

CALCULATING STEAM-WATER FLOWS AT LARGE NON-CONDENSIBLE GAS CONCENTRATION WITH SEVERE ACCIDENT CODE ASTEC V2.2

J-A. Zambaux, L. Laborde, P. Ruyer julie-anne.zambaux@irsn.fr

Presentation Outline

Introduction and modelling specificities

First Experiment : Pool evaporation

Second Experiment : Global scale behaviour of a test reactor accident in cold shutdown conditions

Conclusions

Introduction

- Flows with high concentration of non-condensible gas are a common occurrence in nuclear facilities, often associated with low pressure, low temperature and low velocities conditions :
 - Spent fuel pools
 - Open reactor conditions during cold shutdown (planned reactor shutdown for fuel rod changing or maintenance on steam generators for example)...

These applications are a growing issue for safety analysis (low power situations but few safety systems available)

Challenging numerical issue for system codes such as ASTEC v2.2 (interfacial heat transfer evaluation)

In the example, **global** vapour molar fraction f_v is very low (close to 0) while **local** value is close to 1 at the interface. Considering global concentration is not appropriate:

- Numerical issues (due to properties evaluation)
- Results accuracy?

Introduction

Several changes in ASTEC v2.2 towards calculating this kind of applications

 Default momentum equation system changed from a one fluid model with a drift correlation to a two fluid model

>Better representation of low velocities out of equilibrium two phase flows

- Improvement of the interfacial heat transfer evaluation with presence of noncondensible gas
 - The local vapour composition at liquid-gas interface is used instead of the global one (as large volumes are considered, the global vapour fraction may not be representative of interface conditions)

 \rightarrow Solves numerical issues and improves results accuracy

First Experiment : Pool evaporation

Experimental set-up and dataset

Martin and Migot, NURETH-18 (2019)

- 2D axi-symmetric mesh possible in ASTEC
- External adiabatic wall
- Heated wall at the bottom
- Fixed pressure boundary condition at the top

Data	Tank 5
Cross-section (m ²)	0.056
Tank Depth (m)	0.18
Init. Water Mass (kg)	7.46
Init. Water Temp. (K)	295.75
Air Temp. (K)	296.85
Relative Humidity (%)	40

IRSN

First Experiment : Pool evaporation

Results analysis

- Full boiling is achieved significantly earlier in the calculations (~2800 s vs ~5500 s)
- Reduced temperature gradient compared with the experiments

First Experiment : Pool evaporation

Mesh Effect

IRS

- Axial direction → convergence to mesh achieved for 10 cells
- Radial direction → clear effect of the 2D loop

Results improvement directions

- Modifications in regular friction between cells + pressure boundary condition → significant results difference
 - ➔ Investigations and assessment of these parameters needed
- Very sensitive to singular pressure drop definition
- Viscosity effect on the loop development (especially for more than 2 radial cells meshes)
- Real 2D thermal-hydraulic (1D flow in both directions for now)

Second Experiment : Cooling loss accident with open and partly drained reactor

- No secondary system (isolated during experiments)
- No safety system except gravity led discharge tank
- N2 used to represent air in the experiments
- Initial conditions : open at pressurizer manhole and partly drained reactor

Second Experiment

- Initial state reached through first calculation
 - From a full of water state, system is drained till initial water mass and level is reached
 - First calculation stopped when stabilised steady state is reached
- Scenario for the transient sequence
 - Loss of cooling → core power is increased
 - Counter-pressure in the containment is increased during the test
 - Gravity led discharge pool availability varies

Time

Time

- Retention of water in the pressurizer was an important point in the experiment and is correctly predicted by the calculation
- However, globally, over-estimation of water amount remaining in the pressurizer

- Global behaviour follows the experimental trend
- Too much water in the primary system (although same liquid mass discharged through manhole and same injected mass) → evaporation process seems under-estimated
- Uncertainties concerning the upper plenum area (above the core) → 1D representation / here pool evaporation like area

Conclusions

- It is possible to perform ASTEC v2.2 calculations with high quantity of non-condensible gas, low pressure and temperature conditions and low velocities (far from severe accidents system codes usual working conditions)
- It is also possible to calculate natural convection loop in 2D-axisymmetric mesh with ASTEC v2.2 although lack in current modelling have been highlighted through First Experiment calculation (pool evaporation study)
- Though improvements are still needed global behaviour on reactor scale experiment is satisfactory
 - Studies of reactor accident in cold shutdown state can be considered with ASTEC v2.2

