball B in Y. By Lemma 4.1 there exists a local isometry φ

from B to some ball B in X. But φ(ℓ) is contractible inside its convex hull, by
Claim 2.7. In particular it is simply-connected. Since X is 3-simply-connected and
if RX is large enough, the convex hull of φ(ℓ) is contained in the complex obtained
by gluing triangles on all the loops of length 3 in B. Which, by local isometry with
B, proves the wanted assertion.

Thanks to the previous lemma, we can now use the rigidity of the Bruhat-Tits
building.
Proposition 4.4

If RX (and hence R) is large enough, then Y is isometric to X.

Proof. Recall that we have R > rA > 3rP > rP > 3RX + 2L+ ε > RX.
By Theorem 1.13, the building X is LG-rigid. Moreover, since its isometry group is
transitive Proposition 2.12 gives us the existence of some radius Rsc > 0 such that
every graph which is 3-simply connected and Rsc-locally X is isometric to X.
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4 From one graph to the other

By definition of the edges on Y, this graph is simply connected at scale 3. Taking
rP (and hence R) large enough so that RX ⩾ Rsc the preceding paragraph combined
with Lemma 4.1 give us the existence of an isometry between X and Y.

4.2 Change of local map, change of global isometry

Let y ∈ Y and fy ∈ A be the isometry defined on B(y,R). Let

φy :


BY(y,RX) → X

z ∈ Y 7→ qfy(z)

Q 7→ x where P(x) = qfy(Q).
(8)

Lemma 4.5

Let y and z be neighbours in Y and a ∈ H0 such that fyf
−1
z coincide with

a on BX(f(z), rA). If RX is large enough, then φyφ
−1
z coincide with ρ(a) on

BX(φz(z), 2).

Proof. Let y and z be neighbours in Y and a ∈ H0 such that fyf−1
z coincide with a

on BX(f(z), rA). If RX (and hence R) is large enough, then BY(z, 2) is contained in
BY(y,RX). Thus, φyφ

−1
z is well defined on BX(φz(z), 2).

Let v ∈ BY(z, 2). If v ∈ V(Y), then

φy(v) = qfy(v) = qafz(v) = ρ(a)qfz(v) = ρ(a)φz(v).

If v = P with P ⊂ Y a print, then

P
(
φy(v)

)
= qfy(P) = qafz(P) = ρ(a)qfz(P) = P

(
ρ(a)φz(v)

)
,

Thus φy(v) = ρ(a)φz(v), since the print determines the vertex. Hence the result.

Now let rX > 0. If RX is large enough then, by SLG-rigidity of X there exists
an isometry ιy from Y to X that coincides with φy on B(y, rX). Thus, the lemma
above allows us to work with a set of isometries from Y to X that differs only by a
multiplication by an element of PSLn(K).

Lemma 4.6

If y and z belong to Y and RX is large enough, then ιyι
−1
z ∈ PSLn(K). Hence

for all y ∈ Y, the isometry ιy sends the copy of V(Y) contained in Y to im(q)

and sends prints contained in Y to vertices in X\im(q).
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4 From one graph to the other

Proof. Let y and z be neighbours in Y. Since ιyι
−1
z is an isometry of X it permutes

the PSLn(K)-orbits. Recall that ιy coincides with φy on B(y, rX). Hence, if rX (and
hence R) is large enough, then BY(z, 2) is contained in BY(y, rX), thus(

ιyι
−1
z

)
|BX(ιz(z),2)

= φyφ
−1
z .

But φyφ
−1
z coincides with an element of PSLn(K) on BX(φz(z), 2), by Lemma 4.5.

Hence ιyι
−1
z restricted to a ball of radius 2 preserves the PSLn(K)-orbits. Since such

a ball contains a vertex of each type, it implies that ιyι
−1
z preserves the PSLn(K)-

orbits and thus belongs to PSLn(K).
Now take y and z in Y (not necessarily neighbours). Let (y0 = y,y1, . . . ,yl = z)

be a geodesic in Y. By the preceding paragraph, there exists a sequence α1, . . . , αl

of elements in PSLn(K) such that

∀i ∈ {1, . . . , l} ιyi
ι−1
yi−1

= αi.

Thus, recalling that z = yl and y = y0, we get ιz = αl · · ·α1ιy. Which proves the
first assertion of the lemma.

Let us now prove the second part of the lemma. Let y ∈ Y and v ∈ Y. There
exists z ∈ Y such that v ∈ BY(z, 2), and using the paragraph above, there exists
α ∈ PSLn(K) such that ιy = αιz. In particular, since v belongs to BY(z,RX),

ιy(v) = αιz(v) = αφz(v).

By definition of φz, if v ∈ V(Y) then φz(v) belongs to im(q) and if v = P with
P ⊂ Y a print, then φz(v) belongs to X\im(q). This finishes the proof of the
lemma.

Now we have all the tools we need to prove the isometry between Y and X.

4.3 Isometry from Y to X

Let κ be the natural injection of Y in YZ and ι an isometry given by Proposition 4.4.
With the objects constructed so far we get the diagram in Figure 12.

X

Y
y

R-loc

Y
κ(y)

X
q

ι, isom.

κ

(a) Maps between graphs

Isom(X)
ρ(a)

PSLn(K)

Isom(X)
a

ρ

H0

(b) Relations between groups

Figure 12: Relations between the different graphs and groups
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4 From one graph to the other

The aim of this section is to prove the following result.
Proposition 4.7

For RX large enough, the graphs Y and X are isometric.

Let us discuss the strategy of the proof. Using the preceding section, we chose an
isometry ι from Y to X that coincides with a φy on a small ball. Then, we show that
κιq−1 is locally an isometry, viz. there exists a radius rY such that q−1ικ restricted
to any ball of radius rY preserves the distance. We conclude by showing that it
forces κιq−1 to be an isometry.

Proof of Proposition 4.7. By Lemma 4.6, for any y ∈ Y the map q−1ιyκ is well
defined. Now fix y0 ∈ Y and consider ι := ιy0 . We want to prove that q−1ικ

restricted to small balls preserves the distance. Then we will show that it is an
isometry from Y to X.

Claim 4.8. Let y ∈ Y and rY ⩾ 1. If R is large enough, then q−1ικ restricted to
BY(y, rY) preserves the distance.

Proof of the claim. Let rY ⩾ 1 and recall that we have R > rA > 3rP > rP >

3RX + 2L+ ε > RX > rX. Let y ∈ Y and recall that L and ε are constants such that
q is a (L, ε)-quasi-isometry. If rX ⩾ LrY + ε (and hence if R is large enough) then
κ(BY(y, rY)) is included in BY(y, rX). Indeed if z ∈ BY(y, rY) then

dX

(
qfy(y),qfy(z)

)
⩽ Ld

X

(
fy(y), fy(z)

)
+ ε = LdY(y, z) + ε ⩽ LrY + ε ⩽ rX.

Thus φy(κ(z)) = qfy(z) and

dY

(
κ(y), κ(z)

)
= dX

(
φy

(
κ(y)

)
,φy

(
κ(z)

))
= dX

(
qfy(y),qfy(z)

)
⩽ RX.

Now, recall that H0 = ρ−1PSLn(K). Then, by Lemma 4.6 there exists ay ∈ H0

such that ιyι
−1 = ρ(ay). Hence, using the equivariance of q we get that for all z1

and z2 in BY(y, rY)

dX

(
q−1ικ(z1),q−1ικ(z2)

)
= dX

(
ayq

−1ικ(z1),ayq
−1ικ(z2)

)
= dX

(
q−1ρ(ay)ικ(z1),q−1ρ(ay)ικ(z2)

)
= dX

(
q−1ιyκ(z1),q−1ιyκ(z2)

)
.

But z1 and z2 belong to BY(y, rY), hence for i = 1, 2 we have ιyκ(zi) = qfy(zi).
Thus,

dX

(
q−1ικ(z1),q−1ικ(z2)

)
= dX

(
q−1qfy(z1),q−1qfy(z2)

)
= dX

(
fy(z1), fy(z2)

)
= dY(z1, z2).

Thus q−1ικ restricted to BY(y, rY) preserves the distance.
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5 Application to p-adic lattices

Let’s show that the claim forces q−1ικ to be an isometry from Y to X. Take
rY ⩾ 2 and let y,y′ ∈ Y and (y0 = y,y1, . . . ,yl = y′) be a geodesic in Y.
Since for all i the vertices yi and yi+1 are adjacent, then Claim 4.8 implies that
dX(q

−1ικ(yi),q−1ικ(yi+1)) = 1. Hence

dX

(
q−1ικ(y),q−1ικ(y′)

)
⩽

l−1∑
i=0

dX

(
q−1ικ(yi),q−1ικ(yi+1)

)
= l.

Moreover, if (x0 = q−1ικ(y), x1, . . . , xm = q−1ικ(y′)) is a geodesic in X, then
by bijectivity of q−1ικ there exists zi ∈ Y such that q−1ικ(zi) = xi for all i in
{1, . . . ,m − 1}. Denote z0 = y and zm = y′. Since for all i the vertices xi and xi+1

are adjacent, then Claim 4.8 implies that dX(zi, zi+1) = dX(q
−1ικ(zi),q−1ικ(zi+1)).

Thus

dY(y,y′) ⩽
m−1∑
i=0

dY(zi, zi+1) =

m−1∑
i=0

dX

(
q−1ικ(zi),q−1ικ(zi+1)

)
,

=

m−1∑
i=0

dX(xi, xi+1) = m.

We conclude by the proof of Theorem 1.18.

Proof of Theorem 1.18. Let n ̸= 3 and X verifying the hypothesis of Theorem 1.18.
If n = 2 then X is the (p + 1)-regular tree, thus by Example 1.5 if X is quasi-

isometric to X then X is LG-rigid.
If n ⩾ 4, let k ∈ N such that X is simply connected at scale k. Then by

Proposition 4.7 for R large enough, any k-simply-connected graph Y being R-locally
the same as X is isometric to X. Thus X is LG-rigid. Finally for any n ̸= 3, since X

is assumed transitive it is actually SLG-rigid by Proposition 1.8.

5 application to p-adic lattices

In this section we prove Theorem 1.17 which we recall below.

Corollary 5.1
Let n ̸= 3 and K be a non-Archimedean skew field of characteristic zero.

The torsion-free lattices of SLn(K) are SLG-rigid.

Let n ̸= 3, let K be a non-Archimedean skew field of characteristic zero and
Γ ⩽ SLn(K) be a lattice without torsion. Denote by (Γ ,S) one of its Cayley graphs.
Recall that any lattice in SLn(K) is uniform (i.e. cocompact).
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5.1 Quasi-isometry between the lattice and the building

To show the corollary, we first check that the lattice is quasi-isometric to the building.
Then, using a famous result of Kleiner and Leeb we show that the isometry group
of the lattice acts on the building and that the quasi-isometry can be chosen to be
equivariant under this action.

Lemma 5.2

Let Λ be a lattice of SLn(K). Then Λ is quasi-isometric to X.

Proof. First, recall that any lattice in SLn(K) is uniform, viz. cocompact (see for
example [BQ14]).

Since Λ is a lattice of SLn(K), there is a natural action on the Bruhat-Tits
building induced by the action of PSLn(K). Moreover, since Λ is cocompact and
the PSLn(K) action has exactly n orbits, the Λ action is also cocompact. Hence by
the Svarc-Milnor’s lemma Λ is quasi-isometric to X.

By a result of Kleiner and Leeb [KL97] and Cornulier [Cor18, Theorem 3.B.1]
applied to our lattice Γ , this quasi-isometry implies the existence of a homomorphism
from Isom(Γ ,S) to Isom(X) and a quasi-isometry from (Γ ,S) to X which is Isom(Γ ,S)-
equivariant. Since Γ is assumed to be torsion-free, we can refine the informations
about these two applications.

Lemma 5.3

Let Λ be a lattice of SLn(K) and T a symmetric generating set. If Λ is torsion-
free, then there exists an injective homomorphism

ρ : Isom(Λ, T) → Isom(X),

and an injective quasi-isometry which is Isom(Λ, T)-equivariant

q : (Λ, T) → X.

Proof. Since we assumed that Λ has no torsion element, by Proposition 1.20 the
isometry group of (Λ, T) contains no non-trivial compact normal subgroup. Hence
the morphism ρ given by Kleiner-Leeb’s theorem is injective.

Assume that there exist λ1, λ2 ∈ Λ such that λ1 ̸= λ2 and q(λ1) = q(λ2). Then,
the equivariance of q implies that

q
({(

λ1λ
−1
2

)n
: n ∈ N

})
= {q (e)} ,

which contradicts the fact that q is a quasi-isometry.
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5.2 Relation between the isometry groups

To apply Theorem 1.18, we still need to check that Isom(Γ ,S) is of finite index in
Isom(X). As stated in the lemma below, this is not always the case: the lattice’s
isometry group can also be discrete. But as we will see in Section 5.3 we will be
able to prove the rigidity of the lattice in that case too.
Lemma 5.4

Using the previous notations,
• Either Isom(Γ ,S) is discrete.
• Or Isom(Γ ,S) is of finite index in Isom(X) and contains PSLn(K).

Before proving this lemma, let us recall a useful consequence of a theorem of Benoist
and Quint. The original and more general statement can be found in [BQ14, Corol-
lary 4.5].
Proposition 5.5 (Benoist, Quint [BQ14])

Let G be p-adic Lie group and H be a finite covolume closed subgroup of G,
with Lie algebra h. If G has no proper cocompact normal subgroup, then G

normalizes h.

Proof of Lemma 5.4. Let G = PSLn(K) and H = Isom(Γ ,S) ∩ G and note h =:

Lie(H) and g := Lie(G) their respective Lie algebras. Since Γ is a lattice in SLn(K),
we get that ρ(Γ) ∩ PSLn(K) is a lattice in PSLn(K). Hence H contains the uniform
lattice ρ(Γ) ∩G of G, thus H has finite covolume in PSLn(K).
If K is a non-Archimedean local skew field of characteristic zero then it is an ex-
tension of Qp for some prime p (see for example [dlST16, Section 1]). In particular
G is a p-adic Lie group. Thus the above property applied to G and H implies that
G normalises h, in other words h is an ideal of g. Since g is simple, we get that
h is either trivial or the full Lie algebra g. If Isom(Γ ,S) isn’t discrete, then it is a
closed subgroup of Isom(X). Hence H is a closed subgroup of G and its Lie algebra
is non-trivial. By the previous point it can only be g. Hence, it implies that H is
an open subgroup of G. Since it is also cocompact, it is necessarily of finite index
in G. Thus, we get that ρ (Isom(Γ ,S)) is of finite index in Isom(X).

Let’s show that PSLn(K) ⩽ ρ (Isom (Γ ,S)). First assume that ρ(Isom(Γ ,S)) is
strictly contained in PSLn(K). Since these two groups are of finite index in Isom(X),
we get that ρ (Isom(Γ ,S)) is of finite index in PSLn(K). But then the core:⋂

g∈PSLn

g · ρ (Isom(Γ ,S)) · g−1

of ρ (Isom(Γ ,S)) is itself of finite index in PSLn(K) (and different from PSLn(K)),
which contradicts the simplicity of PSLn(K).

Now, let’s go back to the general case. Assume that PSLn(K) isn’t included in
ρ(Isom(Γ ,S)) and remark that:

h = Lie (Isom(X)) = Lie (PSLn(K)) .
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In particular ρ(Isom(Γ ,S)) is “locally” PSLn(K) so, up to apply what precedes to an
open set centered on eΓ sufficiently small of ρ(Isom(Γ ,S)), we obtain a contradiction.
Hence PSLn(K) is contained in ρ(Isom(Γ ,S)).

5.3 Rigidity of p-adic lattices

We conclude by the proof of Corollary 5.1.

Proof of Corollary 5.1. Let n ̸= 3 and p be a prime. Let Γ be a torsion-free lattice
of PSLn(K) and S be a symmetric generating part.
If n = 2, then X is the (p + 1)-regular tree. Since by Lemma 5.2, the graph (Γ ,S)
is quasi-isometric to X, Example 1.5 implies that (Γ ,S) is LG-rigid.

Assume now that n > 3. If Isom(Γ ,S) is discrete the LG-rigidity of the lattice
is given by Theorem 1.9.
If Isom(Γ ,S) is non-discrete, then by Lemma 5.4 it has finite index in Isom(X) and
in this case the hypothesis of Theorem 1.18 are satisfied, hence the rigidity of the
lattice.

Finally, for all n ̸= 3 the lattice Γ acts transitively on (Γ ,S) thus, by Proposi-
tion 1.8, it is SLG-rigid.

6 conclusion and open problems

Our main result is proved for graphs quasi-isometric to the Bruhat-Tits building
of PSLn(K) and the key idea of the proof is to use the rigidity of this building
to “transfer it” to the graph quasi-isometric thereto. One can ask wether we can
generalize this idea to other LG-rigid graphs.

Question 6.1. Let G be quasi-isometric to a LG-rigid graph H, both having cocom-
pact isometry group. If the quasi-isometry is Isom(G)-equivariant, is G LG-rigid?

Remark that if H and G are two Cayley graphs of the same group, we can chose H
to be LG-rigid and G to be non-rigid (see the discussion below Counter-example 1.6
for more details). In that case the hypothesis of the preceding question are satisfied
without G being LG-rigid. Thus, more restrictive hypothesis will be needed to get
the rigidity of G.

Our result on lattices is proved for n ̸= 3; when n = 3 we don’t know (yet)
the answer. Indeed, our proof is based on the rigidity of the Bruhat-Tits building
of PSLn(K), a result known to be true only for n ̸= 3. In the n = 3 case, a lot
of flexibility seems to be allowed (see for example [BP07]) obstructing any local
recognizability result. Hence the following question:

Question 6.2. Are torsion-free lattices of SL3(K) LG-rigid?

Lattices in p-adic Lie groups can be viewed as particular cases of S-arithmetic
lattices.
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6 Conclusion and open problems

Definition 6.3
Let S be a set of prime.
We say that Γ is an S-arithmetic lattice if it’s a lattice in a product of the form∏

i Gi where Gi is either a real Lie group or a p-adic Lie group for p ∈ S.

Hence, one we can ask what happens in that more general case.

Question 6.4. Are torsion-free S-arithmetic lattices LG-rigid?

A result by Bader, Furman and Sauer [BFS20, Theorem B] can be used to
deal with irreducible torsion-free S-arithmetic lattices. Indeed, if the product

∏
i Gi

contains at least a non-compact real factor, then the aforementioned theorem implies
that the isometry group of a Cayley graph of Γ is discrete. Thus, by Theorem 1.9
the lattice is LG-rigid. Now, if the product contains a compact real factor then
the isometry group of the Cayley graph might not be discrete and in that case, the
problem is still open.

When the lattice is reducible, we now know that the projection on the p-adic
factors gives LG-rigid lattices. Moreover, if we suppose the real factors to be simple
and connected, then a result by de la Salle and Tessera [dlST19] shows that the
projection on these factors are also LG-rigid. Hence it remains to understand how
to combine these results on the factors in order to get a result on the product.
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Notations

notations index

A Atlas of isometries from Y to X.
A An apartment in X.
(Γ ,S) Cayley graph of Γ with respect to the generating part S.
H0 The group ρ−1(PSLn(K)).
Isom(G) Isometry group of G.
ιy Isometry from Y to X based at y (see page 26).
κ Natural injection of Y in Y (see Section 4.3).
[L] Class modulo homothety of the lattice L.
P(x) The print of the vertex x (see Definition 3.3).
P A print in Y (see Definition 3.13).
φy Local isometry from Y to X based at y (see eq. (8)).
q Quasi-isometry between X and X.
R Radius such that Y is R-locally the same as X.
ρ Injective homomorphism from Isom(X) to Isom(X).
rA See Lemma 3.11.
rP Radius considered to define prints (see Definition 3.13).
RX Radius such that Y is RX-locally X.
rX Radius such that ιy coincide with φy on BY(y, rX) (see page 26).
rY See Claim 4.8.
τ(x) The type of the vertex x, where x belongs to the Bruhat-Tits building of

PSLn(K).
X The Bruhat-Tits building of PSLn(K).
Y Hybrid graph built to be locally the same as the building (see Section 3.4).
(y1, . . . ,yl) A path of adjacent vertices y1, y2, . . . , yl.

Amandine Escalier
Université Paris Cité and Sorbonne Université,
CNRS, IMJ-PRG,
F-75013 Paris
France

G 35 g


	Introduction
	Framework
	Bruhat-Tits building
	Large scale simple connectedness
	Extension of isometries
	Preliminary results on the studied graph

	Tracking vertices through their prints
	Prints in a building
	Atlas of local isometries
	Prints in Y
	A building’s replica

	From one graph to the other
	Isometry with the building
	Change of local map, change of global isometry
	Isometry between Y and X

	Application to p-adic lattices
	Quasi-isometry between the lattice and the building
	Relation between the isometry groups
	Rigidity of p-adic lattices

	Conclusion and open problems
	References
	Notations

