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Cloud computing has become an essential component of our digital society. Efforts for reducing its environmental impact are being made by academics and industry alike, with commitments from major cloud providers to be fully operated by renewable energy in the future. One strategy to reduce nonrenewable energy usage is the "follow-the-renewables", in which the workload is migrated to be executed in the data centers with the most availability of renewable energy. In this paper, we study the indirect impacts on the energy consumption caused by the additional load in the network generated from the live migrations of the "follow-the-renewables" approaches. We then provide an algorithm that thoroughly considers the network to schedule the live migrations and, combined with an accurate estimation model for the duration of the migrations, is able to perform the live migrations without network congestion with the same or even reducing the brown energy consumption in comparison to other state-of-the-art algorithms.

INTRODUCTION

Cloud infrastructures became a critical component of society in the last decade, from private life to big company development. The energy efficiency of these platforms has been widely studied and improved by academics and Cloud providers [START_REF] Muralidhar | Energy efficient computing systems: Architectures, abstractions and modeling to techniques and standards[END_REF]. This progress, however, did not lead to a reduction of global Cloud energy consumption. In [START_REF] Masanet | Recalibrating global data center energy-use estimates[END_REF], authors estimate the growth of Data Centers (DCs) needs between 2010 and 2018 to a 10-fold increase in IP traffic, a 25-fold increase in storage capacity, and a 6-fold increase of DCs workload. The impact of this explosion of usages has thus been limited by efficiency improvement of platforms to an energy increase of only 6%. Projections over the following years are, however, quite pessimistic. In [START_REF] Koot | Usage impact on data center electricity needs: A system dynamic forecasting model[END_REF], authors consider different scenarios for the period 2016-2030, with predictions ranging between a wavering balance and a significant increase in electricity needs.

These predictions consider big trends in IT, but they do not embrace unpredictable events, such as the COVID pandemic, and particularly the lockdown periods, that overturned the global Information Technologies (IT) usages [START_REF] Feldmann | The lockdown effect: Implications of the covid-19 pandemic on the internet traffic[END_REF].

Another approach to reducing the environmental impact of cloud computing energy needs consists of studying DCs' energy sources. Most Cloud providers have made commitments to renewable energy usage in recent years. According to a Greenpeace report, (Greenpeace, 2017), many DCs were already fully supplied by renewable energy in 2017. However, they are not the majority of cases. A typical example is the IT infrastructures of Virginia, which are named the "Ground zero for the Dirty Internet", with 2% of renewable energy power plants against 37% of coal. They are known to host 70% of US internet traffic. Green computing is still chimerical.

A critical question on renewable energy production facilities is their intermittency. Hydroelectric dams and, to a certain extent, offshore windmills can provide constant energy. However, they are not appropriate for on-site electricity production for a DC. Onshore windmills and solar farms are more likely to be deployed with minimal constraints. The on-site electricity production is thus determined by local weather. In contrast to wind speed, which can be difficult to predict, solar irradiance follows daily and yearly patterns. Photovoltaic (PV) panels are thus more appro-priate for predictable on-site renewable energy production facilities.

The work by [START_REF] Camus | A stochas-tic approach for optimizing green energy consumption in distributed clouds[END_REF][START_REF] Camus | Network-Aware Energy-Efficient Virtual Machine Management in Distributed Cloud Infrastructures with On-Site Photovoltaic Production[END_REF] studied the allocation of virtual machines (VMs) to physical resources on geographically distributed DCs (also described as multi-clouds in the literature) powered by solar panels and the regular electrical grid and is the basis of this work. It proposed different stochastic models to estimate renewable energy production and greedy heuristic algorithms to allocate VMs to physical resources meeting the workload demands. VMs are allowed to be migrated during the execution either to a computer within the same DC or to a computer in another geographic location. The algorithms proposed to allow server consolidation intra-DCs and a "follow-the-renewables" approach inter-DCs. The scheduling algorithm considers the network cost of the migration.

This paper presents an extension of this work to analyze the indirect impact of network usage on the energy consumption in multi-clouds for "follow-therenewables approaches". The direct impact is caused by the use of the network devices themselves. However, as shown in [START_REF] Hlavacs | Energy Consumption of Residential and Professional Switches[END_REF] the energy consumption of a network device does not change significantly based on its usage, and it can be considered static. The indirect impact is generated by migrating the VMs. Furthermore, the duration of a migration can be impacted by network congestion, resulting in unnecessary computation on both the origin and the target server. For the first, it can be turned off or allocated to another computation only after the migration finishes. For the latter, it will only start executing the new VM after the end of the migration process.

The paper is organized as follows. Section 2 is devoted to the related work. In Section 3 the model of [START_REF] Camus | Network-Aware Energy-Efficient Virtual Machine Management in Distributed Cloud Infrastructures with On-Site Photovoltaic Production[END_REF] is summarized. Section 4 details the new scheduling method for the migrations, while Section 5 is devoted to simulations parameters. Results are detailed in Section 6. Finally, Section 7 concludes the paper.

RELATED WORK

Reducing the total energy consumption and carbon footprint of DCs is a major goal for Cloud Computing platforms. Virtualization allows DCs to employ intelligent resource allocation and scheduling algorithms to optimize how the underlying computing resources are used and to reduce the number of utilized physical resources. In particular, DCs can apply VM consolidation techniques in order to relocate the VMs into the smallest number of physical machines and turn off the idle machines. [START_REF] Dias | A systematic literature review on virtual machine consolidation[END_REF] present a systematic literature review on such techniques.

Large hosting and Cloud Computing providers have DCs distributed on different geographic locations-some of them on different time zones-in order to provide services with low latency and high availability. Scheduling algorithms can take advantage of this to mitigate the intermittent availability of renewable energy by redistributing the workload based on renewable energy availability. This idea is known in the literature as the "follow-the-renewables" [START_REF] Shuja | Sustainable cloud data centers: a survey of enabling techniques and technologies[END_REF]. [START_REF] Xu | Managing renewable energy and carbon footprint in multi-cloud computing environments[END_REF] present a comprehensive overview of the classical techniques used for reducing the energy consumption on DCs. They also introduce a workflow shifting algorithm that redistributes the workload among different DCs located in different time zones. The objective of their algorithm is to minimize the total carbon emission while ensuring the average response time of the requests. In their work, jobs are initiated in the selected DCs instead of migrated after starting its execution, and there is no server consolidation.

Minimization of energy consumption, costs, and environmental impact while ensuring the workload performance were studied by [START_REF] Ali | Followme@ls: Electricity price and source aware resource management in geographically distributed heterogeneous datacenters[END_REF]. They proposed a solution that manages geographic distributed DCs with heterogeneous servers in a distributed fashion. The solution has two main algorithms that use greedy heuristics: the first performs the allocation of the incoming workload to the servers of the DCs according to a defined policy (lower energy prices or more available green power); and the second either migrate the workload only among the servers inside a DC (intra-DC migration) to reduce the number of utilized servers, or migrate the workload among different DCs (inter-DC migration) according to an arbitrary policy (use the DCs with lower electricity price, or more green power available). The migrations in the second algorithm can result in a decrease in performance, given that a task could be migrated to a server that is not as powerful as the one where it was running before being migrated, and the proposed solution considers this metric.

"Follow-the-renewables" is an interesting solution for mitigating the intermittency of renewable energy availability, but it also has limitations. First, the process of migrating a VM between different DCs consumes energy itself. The scheduling algorithm must consider this energy consumption before deciding if the migration is advantageous. Second, the network communications links between the DCs can suffer from contention, which may increase the execution time of the jobs, migration duration, and costs. An ef-ficient scheduling algorithm must consider those factors to decrease the carbon footprint of the DCs operations.

The following sections will present the study of these limitations and details of how the proposed scheduling algorithm handles them.

THE NEMESIS MODELING

NEMESIS [START_REF] Camus | Network-Aware Energy-Efficient Virtual Machine Management in Distributed Cloud Infrastructures with On-Site Photovoltaic Production[END_REF]) is a resource management framework with a central controller that manages a Cloud composed of DCs geographically distributed across a country. The Cloud workload consists of heterogeneous VMs in terms of the number of cores, RAM size, and requested execution time. The Cloud infrastructure is supplied from the regular electrical grid and locally installed PV panels. Given the intermittency of renewable energy, the NEMESIS algorithm uses the stochastic modeling of SAGITTA [START_REF] Camus | A stochas-tic approach for optimizing green energy consumption in distributed clouds[END_REF] for obtaining the expected value of the renewable energy available at a given time to be used as input for the scheduling algorithms.

The workload execution is scheduled at time slots of 5 minutes, and it uses greedy heuristics inspired by the Best-Fit algorithm. While not resulting in the optimal solution, greedy heuristics can provide an acceptable result in a reasonable amount of time. The scheduling algorithm has four main steps detailed as follows.

In the first step of the algorithm (pre-allocation of the incoming VMs), for each VM received during the time slot, the controller will try to allocate it to a server. There are two restrictions for this scheduling algorithm: i) the server has available computational resources to host the VM; and ii) executing the VM in this server would result in the minimum increase in the expected brown energy consumption. If a server is found, the algorithm makes a reservation (pre-allocation) for the VM being processed and goes to the next VM. If no server is found, the VM will be delayed to be processed in the next time slot.

The greedy heuristics used in the last step of the algorithm may not provide the optimal solution. Hence, the second step of the algorithm (revision of the pre-allocations) performs a revision of the reservations. The strategy is to move the reservation from the DCs expected to consume more brown energy to the DCs expected to have the most availability of green energy. There are two constraints for this algorithm: it exists a host in the DC being evaluated that can host the VM and the expected brown energy is reduced.

The availability of green energy may change during the execution of the VMs, and the third step of the algorithm (migration of the running VMs) evaluates if migrating the workload in execution reduces the brown energy consumption. It uses the same strategy as the previous step of the algorithm, moves the workload from DCs using more brown power to DCs that have more green power available, and with the following restrictions: i) the migration needs to finish during the considered time slot; ii) the VM will keep running at least until the end of its migration; iii) one DC can only migrate to another 2 DCs during a time slot; and iv) the migrations from one DC are planned to execute one after another, that is, they cannot happen simultaneously in parallel. Restrictions (iii) and (iv) are simple heuristics to avoid network congestion with the load generated by the VM live migrations.

The energy cost of the servers represents about 50% of the total energy consumption of a DC [START_REF] Frazelle | Power to the People[END_REF], and the final step of the algorithm (server consolidation) tries to minimize the number of servers that are turned on. For each DC, the algorithm evaluates whether it can redistribute the running VMs (by performing live migrations among the servers of the DC -intra-DC migrations) in a way that reduces the number of servers being used.

Cloud Modeling

The Cloud modeling of NEMESIS is based on a real Cloud infrastructure: the Grid'5000 testbed1 . It models 1035 servers distributed among 9 DCs in France and Luxembourg: 116 servers in Grenoble; 74 servers in Lille; 38 servers in Luxembourg; 103 servers in Lyon; 240 servers in Nancy; 44 servers in Reims; 129 servers in Rennes; 151 servers in Sophia Antipolis; and 140 servers in Toulouse. These servers are considered homogeneous in terms of memory, CPU, and energy consumption, and are based in the Taurus node of the Grid'5000, equipped with two Intel Xeon E5-2630 CPUs (6 cores per processor), and 32 GB RAM.

The servers inside the DCs are interconnected by network links with 1 Gbps of bandwidth, and the network links that interconnect the different DCs have 10 Gbps. Figure 1 presents the network topology of the cloud platform, and the placement of the DCs was not based on their geographic location, but to better visualize the network links. It is important to notice that some network links are shared by multiple DCs, thus the migration planning needs to consider this information to avoid generating network congestion and the resulting waste of resources.

Regarding the energy consumption of the servers, a linear model based on CPU usage is considered. The server presents a fixed consumption for its IDLE state Figure 1: Topology of the Cloud platform, where "GRE" is Grenoble, "LIL" is Lille, "LUX" is Luxembourg,"LY" is Lyon, "NCY" is Nancy, "RMS" is Reims, "RNS" is Rennes, "SPH" is Sophia, and "TLS" is Toulouse.

(97 W), and the power consumption based on core usage is as follows: 128 W for 1 core; 146.4 W for 2 cores; 164.8 W for 3 cores; 183.2 W for 4 cores; 201.6 W for 5 cores; and 220 W with 6 cores. Furthermore, the energy consumption of turning on a server (127 W during 150 s), turning off a server (200 W for 10 s), and when the server is off (8 W) are modeled as well. Finally, only the power consumption of the servers is considered to model the power consumption of the DCs (Power Usage Effectiveness, or P.U.E., equals to 1), as we are focusing on the energy consumption of the computing part -the major consumer. Choosing a P.U.E. different than 1 would not affect the scheduling decisions made by the migration planning algorithm (supposing that we consider a homogeneous P.U.E for all the DCs), since only the total power consumption would be increased by a constant factor, and the ordering of the DCs in terms of green energy availability would be the same.

VM live migration model

The VM live migration model of NEMESIS has 3 phases: i) transferring all the memory pages of the VM; ii) sending a message to notify the end of the stop-and-copy step (end of finishing copying all the memory pages); iii) sending the commitment message (after which the VM will be destroyed in the server of origin and resumed in the destination host). The duration of the migration is essential for the scheduling, and Algorithm 1 executes this estimation, where: lin-kLatency is the latency of the link; routeSize is the number of links that interconnects the host where the VM is originally running to the target host of the migration; windowSize = 4,194,304 Bytes, is the TCP maximum window size; bandWidthRatio = 0.97, represents the additional load caused by the headers of TCP/IP; bandwidth = the minimum bandwidth among the links that interconnect the host of origin with the target host; α = 13.01, simulates the TCP slow start factor, that is, not all the bandwidth is instantly available for the communication; and γ is used to represent the Bottleneck effect of the TCP protocol.

The parameters used in Algorithm 1 were based on [START_REF] Velho | On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations[END_REF]. The difference between Algorithm 1 and NEMESIS is the routeSize variable: NEMESIS used fixed values (5 for live migrations intra-DC, and 11 for live migrations inter-DC), and now is supposed that the DC operator has information about the network topology of his DC, thus the real number of links that interconnect the two hosts is used.

Algorithm 1 Estimation of the migration duration.

theLatency ← linkLatency • routeSize trans f erLat ← theLatency + γ bandwidth throughputL ← windowSize 2•trans f erLatency throughputB ← bandwidth throughput ← min(throughputL,throughputB) throughput ← throughput • bandWidthRatio timeToMigrate ← 3 • α • trans f erLat + vmRamSize throughput

PLANNING THE MIGRATIONS

Algorithms 2 and 3 plan the migrations considering the bandwidth usage. They are inspired in the migration planning of NEMESIS, with the following modifications: i) the bandwidth of the links, and the history of its usage is considered; ii) migrations are performed in parallel between DCs; iii) the intra-DC migrations do not execute simultaneously and are distributed in time; iv) the estimation algorithm for the duration of migrations consider the real number of links that interconnects the origin and the target server. This new algorithm is called c-NEMESIS, where the "c" stands for congestion and its full name is "Congestion and Network-aware Energy-efficient Management framework for distributEd cloudS Infrastructures with on-Site photovoltaic production".

First, the DCs are sorted by increasing order of expected remaining green energy (ERGE). The main idea of the algorithms is to migrate VMs from the DCs that have the least amount of green energy to the DCs that have the highest availability, that is, mi-grating from the DCs at the beginning of the list to the ones at the end of the list. For each DC, the running VMs information is collected (grouped by the servers). The planning starts at the beginning of the time slot. For each VM that can be migrated from the DC that is sending, the algorithm tries to find a server in the destination DC with the following restrictions: i) it has resources available to host the VM (CPU and memory); ii) the links that interconnect the server of origin (where the VM is running) and the target server can receive the additional load of the migration without violating their bandwidth constraint; iii) the VM migration finishes during the current time slot; and iv) performing the migration reduces the expected brown energy consumption. If all these restrictions are respected, the VM is planned to migrate, and the algorithm registers in the linkHistory that the links that connect these two servers will be used until the instant when the VM migration is expected to finish.

Algorithm 2 General planning of the migrations.

DCs

Sorted The DC with the most available green energy (initially at the beginning of the list) is denoted by M, and N is the DC with the least green energy (initially at the end of the list). The algorithm first tries to migrate all the VMs from the DC M to the DC N, and if there is still VMs that could be migrated, it tries to migrate to the DC N-1, and so on until all the VMs from DC M are planned to migrate, or all the DCs were pro-Algorithm 3 Detailed migration planning between two DCs. Require: dc tx, dc rx V Ms ← list of VMs of dc tx for vm in V Ms do origin ← server where the vm is running target ← server from dc rx being evaluated worth ← brownMig < brownNotMig e time ← estimate the migration time using Alg. 1 band ok ← links between source and target can receive the additional load of the migration if worth and band ok then registers the planning of the migration and updates the link history end if end for cessed. After finishing processing for the DC M, the algorithm repeats the same process for the DC M+1 until all the DCs are processed. After evaluating all the possible DCs that could send the VM at that instant of the time, the algorithm will use the link usage history to see at what time is expected the next migration to finish (they are sorted chronologically in time), and execute the planning again if there are still VMs to be migrated. Then, the process repeats until there are no more VMs to migrate or the evaluation time reaches the end of the time slot.

After planning the migrations, server consolidation will only be applied to the DCs that didn't have inter-DC migrations planned, to avoid generating network congestion -given that the intra-DC migrations could use the same network links as the inter-DC migrations planned in the previous step.

The algorithms "pre-allocation of the incoming VMs", "revision of the pre-allocations" are the same as NEMESIS. For the server consolidation algorithm, the only difference is that the migrations are distributed in time using the estimation computed with Algorithm 1 to avoid overlapping them.

The computational complexity of the Algorithm 3 is O(n V MS × n servers × n links ), where n V MS is the number of running VMs on the DC that is sending the VM, n servers is the number of candidate servers that have the least possible amount of free cores to run the VM in the destination host, and n links represents the number of links that interconnects the VM's host of origin and the target host. For Algorithm 2, the computational complexity is given by O(n DCs log n DCs + n DCs 2 × n V MS × n servers × n links ), where n DCs is the number of DCs.

Energy cost of migrations

NEMESIS models the energy consumption of the live migration with a computational task executed in the destination host during the migration. This task uses 1 CPU core at 100% performance. If the migration takes more time than necessary, energy is wasted both from the server where the VM was initially running as in the target server. The wasted energy is proportional to the extra time migrating, that is, the difference between the duration of the migration process compared to the duration that it would take if there were no network congestion. Given this extra time, a lower bound for the wasted energy both on the server of origin and the target server can be computed using Algorithm 4. For the first, the energy consumed is brown(er), increasing the overall brown energy consumption of the cloud. For the second, the energy wasted is green(er) and could have been used to execute another VM, since the objective of the "follow-the-renewables approach" is to move the workload to the DCs that have more availability of green energy. The value of pCore is an estimate for the additional cost of executing a core, and is obtained as follows: the server consumes 220 W at full load and subtracting the power consumption of the IDLE state (97 W) it results in 123 W. Finally, this value is divided by the total amount of cores of the server (6), resulting in 20.5 W. Notice that pCore is only multiplied by the number of cores of the VM for the server of origin, since it remains executing the VM until the end of the migration.

SIMULATIONS

Our simulations were developed using Simgrid [START_REF] Casanova | Versatile, scalable, and accurate simulation of distributed applications and platforms[END_REF]) (version 3.28), a framework that allows modeling distributed computing experiments, as cloud platforms, and it is well validated by the scientific community with over 20 years of usage. For the network, it was used the default flow-level TCP modeling of Simgrid that produces precise results for large distributed computing scenarios (as in our case with thousands of servers) in a reasonable amount of time, in contrast to packet-level simulation, that despite being more precise, would result in huge execution time for the simulations [START_REF] Velho | On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations[END_REF]. Regarding the cloud infrastructure, it was considered an adapted version of the Grid'5000, same as NEMESIS, and presented in Section 3.1.

Workload

In the experiments, the workload was based on traces from real cloud providers. The data extracted from the traces were: the number of CPU cores requested, when the task was submitted, and its duration. The workloads are scaled to use at a maximum of 80% of the computational resources of the cloud platform at any given simulated time. This decision ensures that the tasks will always be allocated to the servers and allows analyzing the different scheduling approaches. Figure 2 illustrates the distributions of the VMs submitted during the week (in yellow), and the cumulative demand of CPU cores requested at a given time (in purple), that is, the sum of the CPU cores that the running VMs are using.

The first workload was based on the 2011 Google Cluster Workload traces [START_REF] Reiss | Google cluster-usage traces: format+ schema[END_REF], and consists of over 380,000 VMs. In this workload, the VMs have a long execution time, as can be seen in Figure 2 that the value of the running VMs' CPU cores demand keeps increasing throughout the week. The second workload was based on traces from Microsoft Azure [START_REF] Hadary | Protean: VM allocation service at scale[END_REF], more specifically the Azure Trace for Packing 2020, and contains over 304,000 VMs. This workload has a different behavior than the first: during the beginning of the week, there is a peak in the VM submissions, and the VMs have a shorter execution time, as seen that the CPU cores demand does not keep increasing during the week.

The network usage by the workload is not modeled, since the traces do not provide this data. The additional load in the network is generated by the live migration of the VMs, so this work can be seen as a lower bound for the real world scenario. Regarding the requested RAM per VM, it is considered that each VM will consume 2 GB per core requested, similar to the t2.small instance of Amazon EC22 . It is also considered that the VMs executes with a full CPU usage of the requested cores, the worst scenario for energy consumption. 

Green energy traces

The traces for the energy produced by the PV panels were collected from the Photovolta project by Université de Nantes3 . The data represents an actual PV panel's power production at intervals of 5 minutes. In order to simulate the different production of the DCs geographically distributed, each DC considered a different week of the production trace. Furthermore, each DC had 3 PV panels per server. The PVs installed in the DCs generated the following amount of energy during the simulated week: i) Grenoble: 1.58 MWh; ii) Lille: 0.07 MWh; iii) Luxembourg: 0.15 MWh; iv) Lyon: 1.19 MWh; v) Nancy: 2.16 MWh; vi) Reims: 0.38 MWh; vii) Rennes: 1.63 MWh; viii) Sophia: 1.75 MWh; and ix) Toulouse: 1.53 MWh. In total, around 10.5 MWh of green power was produced in the simulated week. Figure 3 shows the green power production per DC during the simulated week. In this section, the results of the simulations are presented. First, it is analyzed the accuracy of the estimation algorithm for the duration of migration (Algorithm 1, an essential component of NEMESIS and c-NEMESIS algorithms. Then, an analysis of the live migrations performed and their impact on network congestion, wasted energy, and the total and brown energy consumption is presented. To further evaluate the effectiveness of using "follow-the-renewables approaches", results from two state-of-the-art works are presented.

The first is the WSNB algorithm (Workload shifting non brownout) [START_REF] Xu | Managing renewable energy and carbon footprint in multi-cloud computing environments[END_REF]. Initially, the VM is assigned to the nearest DC (to ensure low response time) and to the server that will increase the energy consumption by the least. Then, if this initial DC does not have enough green power to run the VM, the algorithm will search for other DC (the DCs are sorted by available green energy) that match this demand and do not exceed a threshold for the response time. If another DC is found, the VM will be reallocated to it. The algorithm does not perform server consolidation. The response time restriction from the algorithm was removed, since the used workloads do not have this data.

The second work from state of the art is the FollowMe@Source (or FollowMe@S) algorithm [START_REF] Ali | Followme@ls: Electricity price and source aware resource management in geographically distributed heterogeneous datacenters[END_REF] with its two versions: FollowMe@S Intra (that only perform VM migrations inside the same DC) and FollowMe@S Inter (that only perform VM migrations between different DCs). Both algorithms have the same general steps, described as follows.

There are two main steps in the FollowMe@S algorithm: allocation and migrations. In the allocation step, the DCs are sorted by the availability of green energy. The algorithm will traverse the DC list and search for a server that can host the VM for each VM to be scheduled. If no server was found after searching through all DCs, the VM will be processed in the next scheduling round. In the migration step, either only intra-DC or inter-DC migrations are performed. First, the running VMs are collected. Then the underutilized hosts (less than 20% of CPU usage) are marked to be turned off. These underutilized hosts will only be the origin of the migrations. In the intra-DC case, the algorithm will run in each DC separately. For each VM, it will try to find a server that can host the VM, and if it succeeds, the migration is performed. In the inter-DC case, for each VM that can be migrated, the algorithm will sort the DCs by the availability of green energy, and migrate the VM to the server of the first DC that can host the VM. Notice that FollowMe@S does not consider the network to schedule its migrations. The following modifications were performed in the algorithm: the network costs of a distributed algorithm and the workload degradation performance by migrating the VM (since a homogeneous platform is used) are not considered.

Regarding the baselines, it is important to notice that WSNB and FollowMe@S Intra only uses "follow-the-renewables" for the initial scheduling, and the VMs are not migrated to other DCs during their execution. On the other hand, the algorithm FollowMe@S Inter performs VM migrations to other DCs -same strategy adopted by NEMESIS and c-NEMESIS.

The code for the simulations, the traces for the workloads and green power production, and the instructions to run and extract the results are available on a public Git repository4 . Furthermore, only results for a single execution of the simulations are presented because they are deterministic for these algorithms and workloads.

Accuracy of the estimation algorithm

Table 1 presents the number of live migrations that were underestimated by NEMESIS and c-NEMESIS, and the percentage value that is based on the total number of migrations (that can be found in Table 3). An underestimated migration is a migration whose duration takes more than the estimation. For both workloads, it is possible to observe that c-NEMESIS presented almost no underestimation for the migrations compared to NEMESIS. Furthermore, it is interesting to notice that virtually all the intra-DC migrations were underestimated in NEMESIS because all migrations start simultaneously, resulting in network congestion.

Table 1: Number of underestimated live migrations and the ratio of the overestimation, where "W" stands for "Workload", "G" for Google, and "A" for Azure. Only the number of underestimated migrations is not enough to properly evaluate the estimation algorithm, and two metrics to assess its accuracy were used: the Mean Absolute Percentage Error (M.A.P.E.) and the Root Mean Square Error (R.M.S.E.). The M.A.P.E. is defined by: 1

Algorithm

n ∑ n i=1 |R i -F i | R i ,
where n represents the amount of values being considered, i the index of the value being considered, R i the real duration of migration, and F i the estimated duration. The results of the M.A.P.E. is a percentage value, and it represents the relative value of the estimation errors compared to the original value, thus it is a metric easy to understand metric. The R.M.S.E. is defined by:

1 n ∑ n i=1 (R i -F i ) 2 .
The R.M.S.E. is a metric similar to the standard deviation, and it allows to validate how far from the original value was the estimation.

Table 2 lists the results for the measurements of accuracy, and it is possible to observe that c-NEMESIS is accurate with low error values. The difference between the precision values of the two versions of the estimation algorithm is explained by using the actual number of links that interconnect the servers involved in the migration process, and the impact caused by the network congestion. Regarding the total energy, c-NEMESIS consumed more than NEMESIS because it performed more migrations. However, more green energy was harnessed, since the brown energy consumed was the same or lower. Regarding the FollowME@S algorithm, both inter and intra versions had similar brown energy consumption, but the inter-DC approach consumed less brown energy than the intra-DC (around 0.3% for the Google workload and 0.04% for the Azure workload). The WSNB algorithm had the highest consumption of both total and brown energy. The difference between the total and brown energy consumed with the green energy generated in the simulated week (10.5 MWh) is compared to obtain the green energy usage of the algorithms. For the Google workload, the usage of green energy was: c-NEMESIS = 80%, NEMESIS = 79%, FollowMe@S Intra = 80%, FollowMe@S Inter = 81%, and WSNB = 82%. Regarding the Azure workload, the usage was: c-NEMESIS = 89%, NEMESIS = 88%, Fol-lowMe@S Intra = 89%, FollowMe@S Inter = 89%, and WSNB = 89%.

The scheduling policies and how the algorithms adopt "follow-the-renewables" justify the difference between the total and brown energy consumption, and the relative value of green energy used. The algorithms WSNB and FollowMe@S Intra that presented the highest brown energy consumption only used "follow-the-renewables" for the initial scheduling, and didn't migrate the workload to other DCs as the green energy availability changed over time. To further understand the difference in these results, the next section will analyze the live migrations' impact on the total and brown energy consumption.

Wasted resources in the migrations

To evaluate wastage of resources (network and energy), all the live migrations performed in the algorithms are compared with a perfect scenario for the migrations, where the migrations are performed individually and isolated, having full access to the network.

Table 5 presents statistics about the extra seconds it took to migrate the VMs in the simulations. The absolute value is the absolute difference in seconds. For example, on average, the live migrations performed by the NEMESIS algorithm took 10.11 more seconds compared to the perfect scenario for the Google workload. The relative value is the ratio of the difference. For example, in the FollowMe@S Inter with the Google workload, the migration duration was more than 10 times longer compared to the perfect scenario.

The c-NEMESIS algorithm performed better for both workloads, with values close to the perfect scenario: the average relative difference (avg. rel.) was approximately 1. The NEMESIS algorithm had low extra seconds values, and the duration of the migrations took, on average, about 1.5 more than in the perfect scenario. The migrations performed by Fol-lowME@S, both intra and inter-DC cases, had the most waste of resources. The duration of migrations took, on average, from 4 to 10 times more than the perfect scenario. These results highlight the importance of considering the network for the migration scheduling, since c-NEMESIS and NEMESIS presented the lowest wastage of resources.

Using the wasted seconds of migrations, a lower bound for the wasted energy is computed using Algorithm 4 and present the results on Table 6. The algorithm FollowMe@S (both inter and intra-DC versions) was the algorithm that most wasted energy.

The c-NEMESIS algorithm had the lowest wastage of energy overall, despite performing more migrations than NEMESIS (that was the second better in terms of wastage of energy). These values are justified by the fact that wasted energy is directly proportional to the duration of the migrations, thus bad planning will have a direct impact on energy consumption. It is important to notice that this wasted green energy could even be used to power the cloud platform: in the FollowMe@S intra-DC with the Google workload, it could power all the servers at maximum capacity of the Luxembourg DC for approximately 44 hours.

CONCLUSIONS

Reducing brown energy consumption in cloud computing platforms is a complex and challenging problem currently being addressed from multiple angles. In this work, we focus on the strategy "follow-therenewables", and study the indirect impact on the energy consumption caused by the additional load generated in the network. Our experiments were based on real-world data for the cloud infrastructure, workloads, and photovoltaic power production.

This work demonstrates that the indirect network impact on the energy consumption in multi-clouds for "follow-the-renewables" approaches is generated by bad scheduling policies for the migrations. This results in the wastage of resources in terms of the network -which could be used by the applications running on the VMs or even to perform more live migrations -and energy -that could be used to power the cloud platform. Also, "follow-the-renewables" approaches need to consider the whole execution of the workload. The state-of-the-art algorithms that only used the green energy information for the initial scheduling had the highest brown energy consumption.

We also provide an estimation algorithm for the duration of the live migrations that is accurate. This estimation algorithm is essential for c-NEMESIS, and it was able to increase the number of migrations by a least 3-fold without network congestion, while maintaining or reducing the brown energy consumption compared to other state-of-the-art works.

As future work, the network usage by the workload and how it will compete for network resources with the live migrations needs further investigation. This work can also be easily extended to consider virtualization with containers by updating the estimation algorithm with a model for container live migration. Finally, recent approaches explore turning off the network devices to deal with their static energy con-Table 5: Extra seconds during migrations compared to the case when there is no congestion, where "W" stands for "Workload", "G" for Google and, "A" for Azure. "avg." for the average of the observations, "max." for the maximum value, "abs." for the absolute value, and "rel." for the relative value. 

Algorithm

Algorithm 4

 4 Extra cost of migrating. pCore ← 20.5 wastedOrigin ← 0 wastedTarget ← 0 for mig in Migrations do vmCores ← amount of cores of the VM being migrated extraTime ← mig.Timemig.TimeNoCong if extraTime > 0 then wastedOrigin+ = extraTime • pCore • vmCores wastedTarget+ = extraTime • pCore end if end for

Figure 2 :

 2 Figure 2: Workloads used as input for our simulations.

Figure 3 :

 3 Figure 3: Green power production (in Watts) produced by DC during the simulated week.

  by increasing ERGE plannedTime ← 0 timeSlotDuration ← 300 linksHistory ← / 0 while plannedTime < timeSlotDuration do dc tx ← first item of DCs while dc tx = last item of DCs do dc rx ← last item of DCs if dc tx has VMs that can be migrated then while dc tx = dc rx do evaluate if it is worth to migrate VMs from dc tx to dc rx using Alg. 3 dc rx ← previous DC of DCs

	end while
	end if
	dc tx ← next DC of DCs
	end while
	if no VM migration was planed and no migra-
	tion is in execution then
	exit
	end if
	plannedTime ← instant after the expected end
	of next migration
	end while

Table 2 :

 2 Accuracy measurements, where "W" stands for "Workload", "G" for Google, and "A" for Azure. The M.A.P.E. value is in percentage (%), and the R.M.S.E. in seconds.

	Algorithm	W M.A.P.E. R.M.S.E.
	c-NEMESIS G	0.70	0.395
	NEMESIS	G	32.895	18.56
	c-NEMESIS A	0.649	0.432
	NEMESIS	A	34.01	20.03
	6.2 Analysis of the VM live migrations
	performed			

Table 3 :

 3 Number of VM live migrations performed, where "W" stands for "Workload", "G" for Google, and "A" for Azure.

	Algorithm	W	Inter	Intra
	NEMESIS	G	5617	3545
	c-NEMESIS	G 18056	2074
	FollowMe@S Intra G	0 560862
	FollowMe@S Inter G 96464	0
	NEMESIS	A	3863	3532
	c-NEMESIS	A 17479	1300
	FollowMe@S Intra A	0 177086
	FollowMe@S Inter A 93388	0
	6.2.1 Total and brown energy consumed by the
	cloud platform			
	Table 4 lists the total and brown energy consumption
	of the cloud platform during the simulated week. The
	c-NEMESIS had the lowest brown energy consump-
	tion among all algorithms, except for NEMESIS with
	the Azure workload, in which the consumption was
	the same.			

Table 4

 4 

	: Comparison of energy consumption (MWh), where
	"W" stands for "Workload", "G" for Google, and "A" for
	Azure.		
	Algorithm	W Total Brown
	NEMESIS	G 25.46	17.23
	c-NEMESIS	G 25.56	17.18
	FollowMe@S Intra G 27.56	19.13
	FollowMe@S Inter G 27.59	19.07
	WSNB	G 29.49	20.89
	NEMESIS	A 30.43	21.21
	c-NEMESIS	A 30.55	21.20
	FollowMe@S Intra A 31.69	22.41
	FollowMe@S Inter A 31.69	22.40
	WSNB	A 33.56	24.23

Table 6 :

 6 W avg. abs. max. abs. avg. rel. max. rel. Total seconds Wasted energy in the migrations (Wh), where "W" stands for "Workload", "G" for Google, and "A" for Azure. This technique reduces the available network links in the cloud platform, and it is necessary to analyze if the energy savings are more significant than the impacts caused by the network congestion.

	NEMESIS		G	10.11	56.98	1.53	3.98	92915.7
	c-NEMESIS		G	0.22	0.88	1.0	1.05	4331.93
	FollowMe@S Intra G	113.94	1028.51	6.37	40.82	64525098.3
	FollowMe@S Inter G	215.18	4875.8	10.67	155.5	22058949.9
	NEMESIS		A	11.62	62.96	1.59	3.98	86235.46
	c-NEMESIS		A	0.23	6.14	1.0	1.32	4224.43
	FollowMe@S Intra A	91.08	938.48	4.39	25.56	16384188.8
	FollowMe@S Inter A	186.56	8047.89	7.8	157.24	18531893.3
	Algorithm	W	Origin	Target		
	NEMESIS	G	545.1	529.1		
	c-NEMESIS	G	35.42	24.67		
	FollowMe@S Intra G	473971.6 367434.6		
	FollowMe@S Inter G 153829.96 125613.5		
	NEMESIS	A	539.59	491.06		
	c-NEMESIS	A	39.31	24.06		
	FollowMe@S Intra A 163128.14	93298.9		
	FollowMe@S Inter A	175086.3 105528.8		
	sumption.						

https://www.grid5000.fr

https://aws.amazon.com/ec2/instance-types/

http://photovolta.univ-nantes.fr/

https://gitlab.com/migvasc/c-nemesis
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