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1 Introduction

Finite automata are interesting models to study since they express a very natural
limitation of finite memory. They are also an interesting starting point for many
computational models, since they are simpler than many others like pushdown
automata or Turing machines. Due to this simplicity, there exist many differ-
ent models of finite automata, all trying to express different computational set-
tings. Deterministic [17], probabilistic [15] and quantum [2] finite automata (DFAs,
PFAs, and QFAs, respectively) have been studied to try to understand better the
computational limitations inherent to all these cases.

Recently, Dı́az-Caro and Yakaryılmaz introduced a new computational con-
cept, called affine computation [4]. As a non-physical model, the goal of affine
computation is to investigate the power of interference caused by negative ampli-
tudes in the computation, like in the quantum case. But unlike QFAs, affine finite
automata (AfAs) have unbounded state set and the final operation correspond-
ing to quantum measurement cannot be interpreted as linear. The final operation
in AfAs is analogous to renormalization in Kondacs-Watrous [12] or Latvian [1]
quantum automata models.

AfAs and their certain generalizations have been investigated in a series of
works [3, 4, 7, 10, 14, 22]. In most of the cases, affine models (e.g., bounded-error
and unbouded-error AfAs, zero-error affine OBDDs, zero-error affine counter au-
tomata, etc.) have been shown more powerful than their classical or quantum
counterparts. On the other hand, we still do not know too much regarding the
computational limitations of AfAs. Towards this direction, we present new results.
First, we show that using end-marker does not increase the computational power
of affine automata with unbounded error or bounded error. Second, we show that
the computation of bounded-error rational-valued affine automata is simulated in
logarithmic space, and so we answer positively one of the open problems in [4].
Third, we give an impossibility result for algebraic-valued AfAs, and, as a result,
we identify some unary languages (in logarithmic space) that are not recognized
by algebraic-valued AfAs with cutpoints, improving a previous result showing that
the same languages cannot be recognized with bounded error [8].

Moreover, we give the formal definition of generalized AfAs by allowing to
use arbitrary real-valued transition matrices and state vectors. Fourth, we show
that such generalization does not increase the computational power of AfAs with
cutpoint language recognition. If we restricted these generalized AfAs to use only
rational numbers, we obtain the same result also for bounded error language recog-
nition. As a consequence, we show that the class of bounded-error affine languages
remains the same when the AfAs are restricted to use rational numbers or only
integers.

We provide all definitions in the next section and our results regarding using
end-marker (Section 2.4). Our logarithmic space simulation is given in Section 3.
Our impossibility result is given in Section 4. Our results related to generalized
AfAs are given in Section 5.

A preliminary version of this paper was presented in UCNC2019 [9]. In this
version, Sections 2.4 and 5 are completely new.
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2 Preliminaries

Throughout the paper, Σ denotes the input alphabet – not containing letter $ (we

fix it as the right end-marker wherever it is used) , and Σ̃ = Σ ∪ {$}. The empty
word is represented as ε. The set of words written using the alphabet Σ is denoted
Σ∗. For any given word w ∈ Σ∗, |w| is the length of w, we define w̃ = w$, and, if
w 6= ε, wi represents its i-th letter, where 1 ≤ i ≤ |w|.

For any given class C, CQ and CA denote the classes defined by the machines
restricted to have rational-valued and algebraic-valued components, respectively.
The logarithmic and polynomial space classes are denoted as L and PSPACE, re-
spectively. We assume that the reader is familiar with the basic notions of automata
theory.

2.1 Models

As a probability distribution (also known as a stochastic vector) we understand a
(column) vector with nonnegative entries summing up to one, and a stochastic
matrix (also known as a Markov matrix) here stands for a square matrix whose all
columns are probability distributions.

A k-state probabilistic finite automaton (PFA) P over alphabet Σ is a triplet
P = (x, {Mi | i ∈ Σ},y) where x ∈ Rk is a stochastic vector called initial
distribution, each Mi ∈ Rk×k is a stochastic matrix, and y ∈ {0, 1}k is the final
vector (each 1 in y represents an accepting state).

For any input word w ∈ Σ∗ with length n, P has a probability distribution
of states as follows: vf = Mwx = Mwn · · ·Mw1x. The accepting probability corre-
sponds to the probability of P being in an accepting state after reading w, which
is given by

fP (w) = yTMwx. (1)

Affine finite automaton (AfA) is a generalization of PFA allowing negative
transition values. Only allowing negative values in the transition matrices does
not add any power (generalized PFAs are equivalent to usual ones, see [19]), but
affine automata introduce also a non-linear behaviour. The automaton acts like
a usual generalized probabilistic automaton until the last operation, which is a
non-linear operation called a weighting operation.

A vector v ∈ Rk is an affine vector if and only if its coordinates sum up to 1.
A matrix M is an affine matrix if and only if all its columns are affine vectors. It
is easy to verify that the multiplication of an affine matrix with an affine vector
is also an affine vector, which ensures that affine automata are well defined.

A k-state AfA A over alphabet Σ is a triplet A = (x, {Mi | i ∈ Σ}, F ),
where x is an initial affine vector, each Mi is an affine transition matrix, and
F = diag(δ1, . . . , δn) is the final projection matrix, where each δi ∈ {0, 1}.

The value computed by an affine automaton can be defined most conveniently
via the following notion: Notation |v| =

∑
i |vi| stands for the usual L1 norm. The

final value of the affine automaton A of is

fA(w) =
|FMwx|
|Mwx| . (2)



4 M. Hirvensalo, E. Moutot, and A. Yakaryılmaz

Clearly fA(w) ∈ [0, 1] for any input word w ∈ Σ∗.
Remark that the final value for PFAs (1) is defined as matrix product vf 7→

yTvf , which is a linear operation on vf . On the other hand, computing final value

from vf as in (2) involves nonlinear operations vf 7→
|Fvf |
|vf |

such as L1-norm and

normalization (division).

2.2 Language recognition

Given a function f : Σ∗ → [0, 1] computed by an automaton (stochastic or affine),
there are different ways of defining the language recognized by this automaton.

A language L ⊆ Σ∗ is recognized by an automaton A with cutpoint λ ∈ [0, 1)
if and only if L = {w ∈ Σ∗ | fA(w) > λ}. These languages are called cutpoint
languages.

A language L ⊆ Σ∗ is recognized by an automaton A with exclusive cutpoint
λ ∈ [0, 1] if and only if L = {w ∈ Σ∗ | fA(w) 6= λ}. These languages are called
exclusive cutpoint languages.

A stronger condition is to impose that accepted and rejected words are sepa-
rated by a gap: the cutpoint is said to be isolated. A language L is recognized by
an automaton A with isolated cutpoint λ if and only if there exist δ > 0 such that
∀w ∈ L, fA(w) ≥ λ + δ and ∀w /∈ L, fA(w) ≤ λ− δ. By fixing λ = 1

2 , we define
language recognition with bounded error: A language L is recognized by an au-
tomaton A with bound error if and only if there exists an error bound ε ∈ [0, 1/2)
such that ∀w ∈ L, fA(w) ≥ 1− ε and ∀w /∈ L, fA(w) ≤ ε.

It is known that [7] if a language recognized by a AfA (or PFA) with bounded
error, then the error bound can be arbitrarily close to 0.

2.3 Language classes

In the case of probabilistic (resp., affine automata), the set of cut-point languages
are called stochastic languages (resp., affine languages) and denoted by SL (resp.,
AfL). We remark that fixing the cutpoint in the interval (0, 1) does not change the
classes SL and AfL [4, 15].

In the case of probabilistic (resp., affine automata), the set of exclusive cut-
point languages are called exclusive stochastic languages (resp., exclusive affine
languages) and denoted by SL6= (resp., AfL 6=). The complements of the languages
in SL6= (resp., AfL 6=) form SL= (resp., AfL=). (Fixing the cutpoint in the interval
(0, 1) does not change the classes SL6=, SL=, AfL6=, and AfL= [4, 15,23].)

The set of languages recognized with bounded error (or isolated cutpoint, which
is the same) by affine automata is denoted by BAfL.

A classical result by Rabin [16] shows that isolated cutpoint stochastic lan-
guages are regular. Rabin’s proof essentially relies on two facts: 1) the function
mapping the final vector into [0, 1] is a contraction, and 2) the state vector set is
bounded. By modifying Rabin’s proof, it is possible to show that also many quan-
tum variants of stochastic automata obey the same principle [2]: bounded-error
property implies the regularity of the accepted languages. In fact, E. Jeandel gen-
eralized Rabin’s proof by demonstrating that the compactness of the state vector
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set together with the continuity of the final function are sufficient to guarantee the
regularity of the accepted language if the cutpoint is isolated [11]. Affine automata
do not have these properties, and in fact, they can recognize more than regular
languages with bounded error [4].

2.4 Models using the right end-marker

A PFA or AfA can be defined by reading an extra letter (M$) for post-processing
after reading the whole input. That is, the automaton reads w̃ = w$ for a given
input word w ∈ Σ∗. Any such AfA (the definition of any such PFA is similar) can

be formally defined as A = (x, {Mi | i ∈ Σ̃}, F ), and the accepting probability of

the input w is calculated as fA(w) = |FMw̃x|
|Mw̃x| . Moreover, vf = Mw̃x = M$Mwx.

It is known that, for any k-state PFA using the right end-marker, there is
an equivalent k2-state PFA without using the right end-marker such that, for
any input word, both automata have the same accepting probabilities [19]. Even
though we do not know whether this result is valid for AfAs or not, we can still
show that post-processing does not increase the computational power of AfAs in
the case of recognition with cutpoint or bounded error.

Theorem 1 For a given k-state AfA A = (x, {Mi | i ∈ Σ̃}, F ) using the end-
marker and for a given cutpoint λ ∈ [0, 1], there is a 4k-state AfA A′ = (x′, {M ′i |
i ∈ Σ}, F ′) not using the end-marker such that, for any w ∈ Σ∗, both of fA(w)
and fA′(w) are greater than λ or equal to λ or less than λ.

Proof Let w ∈ Σ∗ be the given input of length n ≥ 0. Let v0 = x and u0 = M$v0,
and similarly, whenever n > 0, let vl = MwlMwl−1 · · ·Mw1x and ul = M$vl,
where 1 ≤ l ≤ n. Remark that vf = un.

We define v′
0 = x′

0 =


λv0

(1− λ)v0

u0

−u0

. It is clear that the summation of entries

are 1 and so v′
0 is an affine state. For any i ∈ Σ, M ′i is defined as

Mi 0 I I

0 Mi 0 0

M$Mi M$Mi 0 0

−M$Mi −M$Mi 0 0

 .

It is easy to see that the entry summation of each column of M ′i is equal to 1,
and so M ′i is an affine transition matrix. The multiplication of transition matrices
with state vectors is trivial, and so we can easily obtain that

v′
f = v′

n =


λvn

(1− λ)vn
un
−un

 =


λvn

(1− λ)vn
vf
−vf

 .
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Let fA(w) =
|Fvf |
|vf | = λ + d for some real number d. We can derive that

|Fvf | = |vf |(λ+d). We define F ′ as


I 0 0 0

0 0 0 0

0 0 F 0

0 0 0 F

 . Then, we can calculate fA′(w)

as follows:

fA′(w) =
|λvn|+ |Fvf |+ | − Fvf |
|λvn|+ |(1− λ)vn|+ 2|vf |

=
λ|vn|+ 2λ|vf |+ 2d|vf |

|vn|+ 2|vf |

= λ+ d

(
2|vf |

|vn|+ 2|vf |

)
= λ+ d′,

where either d = d′ = 0 or both d and d′ have the same sign. ut

Corollary 1 Any language recognized by an AfA using the right end-marker with
a cutpoint (or an exclusive cutpoint) can be recognized by another AfA not using
the right end-marker with the same cutpoint.

Theorem 2 Any language L recognized by a k-state AfA A = (x, {Mi | i ∈ Σ̃}, F )
using the right end-marker with error bound 1

10 can be recognized by a 3k-state AfA
A′ = (x′, {Mi | i ∈ Σ}, F ′) not using the right end-marker with error bound 2

10 .

Proof We use the same terminology in the previous proof. Let m′ = |x| and let
m > 1 be a real number satisfying |Miv| < m|v| for any i ∈ Σ and for any affine
vector v.

Let w ∈ Σ∗ be an input of length n ≥ 0. We define x′ =

 x
5mm′M$x
−5mm′M$x

 and

M ′i =

 mMi I I

5m′mM$Mi 0 0

−5m′mM$Mi 0 0

 for any i ∈ Σ. Then, we obtain v′
f =

 mnvn
5m′mnvf
−5m′mnvf

.

We define F ′ =

 0 0 0

0 F 0

0 0 F

. We know that |vn| < m′mn. The accepting probabil-

ity of A′ on w is

fA′(w) =
|F ′v′

f |
|v′

f |
=

10m′mn|Fvf |
|vn|+ 10m′mn|vf |

.

If w ∈ L, then 10|Fvf | ≥ 9|vf | and

fA′(w) ≥ 9m′mn|vf |
|vn|+ 10m′mn|vf |

>
9m′mn|vf |
11m′mn|vf |

> 0.8181.

If w /∈ L, then 10|Fvf | ≤ |vf | and

fA′(w) ≤ m′mn|vf |
|vn|+ 10m′mn|vf |

<
m′mn|vf |

10m′mn|vf |
= 0.1

Therefore, L is recognized by A′ with error bound 2
10 . ut
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3 Logarithmic simulation

Macarie [13] proved that SL=Q ⊆ L and SLQ ⊆ L. That is, the computation of any
rational-valued probabilistic automaton can be simulated by an algorithm using
only logarithmic space. However, this logarithmic simulation cannot be directly
generalized for rational-valued affine automata due to the non-linearity of their
last operation. In order to understand why, we will first reproduce the proof.

Before that, let us introduce the most important space-saving technique:

Definition 1 Notation (b mod c) stands for the least nonnegative integer a sat-
isfying a ≡ b (mod c). If x = (x1, . . . , xr) and n = (n1, . . . , nr) ∈ Zr, we de-
fine x (mod n) = ((x1 mod n1), . . . , (xr mod nr)). Analogously, for any matrix
A ∈ Zk×k, we define (A (mod n))ij = (Aij mod n).

The problem of recovering x from the residue representation ((xmod n1), . . . ,
(xmod nr)) is practically resolved by the following well-known theorem.

Theorem 3 (The Chinese Remainder Theorem) Let n1, . . . , nr be pairwise
coprime integers, a1, . . . , ar arbitrary integers, and N = n1 · · ·nr. Then there
exists an integer x such that

x ≡ a1 (mod n1), . . . , x ≡ ar (mod nr), (3)

and any two integers x1 and x2 satisfying (3) satisfy also x1 ≡ x2 (mod N).

Remark 1 The Chinese Remainder Theorem implies that the integer ring op-
erations (+, ·) can be implemented using the residue representation, and that
the integers can be uncovered from the residue representations provided that 1)
n = (n1, . . . , nr) consists of pairwise coprime integers and 2) The integers stay in
interval of length N − 1, where N = n1 · · · · · nr.

Remark 2 In order to ensure that n = (n1, . . . , nr) consists of pairwise coprime
integers, we select numbers ni from the set of prime numbers. For the reasons that
will become obvious later, we will however omit the first prime 2.

Definition 2 pr is an r-tuple pr = (3, 5, 7, . . . , pr) consisting of r first primes
by excluding 2. For this selection, a consequence of the prime number theorem is
that, asymptotically, Pr = 3 · 5 · 7 · · · · · pr = 1

2e
(1+o(1))r ln r.

Definition 3 Let pr be as before. Then for any integer x, the residual representa-
tion Respr (x) stands for an integer vector of the residues: (x (mod 3), x (mod 5), x
(mod 7), . . . , x (mod pr)).

Theorem 4 (Macarie [13]) SL=Q ⊆ L

Proof For a given alphabet Σ, let L ⊆ Σ∗ be a language in SL=Q and P = (x, {Mi |
i ∈ Σ},y) be a k-state rational-valued PFA over Σ such that

L =

{
w ∈ Σ∗ | fP (w) =

1

2

}
.

We remind that, for any input word w = w1 · · ·wn ∈ Σ∗, we have

fP (w) = yTMwn · · ·Mw1x. (4)
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Since each Mi ∈ Qk×k, there exists an integer D such that all entries of each
matrix M ′i = DMi are integers, and (4) can be rewritten as

fP (w) =
1

Dn
yTM ′wn

· · ·M ′w1
x︸ ︷︷ ︸

fP ′ (w)

,

and the language L can be characterized as

L = {w ∈ Σ∗ | 2fP ′(w) = Dn}. (5)

Since the original matrices Mi are stochastic, meaning that their entries are in
[0, 1], it follows that each matrix M ′i = DMi has integers entries in [0, D]. More-
over, fP (w) ∈ [0, 1] implies that fP ′(w) ∈ [0, Dn] for every input word w ∈ Σn.
As now fP ′(w) can be computed by multiplying k×k integer matrices, the residue
representation will serve as a space-saving technique.

We will fix r later, but the description of the algorithm is as follows: For each

entry p of pr = (3, 5, 7, . . . , pr), we let M
(p)
i = M ′i mod p, and compute

(2fP ′(w) mod p) = yTM (p)
wn
· · ·M (p)

w1
x. (6)

As all the products are computed modulo p, k2 log p bits are needed to compute
(6). Likewise, (Dn mod p) can be computed in space O(log p) for each coordinate
p of pr. The comparison 2fP ′(w) ≡ Dn (mod p) can be hence done in O(log p)
space.

Reusing the space, the comparison can be made sequentially for each coordinate
of pr, and if any comparison gives a negative outcome, we can conclude that
2P ′(w) 6= Dn.

To conclude the proof, it remains to fix r so that both 2fP ′(w) and Dn are
smaller than Pr = 3 · 5 · 7 · · · · · pr. If no congruence test is negative, then the
Chinese Remainder Theorem ensures that 2fP ′(w) = Dn. Since fP ′(w) ≤ Dn, we
need to select r so that Pr > 2Dn, which is equivalent to

log
1

2
+ (1 + o(1))r ln r > log 2 + n logD.

This inequality is clearly satisfied with r = n for large enough n, and for each
n ≥ 1 by choosing r = c · n, where c is a positive constant (depending on D).

As a final remark let us note that pbcnc, the bcnc-th prime, can be generated
in logarithmic space and the prime number theorem implies that O(logn) bits are
enough to present pbcnc, since c is a constant. ut

To extend the above theorem to cover SLQ as well, auxiliary results are used.

Lemma 1 (Macarie [13]) If N is an odd integer and x, y ∈ [0, N − 1] are also
integers, then x ≥ y iff x− y has the same parity as ((x− y) mod N).

Proof As x, y ∈ [0, N − 1], it follows that

(x− y mod N) =

{
x− y if x ≥ y

N + x− y if x < y,

which shows that the parity changes in the latter case since N is odd. ut

The problem of using the above lemma is that, in modular computing, num-
bers x and y are usually known only by their residue representations Respr (x)
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and Respr (y), and it is not straightforward how to compute the parity from the
modular representation in logarithmic space. Macarie solved this problem not only
for parity but also for a more general modulus (not necessarily equal to 2).

Lemma 2 (Claim modified from [13]) For any integer x and modulus pr =
(3, 5, 7, . . . , pr), there is a deterministic algorithm that given Respr (x) and M ∈ Z
as input, produces the output x (mod M) in space O(log pr + logM).

As a corollary of the previous lemmata, Macarie presented a conclusion which
implies the logarithmic space simulation of rational stochastic automata.

Lemma 3 (Claim modified from [13]) Let pr = (3, 5, 7, . . . , pr) and Pr =
3 · 5 · 7 · · · · · pr. Given the residue representations of integers x, y ∈ [0, Pr − 1],
the decisions x > y, x = y or x < y can be made in O(log pr) space.

Proof The equality test can be done as in the proof of Theorem 4, testing the
congruence sequentially for each prime. Testing x ≥ y is possible by Lemmata 1
and 2: First compute Respr (z) = Respr (x) − Respr (y) (mod pr), then compute
the parities of x, y, z using Lemma 2 with M = 2. ut

The following theorem is a straightforward corollary from the above:

Theorem 5 SLQ ⊆ L.

When attempting to prove an analogous result to affine automata, there is at
least one obstacle: computing the final value includes the absolute values, but the
absolute value is not even a well-defined operation in the modular arithmetic. For
example, 2 ≡ −3 (mod 5), but |2| 6≡ |−3| (mod 5). This is actually another way
to point out that, in the finite fields, there is no order relation compatible with
the algebraic structure.

Hence for affine automata with matrix entries of both signs, another approach
must be adopted. One obvious approach is to present an integer n as a pair
(|n| , sgn(n)), and apply modular arithmetic to |n|. The signum function and the
absolute value indeed behave smoothly with respect to the product, but not with
the sum, which is a major problem with this approach, since to decide the sign
of the sum requires a comparison of the absolute values, which seems impossible
without having the whole residue representation. The latter, in its turn seems to
cost too much space resources to fit the simulation in logarithmic space.

Hence the logspace simulation for automata with matrices having both positive
and negative entries seems to need another approach. It turns out that we can use
that introduced by Turakainen already in 1969 [18,19].

Theorem 6 AfLQ ⊆ L.

Proof For a given alphabet Σ, let L ∈ Σ∗ be a language in AfLQ and A = (x, {Mi |
i ∈ Σ}, F ) be a k-state rational-valued AfA over Σ such that

L =

{
w ∈ Σ∗ | fA(w) >

1

2

}
.

For each Mi ∈ Qk×k, we define a new matrix as Bi =

 0 0T 0
ci Mi 0

ei dTi 0

 , where ci,

di, and ei are chosen so that the column and row sums of Bi are zero. We define
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x′ =

 0
x
0

 as the new initial state. For the projection matrix F , we define an

extension F ′ =

 0 0 0
0 F 0
0 0 0

 . It is straightforward to see that
∣∣Bwx′

∣∣ = |Mwx| as

well as
∣∣F ′Bwx′

∣∣ = |FMwx|.
For the next step, we introduce an (k + 2) × (k + 2) matrix E, whose each

element is 1. It is then clear that En = (k+ 2)n−1E and BiE = EBi = 0. Now we
define

Ci = Bi +mE,

where m ∈ Z is selected large enough to ensure the nonnegativity of the matrix
entries of each Ci. It follows that

Cw = Bw +m|w|(k + 2)|w|−1E,

and

Cwx′ = Bwx′ +m|w|(k + 2)|w|−1Ex′.

Similarly,

F ′Cwx′ = F ′Bwx′ +m|w|(k + 2)|w|−1F ′Ex′.

Now

|FMwx|
|Mwx| =

∣∣F ′Bwx
∣∣

|Bwx| =

∣∣∣F ′Cwx′ −m|w|(k + 2)|w|−1F ′Ex′
∣∣∣∣∣Cwx′ −m|w|(k + 2)|w|−1Ex′

∣∣
which can further be modified by expanding the denominators away: For an integer
g large enough all matrices Di = gCi will be integer matrices and the former
equation becomes

|FMwx|
|Mwx| =

∣∣F ′Bwx
∣∣

|Bwx| =

∣∣∣F ′Dwx′ −m|w|(k + 2)|w|−1g|w|F ′Ex′
∣∣∣∣∣Dwx′ −m|w|(k + 2)|w|−1g|w|Ex′

∣∣ . (7)

Hence the inequality

|FMwx|
|Mwx| ≥

1

2

is equivalent to

2
∣∣∣F ′Dwx′ −m|w|(k + 2)|w|−1g|w|F ′Ex′

∣∣∣
≥
∣∣∣Dwx′ −m|w|(k + 2)|w|−1g|w|Ex′

∣∣∣ . (8)

In order to verify inequality (8) in logarithmic space, it is sufficient to demonstrate
that the residue representations of both sides can be obtained in logarithmic space.

For that end, the residue representation of vector a = F ′Dwx′ ∈ Rk+2 can be
obtained in logarithmic space as in the proof of Theorem 4.

Trivially, the residue representation of b = m|w|(k + 2)|w|−1g|w|+1F ′Ex′ ∈
Rk+2 can be found in logarithmic space, as well. In order to compute the residue
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representation of

|a− b| = |a1 − b1|+ · · ·+ |ak − bk| ,

it is sufficient to decide whether ai ≥ bi holds. As the residue representations for
each ai and bi is known, all the decisions can be made in logspace, according to
Lemma 3. The same conclusion can be made for the right hand side of (8). ut

4 A Non-affine Language

As we saw in the previous section, AfLQ ⊆ L, and hence languages beyond L,
are good candidates for non-affine languages.1 In this section, we will however
demonstrate that the border of non-affinity may lie considerably lower: There are
languages in L which are not affine.

In an earlier work [7], we applied the method of Turakainen [20] to show that
there are languages in L which however are not contained in BAfL. Here we will
extend the previous result to show that those languages are not contained even in
AfLA.

Definition 4 (Lower density)
Let L ⊆ a∗ be a unary language. We call lower density of L the limit

dens(L) = lim inf
n→∞

∣∣{ak ∈ L | k ≤ n}∣∣
n+ 1

.

Definition 5 (Uniformly distributed sequence) Let (xn) be a sequence of
vectors in Rk and I = [a1, b1)×· · ·×[ak, bk) be an interval in Rk. We define C(I, n)
as C(I, n) = |{xi mod 1 ∈ I | 1 ≤ i ≤ n}|.

We say that (xn) is uniformly distributed mod 1 if and only if for any I
of such type,

lim
n→∞

C(I, n)

n
= (b1 − a1) · · · (bk − ak).

Theorem 7 If L ⊆ a∗ satisfies the following conditions:

1. dens(L) = 0.
2. For all N ∈ N, there exists r ∈ N and an ascending sequence (mi) ∈ N such

that ar+miN ⊆ L and for any irrational number α, the sequence ((r +miN)α)
is uniformly distributed mod 1.

Then L is not in AfLA.

Proof Let’s assume for contradiction that L ∈ AfLA. Then there exists an AfA A
with s states, matrix M and initial vector v such that the acceptance value of A
is

fA(an) =
|FMnv|
|Mnv| . (9)

1 It is known that L ( PSPACE, so it is clear that PSPACE-complete languages are not in
AfLQ.
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Without loss of generality, we can assume that the cutpoint equals to 1
2 , and hence

w ∈ L⇔ fA(w) > 1
2 .

Using the Jordan decomposition M = PJP−1, one has Mn = PJnP−1. So
the coordinates of Mnv have the form

(Mnv)j =
s∑

k=1

pjk(n)λnk , (10)

where λk are the eigenvalues of M and pjk are polynomials of degree less than the
degree of the corresponding eigenvalue. For short, we denote F (n) = fA(an), and
let λk = |λk| e2iπθk .

When studying expression (9), we can assume without loss of generality, that
all numbers θk are irrational. In fact, replacing matrix M with αM , where α 6= 0
does not change (9), since

|F (αM)nv|
|(αM)nv| =

|αnFMnv|
|αnMnv| =

|FMnv|
|Mnv| .

Selecting now α = e2πiθ (where θ ∈ R) implies that the eigenvalues of M are
λke

2iπ(θk+θ). The field extension Q(θ1, . . . , θs) is finite, and hence there is always
an irrational number θ /∈ Q(θ1, . . . , θs). It follows directly that all numbers θk + θ
are irrational. Hence we can assume that all the numbers θk are irrational in the
first place.2

By restricting to an arithmetic progression n = r + mN (m ∈ N) we can also
assume that no λi/λj is a root of unity for i 6= j. In fact, selecting

N = lcm{ord(λi/λj) | i 6= j and λi/λj is a root of unity}, (11)

equation (10) becomes

(Mr+mNv)j =
s∑

k=1

pjk(r +mN)λrk(λk)Nm =
s′∑
k=1

qjk(m)µmk , (12)

where {µ1, . . . , µs′} are the distinct elements of set {λN1 , . . . , λNs } Now for i 6= j
µi/µj cannot be a root of unity, since (µi/µj)

t = 1 would imply (λi′/λj′)
Nt = 1,

which in turn implies (λi′/λj′)
N = 1 and hence µi = λNi′ = λNj′ = µj , which

contradicts the assumption µi 6= µj .

We can now write the acceptance condition fA(an) > 1
2 equivalently as

fA(an) >
1

2
⇔ 2 |PMnv| > |Mnv|

⇔ 2
∑
j∈Ea

|(Mnv)j | >
∑
j∈E
|(Mnv)j | ⇔

∑
j∈Ea

|(Mnv)j | −
∑
j∈Ea

|(Mnv)j |

︸ ︷︷ ︸
g(n)

> 0,

Where E is the set of states of A, Ea ⊆ E its set of accepting states, and Ea the
complement of Ea. According to (10), g(n) :=

∑
j∈Ea

|(Mnv)j |−
∑
j∈Ea

|(Mnv)j |

2 Note that the new matrix obtained may not be affine, so it would be wrong to assume that
all AfAs have admit an equivalent one with only irrational eigenvalues. However, this does not
affect this proof, since we do not require the new matrix to be affine, we only study the values

that the fraction
|P (αM)nv|
|(αM)nv| =

|PMnv|
|Mnv| take.
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consists of combinations of absolute values of linear combination of functions of
type ndλn.

We say that nd1λn1 is of larger order than nd2λn2 , if |λ1| > |λ2|; and in the
case |λ1| = |λ2|, if d1 > d2. If |λ1| = |λ2|, we say that ndλn1 and ndλn2 and of
the same order. It is clear that if term t1(n) is of larger order than t2(n), then

lim
n→∞

t2(n)

t1(n)
= 0.

We can organize the terms in expression (10) as

(Mnv)j =
s∑

k=1

pjk(n)λnk = Λ
(N)
j (n) + Λ

(N−1)
j (n) + · · ·+ Λ

(0)
j (n), (13)

where each Λ
(m)
j (n) consists of terms with equal order multiplier:

Λ
(m)
j (n) =

mj∑
k=1

cmkn
dmλmk

n = ndmλnm

mj∑
k=1

cmke
2πinθmk (14)

(for notational simplicity, we mostly omit the dependency on j in the right hand
side of (14)). Here λm ∈ R+ is the common absolute value of all eigenvalues

λmk = λme
2πiθmk , and expression (13) is organized in descending order: Λ

(N)
j is

the sum of terms of the highest order multiplier, Λ
(N−1)
j contains the terms of

the second highest order multiplier, etc. We say that Λ
(k2)
j is lower than Λ

(k1)
j if

k2 < k1

We will then fix a representation

g(n) =
∑
j∈Ea

∣∣∣∣∣
s∑

k=1

pjk(n)λnk

∣∣∣∣∣− ∑
j∈Ea

∣∣∣∣∣
s∑

k=1

pjk(n)λnk

∣∣∣∣∣
=
∑
j∈Ea

|Aj(n) +Bj(n) + Cj(n)| −
∑
j∈Ea

|Aj(n) +Bj(n) + Cj(n)| , (15)

where Aj(n)+Bj(n)+Cj(n) is a grouping of all Λ-terms in (13) defined as follows:

1. Aj(n) =
m∑
k=0

Λ
(N−k)
j (n), where m ∈ [−1, N ] ∩ Z is chosen as the maximal

number so that

A =
∑
j∈Ea

|Aj(n)| −
∑
j∈Ea

|Aj(n)| (16)

is a constant function N→ R. Such an m exists, since for m = −1, the sum is
regarded empty and Aj(n) = 0, but for m = N , all Λ-terms are included, and
then (16) becomes fA(an), which is not constant (otherwise condition 1 or 2
of the theorem would be false).

2. Bj(n) consists a single Λ-term immediately lower than those in Aj(n)4, and
3. Cj(n) contains the rest of the Λ-terms, lower than Bj(n)

Lemma 4 If A 6= 0, then ∀z ∈ C, |A+ z| = |A|+ Re
|A|
A
z +O(

z2

A
).
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Proof Denote z = x+ iy. Because |Re z| ≤ |z|, we have

|1 + z| = |1 + x+ iy| =
√

(1 + x)2 + y2 =

√
1 + 2 Re z + |z|2

= 1 + Re z +O(z2).

Now

|A+ z| = |A|
∣∣∣1 +

z

A

∣∣∣ = |A|
(
1 + Re

z

A
+O(

( z
A

)2
)
)

= |A|+ Re
|A|
A
z +O(

z2

A
).

C

We choose λ ∈ R+ and d so that the highest Λ-term in B(n) is of order ndλn

and define A′j(n) = n−dλ−nAj(n), B′j(n) = n−dλ−nBj(n), g′(n) = g(n)n−dλ−n.
Then clearly g′(n) > 0 if and only if g(n) > 0 and each Bj(n) remains bounded as
n → ∞. To simplify the notations, we omit the primes and recycle the notations
to have a new version of g(n) of (15) where Aj-terms may tend to infinity but
Bj-terms remain bounded.

Recall that we may assume (by restricting to a arithmetic progression) that
no λi/λj is a root of unity. By Skolem-Mahler-Lech theorem [6], this implies that
functions Aj can have only a finite number of zeros, and in the continuation we
assume that n is chosen so large that no function Aj becomes zero. Furthermore,
by the main theorem of [5], then |Aj(n)| = Ω(ndλn−ε) for each ε > 0.3 As each
Bj remains bounded, we find that B2

j /Aj tend to zero as n → ∞, and hence by
Lemma 4, defining

g1(n) =∑
j∈Ea

(
|Aj(n)|+ Re(

|Aj(n)|
Aj(n)

Bj(n))
)
−
∑
j∈Ea

(
|Aj(n)|+ Re(

|Aj(n)|
Aj(n)

Bj(n))
)

=
∑
j∈Ea

|Aj(n)| −
∑
j∈Ea

|Aj(n)|

︸ ︷︷ ︸
h(n)

+
∑
j∈Ea

Re(
|Aj(n)|
Aj(n)

Bj(n)) +
∑
j∈Ea

Re(
|Aj(n)|
Aj(n)

Bj(n))

we have a function g1(n) with the property g1(n)− g(n)→ 0 (C-terms are lower
than B-terms, so they can be dropped without violating this property), when
n → ∞. Also by the construction it is clear that h(n) = C · ndλn, where C is a
constant, and by the conditions of the theorem, this is possible only if C = 0.

Notice tat g1(n) is not a constant function by construction. Also, each Bj is a
linear combination of functions of form e2πiθkn, each θk can be assumed irrational,
and ||Aj(n)|Aj(n) = 1|, so we can conclude that g1(n) is a continuous function
formed of terms of form ceiθkn and of ratios |Aj | /Aj . In these terms, however the
behaviour is asymptotically determined by the highest Λ-terms, so the conclusion
remains even if we drop the lower terms.

By assumption, for all k, the sequence (r + mN)θk is uniformly distributed
modulo 1. It follows that the values e2iπ(r+mN)θk are dense in the unit circle. If
for some m, g1(r + mN) < 0, then g1(r + Nm) ≤ −ε for some ε > 0. Then,
because of the density argument, there are arbitrarily large values of i for which
g1(r+miN) ≤ 0 contradicting condition 2 of the statement. Hence g1(r+mN) ≥ 0

3 This is the only point we need the assumption that the matrix entries are algebraic
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for each m large enough. As g1 is not a constant, there must be some m0 so that
g1(m0) ≥ ε > 0.

Next, let R(x1, . . . , xs) be a function obtained from g1 by replacing each oc-
currence of eiθkn by a variable xk, hence each xk will assume its value in the
unit circle. Moreover, by the assumptions of the theorem, the values of xk will be
uniformly distributed in the unit circle.

Note that g1(n) = R((e2iπ(r+miN)θk)k∈A). Then, because the sequences ((r +
miN)θk)i are uniformly distributed modulo 1, it follows that any value obtained
by the function R((e2iπyk)k∈A) can be approximated by some g1(r +miM) with
arbitrary precision. The function R is continuous, therefore there exists an interval
I = (x1, y1, ...) = ((xk, yk))k∈A on which R((xk)) > ε

2 . So, if mi is large enough
and satisfies

((r +miN)θ1 mod 1, . . . ) = ((r +miM)θk mod 1)k∈A ∈ I,

then g1(r + miN) > ε
2 , which implies fA(r + miN) > 0 and hence ar+miN ∈ L.

Now we just have to prove that the sequence (r+miN) is ”dense enough” to have
dens(L) > 0, contradicting again condition 1.
Then, because of uniform distribution imposed by condition 2, one has

d = lim
i→∞

C(I, r +mN)

r +mN
=
∏
k∈A

(yk − xk)

And so for i large enough, C(I,r+miN)
r+miN

≥ d
2 , with ah+niQ ∈ L, implying dens(L) > 0,

a contradiction. ut

Corollary 2 Let P be any polynomial with nonnegative coefficients and deg(P ) > 2.
The language {aP (n) | n ∈ N} is not in AfLA.

Corollary 3 The language {ap | p prime} is not in AfLA.

Proof (Proof of Corollary 2 and Corollary 3.) Turakainen proved that these two
languages satisfies the two conditions of Theorem 7 [20]. Therefore, these two
languages not in AfLA. ut

5 Generalized Affine Automata

In this section, we show that using arbitrary real state vector and transition ma-
trices does not increase the computational power of AfAs. A generalized affine
finite automaton (GAfA) is a 3-tuple G = (x, {Mi|i ∈ Σ̃}, F ), where, different

from an AfA, {Mi|i ∈ Σ̃} is the set of real-valued transition matrices without any
restriction on the column summations and x is the real-valued initial state vector.
The final affine state of G on the given input w ∈ Σ∗ for some n ≥ 0 is

vf = M$Mwx = M$Mwn · · ·Mw1x,

where Mε = I. It must be guaranteed that at least one entry of vf is non-zero for
any possible input. The accepting probability of G on w is calculated in the same

way of an AfA: fG(w) =
|Fvf |
|vf | .

We start with proving that GAfAs with cutpoint define the same class of
languages as AfAs with cutpoint.
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Theorem 8 Any language L recognized by a k-state GAfA G = (x, {Mi|i ∈ Σ̃}, F )

with cutpoint λ ∈ [0, 1) is recognized by a (k+2)-state AfA A = (x′, {M ′i |i ∈ Σ̃}, F ′)
with cutpoint λ.

Proof Let t0 = 1−
∑k
i=1 xi. We define x′ =

 x
λt0

(1− λ)t0

.

For letter i ∈ Σ, let cj be the j-th column summation of Mi and dj = 1− cj .
We define M ′i based on Mi:

Mi 0

λd1 λd2 · · · λdk
(1− λ)d1 (1− λ)d2 · · · (1− λ)dk

1 0
0 1

 ,

where each column summation is 1. Then, we can calculate v′
f , for a given input

w ∈ Σ∗, as

 vf
λtf

(1− λ)tf

, where tf = 1−
∑k
i=1(vf )i. We define F ′ =

F 0 0

0 1 0

0 0 0

.

Let t = |tf |. We have fG(w) =
|Fvf |
|vf | = λ + d for some real number d. Then

the accepting probability of w by A is

fA(w) =
|F ′v′

f |
|v′

f |
=
|Fvf |+ λt

|vf |+ t
=

(λ+ d)|vf |+ λt

|vf |+ t
= λ+

d

|vf |+ t
.

Thus, both of fG(w) and fA(w) are greater than λ or equal to λ or less than λ. ut

Remark that when the cutpoint is 0, then the constructed AfA can indeed use
one state less in the above proof.

We can obtain the same result for bounded error case when focusing on the
rational numbers. First we show that there is no difference between using rational
numbers and integers.

Lemma 5 For any given GAfA G1 = (x, {Mi|i ∈ Σ̃}, F ) with rational number
components, there is a GAfA G2 with integer number components such that they
have the same accepting probability on any input string.

Proof Let z be sufficiently big integer such that zMi for each i ∈ Σ and zx contains
only integers. Then, G2 is defined as (zx, {zMi|i ∈ Σ̃}, F ). Due to linearity, if the
final vector of G1 on a given input w ∈ Σ∗ is vf , then, the final vector of G2 on

a any given input is z|w̃|+1vf . Thus, fG1
(w) = fG2

(w). ut

Theorem 9 Any language L recognized by a k-state GAfA G = (x, {Mi|i ∈ Σ̃}, F )

with bounded error can be recognized by a (2k+1)-state AfA A = (x′, {M ′i |i ∈ Σ̃}, F ′)
with bounded error, where both automata have only integer components.

Proof Let 1
2 −

1
m for m ≥ 2 be the error bound and w ∈ Σ∗ be the given input.
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We define x′ =

 x
−x

1

. For each i ∈ Σ, we define M ′i =

Mi 0 0

0 Mi 0

r1 r1 1

, and

for letter $, we define M ′$ =

m2M$ 0 0

0 m2M$ 0

r$ r$ 1

, where ri and r$ are row vectors

guaranteeing that the entry summation of each corresponding column is 1. The

final state vector of A on w can be easily obtained as v′
f =

 m2vf
−m2vf

1

, where

vf is the final state vector of G on w.

We define F ′ =

F 0 0

0 F 0

0 0 0

. Let a = |Fvf | and r = |vf | − a. Remark that a

and r can be only non-negative integers. The accepting probability of A on w is

fA(w) =
2m2a

2m2a+ 2m2r + 1
(17)

since we have two copies of vf where one is multiplied by m2 and the other is
multiplied by −m2. For any w /∈ L, it is straightforward that

fA(w) =
2m2a

2m2a+ 2m2r + 1
≤ 2m2a

2m2a+ 2m2r
=

a

a+ r
= fG(w).

In the remaining part, we focus on only the members: w ∈ L and a
a+r = 1

2 + c for

some 1
2 ≥ c ≥ 1

m . From the equation of fG(w), we can obtain a + r = 2a
1+2c and

we can substitute a+ r with 2a
1+2c in equation (17):

fA(w) =
2m2a

4m2a
1+2c + 1

=
(1 + 2c)2m2a

4m2a+ 2c+ 1
=

(1 + 2c)(2m2a+ c+ 1
2 − c−

1
2 )

4m2a+ 2c+ 1
.

After simplification, we have

fA(w) =
1

2
+ c−

(2c+ 1)(c+ 1
2 )

4m2a+ 2c+ 1
=

1

2
+ c− (2c+ 1)2

8m2a+ 4c+ 2
.

We know that a ≥ 1 (a 6= 0 for w ∈ L) and c ≤ 1
2 . Thus, we can easily follow that

(2c+ 1)2

8m2a+ 4c+ 2
<

4

8m2
=

1

2m2
.

Hence, we can bound the accepting probability of any member from below as

fA(w) >
1

2
+

1

m
− 1

2m2
=

1

2
+

2m− 1

2m2
.

Since there is a constant gap for every member, we conclude that A recognizes
L with bounded error. ut

In [21], it was shown that one-sided error (either all members are accepted with
probability 1 or all non-members are accepted with probability 0) versions of BAfL
are the identical if they are defined by AfAs with rational number components or
by AfAs with integer components. By using the above results, we can follow that
the same result is valid also for (two-sided error class) BAfL.
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Corollary 4 BAfLQ = BAfLZ.
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