
HAL Id: hal-03658133
https://hal.science/hal-03658133v1

Submitted on 3 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Logic for Data-aware Systems: Decidability
Results

Francesco Belardinelli, Andreas Herzig

To cite this version:
Francesco Belardinelli, Andreas Herzig. Dynamic Logic for Data-aware Systems: Decidability Results.
26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Aug 2017, Melbourne,
Australia. pp.821-827, �10.24963/ijcai.2017/114�. �hal-03658133�

https://hal.science/hal-03658133v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19156

Official URL

DOI : https://doi.org/10.24963/ijcai.2017/114

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Belardinelli, Francesco and Herzig, Andreas
Dynamic Logic for Data-aware Systems: Decidability Results.
(2017) In: 26th International Joint Conference on Artificial
Intelligence (IJCAI 2017), 19 August 2017 - 25 August 2017
(Melbourne, Australia).

Dynamic Logic for Data-aware Systems: Decidability Results

Francesco Belardinelli

Laboratoire IBISC, UEVE

IRIT Toulouse

belardinelli@ibisc.fr

Andreas Herzig

IRIT Toulouse

Université de Toulouse

CNRS

herzig@irit.fr

Abstract

We introduce a first-order extension of dynamic
logic (FO-DL), suitable to represent and reason
about the behaviour of Data-aware Systems (DaS),
which are systems whose data content is explicitly
exhibited in their description. We illustrate the ex-
pressivity of the formal framework by modelling
English auctions as DaS and by specifying rele-
vant properties in FO-DL. Most importantly, we de-
velop an abstraction-based verification procedure,
thus proving that the model checking problem for
DaS against FO-DL is decidable, provided some
mild assumptions on the interpretation domain.

1 Introduction

In recent years data-aware and data-driven systems acquired
pre-eminence as a formal framework to represent and reason
about systems in which data play a key role in the system’s
execution [Bhattacharya et al., 2007; Deutsch et al., 2007;
2009]. Initially, data-aware systems (DaS) appeared as
a novel paradigm for the design of business processes in
service-oriented computing [Singh and Huhns, 2005]. The
originality of this approach consists in “combin[ing] data and
processes in a holistic manner as the basic building block[s]”
of the system’s description [Cohn and Hull, 2009]. Normally
a DaS is comprised of a data model accounting for the re-
lational structure of data, as well as the business processes
manipulating data. Both the data model and business pro-
cesses are equally important components of the system spec-
ification. Due to that, DaS differ profoundly from most of the
tradition on service architectures and composition, in which
data are typically abstracted away to reduce the complexity
of the system description, thus making the verification task
amenable to standard model checking techniques [Singh and
Huhns, 2005].

Recently, the data-driven paradigm has found applications
beyond service-oriented computing. Notably, a wealth of
contributions have put forward data-driven approaches to
knowledge representation and reasoning (KR&R) as well as
to the modelling of multi-agent system (MAS). More specif-
ically, [Bagheri et al., 2011; 2013] introduced knowledge
and action bases (KAB) to describe distributed systems com-
prising a relational database, over which agent-services oper-

ate. KAB were then extended to include a number of differ-
ent features relevant for modelling MAS, including commit-
ments [Montali et al., 2014], plans [Calvanese et al., 2016b],
and norms [Baldoni et al., 2016]. More directly related
to the present contribution, [Belardinelli et al., 2012; 2014]

tackled the verification problem for artifact-centric multi-
agent systems—a particular class of data-aware systems—
and proved it to be decidable under specific assumptions.
Here we extend the state of the art by considering an ex-
pressive dynamic modal language. Indeed, in the line in-
cluding [Deutsch et al., 2009; Bagheri et al., 2011; 2013;
Belardinelli et al., 2012; 2014], the specification language
for data-aware systems is typically a first-order extension
of either branching-time temporal logic CTL or of the µ-
calculus [Clarke et al., 1999]. In such languages one can
express properties holding in some or all executions of the
system. However, the structure of such executions is not ex-
hibited transparently in the specification language, and ac-
tions do not appear explicitly in the temporal operators of
CTL nor in those of the µ-calculus. To overcome these issues,
here we consider a dynamic modal language [Pratt, 1976;
Harel et al., 2000] in which actions are explicitly named in the
modal operators. This syntactic choice allows us to express
complex behaviours in a precise and concise way. However,
the application of dynamic logic to the specification of data-
aware systems calls for novel verification techniques w.r.t. the
state of the art.

Contribution. We introduce a novel interpretation of first-
order dynamic logic that suits the formal description of rel-
evant aspects of DaS. The language has assignments v := t
and v :=? as atomic actions, which are intuitively interpreted
as assigning to variable v the value t, or, respectively, any
value. More complex actions are built by using the operators
of Propositional Dynamic Logic (PDL). Most importantly, by
using finite abstractions we prove that the model checking
problem for a significant class of data-aware systems is de-
cidable. We illustrate the importance of the technical result
through an application to the verification of English auctions.

Related work. Dynamic logic is one of the success stories
of formal methods applied to computer science. However,
its first-order extensions are comparatively less studied than
its standard propositional version. The language we consider
appears in [Harel et al., 2000] with some key differences.
First, we do not include function symbols and the only re-

lation symbols are the identity ‘=’ and less or equal than
‘≤’. More importantly, we interpret this language on struc-
tures with a finite active domain. We will show that this key
difference, motivated by the literature on databases, allows us
to obtain a decidable verification problem.

As regards DaS, besides the contributions discussed above,
a further line of research works within the situation calcu-
lus [De Giacomo et al., 2012; de Giacomo et al., 2014;
De Giacomo et al., 2016]. By assuming that the underly-
ing theories are bounded, the model checking problem is
proved decidable. Here we do not need to assume bound-
edness as a separate hypothesis. More closely related to
the present contribution, [Giacomo et al., 2016] shows that
GOLOG programs in the situation calculus are naturally
bounded, and therefore their verification is decidable [Cal-
vanese et al., 2016a]. Differently from these works (includ-
ing [Bagheri et al., 2011; 2013; Belardinelli et al., 2012;
2014]) here we consider a rich first-order dynamic modal lan-
guage where actions are explicit.

2 Data-aware Systems and Dynamic Logic

In this section we introduce formally DaS as well as all no-
tions to be used in the rest of the paper. Hereafter we assume:

1. a finite, non-empty set V of individual variables
v1, . . . , vn;

2. a finite, possibly empty set C of individual constants
c1, . . . , cm;

3. a possibly infinite set U ⊇ C of individuals u1, u2, . . .
for the interpretation of variables, together with a total
order ≤ defined on U .

Definition 1 (DaS) A Data-aware System is a tuple M =
〈V,C, U〉, where V , C, and U are defined as above.

Intuitively, given a program written in some programming
language (e.g., Fortran, Java, C), a DaS M is the collec-
tion of all variables and constants appearing in the program,
together with the range of values for the variables. No-
tice that, while most programming languages are typed, here
we consider an untyped formalism. We do so to keep the
presentation more easily accessible to the general audience.
The present formalism can be extended quite seamlessly to
typed languages, even though the exercise is time- and space-
consuming. Hereafter we distinguish between general data-
aware systems and DaS in the technical sense of Def. 1.

Given a DaS M, a state s : V → U is an interpretation of
the variables in V . States can be thought of as a representation
of the registers of the program associated with M at a given
time. Given a state s, its active domain adom(s) = {u ∈
U | u = s(v) for some v ∈ V } ∪ C ⊆ U is the co-domain
of s (the set of all values for the variables in V at s), together
with constant values. This (standard) notion of active domain
is taken from the literature on database systems [Abiteboul et
al., 1995]. Observe that adom(s) is finite as V and C are.

Finally, since the domain U of interpretation is possibly
infinite, we have an infinite number of states in general, and
therefore DaS are infinite-state systems.

Syntax. In order to write formulas that describe the dy-
namics of DaS, we consider an infinite set P of parameters

x1, x2, Then, a term t ∈ T is any element in V ∪ C ∪ P ,
that is, t can be either a variable, or a constant, or a param-
eter. We introduce assignments v := t and v :=? as atomic
actions, as well as atomic formulas t = t′ and t ≤ t′, for
v ∈ V and t, t′ ∈ T .

Definition 2 (FO-DL) Formulas φ and actions α in First-
order Dynamic Logic are defined by mutual recursion as fol-
lows:

φ ::= t = t | t ≤ t | ¬φ | φ→ φ | [α]φ | ∀xφ

α ::= v := t | v :=? | α;α | α ∪ α | α∗ | φ?

where v ∈ V is a variable, t ∈ T is a term, and x ∈ P is a
parameter.

Definition 2 is inspired by the language for first-order dy-
namic logic appearing in [Harel et al., 2000]. Atomic actions
are assignments v := t, that assign the value of term t to vari-
able v, and “wildcard” assignments v :=?, that assign to v
some arbitrary value from domain U . Complex actions are
obtained by composition ;, non-deterministic choice ∪, itera-
tion ∗, and test ?.

Differently from [Harel et al., 2000], we here restrict the
first-order component: FO-DL contains no function sym-
bol and only two relation symbols, the identity ‘=’ and less
or equal than ‘≤’. Indeed, first-order dynamic logic with
two function symbols (and identity) has the same expressive
power as elementary arithmetic [Harel et al., 2000, Proposi-
tion 12.1], and therefore it is undecidable. Notwithstanding
these restrictions, we will see that our FO-DL is expressive
enough for many cases of interest; notably, we will see in in
Section 2.1 that we can express auctions.

As a note on syntax, observe that parameters x ∈ P are
used to write formulas and are infinite in number, while vari-
ables v ∈ V are really constituents of the Data-aware Sys-
tem and are finitely many. The two must be kept distinct.
Hereafter, propositional connectives are introduced as stan-
dard and formula 〈α〉φ is shorthand for [α]φ.

Given a term t ∈ T , we introduce the function P (t) that
returns set {t} if t = x ∈ P is a parameter, and the empty set
otherwise. Then, given a formula φ and an action α in FO-
DL, we define sets fr(φ) and fr(α) of free parameters, and
P (φ) and P (α) of all parameters as follows:

fr(t ⋆ t′) = P (t ⋆ t′) = P (t) ∪ P (t′)
fr(¬ψ) = fr(ψ) and P (¬ψ) = P (ψ)
fr(ψ → ψ′) = fr(ψ) ∪ fr(ψ′) and P (ψ → ψ′) = P (ψ) ∪ P (ψ′)
fr([α]ψ) = fr(α) ∪ fr(ψ) and P ([α]ψ) = P (α) ∪ P (ψ)
fr(∀xψ) = fr(ψ) \ {x} and P (∀xψ) = P (ψ)
fr(v := t) = P (v := t) = P (t)
fr(v :=?) = P (v :=?) = ∅
fr(α♯α′) = fr(α) ∪ fr(α′) and P (α♯α′) = P (α) ∪ P (α′)
fr(α∗) = fr(α) and P (α∗) = P (α)
fr(ψ?) = fr(ψ) and P (ψ?) = P (ψ)

for ⋆ ∈ {=,≤} and ♯ ∈ {; ,∪}.
Observe that the definitions of fr and P differ only as to the

clause for quantified formulas. Also, wildcard assignments
v :=? mention parameters implicitly. This remark motivates
the following definition of #P (φ) ∈ N:

#P (t ⋆ t′) = |P (t) ∪ P (t′)| = |P (t ⋆ t′)|
#P (¬ψ) = #P (ψ)

#P (ψ → ψ′) = #P (ψ) + #P (ψ′)− |P (ψ) ∩ P (ψ′)|
#P ([α]ψ) = #P (α) + #P (ψ)− |P (ψ) ∩ P (ψ′)|
#P (∀xψ) = #P (ψ)
#P (v := t) = |P (t)| = |P (v := t)|
#P (v :=?) = 1
#P (α♯α′) = #P (α) + #P (α′)− |P (α) ∩ P (α′)|
#P (α∗) = #P (α)
#P (ψ?) = #P (ψ)

Because of the base case #P (v :=?) = 1 we have that
|P (φ)| ≤ #P (φ) and |P (α)| ≤ #P (α). In particular, dif-
ferently from P , #P keeps track of the occurrences of wild-
card assignments as well. We use this fact in the construction
of finite abstractions in Section 3. Notice that symbol P has
been overloaded as it is used to denote functions on terms,
formulas, and program expressions.

We now illustrate the expressive power of FO-DL by
means of some toy examples.

Example 1 We consider a simple program that takes as input
two integers, assign these as values to variables a and b, and
then swaps their values by using a temporary variable tmp.
Such a program can be specified in pseudo-code as follows:

int a, b;

int tmp;

tmp := a;

a := b;

b := tmp;

Even for such a simple program we might want to check
that the new values for variables a and b are equal to the old
values for b and a respectively, and this is indeed the case
for every possible value of a and b. To do so, consider the
following formula in FO-DL:

[a :=?; b :=?]∀x, y((a = x ∧ b = y) →

[tmp := a; a := b; b := tmp] (a = y ∧ b = x)) (1)

Intuitively, formula (1) corresponds to the specification
above. In particular, parameters x and y are used to com-
pare the values of variables a and b before and after the swap,
that is, parameters are meant to store the value of variables
throughout the computation.

As a further example, we consider an action α in FO-DL
whose intended meaning is to compute the maximum among
variables in V = {a0, . . . , an}:

α = max := a0;

if max < a1 then max := a1;

...

if max < an then max := an;

where< is defined in the standard way (viz. u < u′ iff u ≤ u′

and u 6= u′) and if φ then α is defined as usual in dynamic
logic as (φ?;α) ∪ ¬φ?.

Then, we might want to check that action α actually returns
the maximum. To this end, consider formula (2) in FO-DL
that intuitively specifies that α is correct, as it actually com-
putes the maximum, no matter what values for a0, . . . , an are
provided as input:

[a0 :=?; . . . ; an :=?]∀x[α](x ≤ max) (2)

As a result, FO-DL can be used as a specification lan-
guage to express correct termination of programs involving
variables for individuals, among other properties. �

Semantics. To assign a meaning to the formulas and ac-
tions in FO-DL, we introduce interpretations σ : P → U of
parameters into the domain U . In a state s, interpretations can
be extended to any term t ∈ T as follows: for t = v ∈ V ,
(s ◦ σ)(t) = s(v); for t = c ∈ C, (s ◦ σ)(t) = c; while
for t = x ∈ P , (s ◦ σ)(t) = σ(x). Hence, variables are
interpreted according to s, parameters according to σ, while
we adopt a Herbrandian interpretation of constants: they are
interpreted as themselves. Given u ∈ U , σx

u is the interpreta-
tion that assigns u to x ∈ P and coincides with σ on all other
parameters.

Given a state s, we define the meaning of formula φ ac-
cording to interpretation σ.

Definition 3 (Satisfaction) The satisfaction relation |= for
DaS M, state s, interpretation σ, and formula φ is given as:

(M, s, σ) |= t = t′ iff (s ◦ σ)(t) = (s ◦ σ)(t′)
(M, s, σ) |= t ≤ t′ iff (s ◦ σ)(t) ≤ (s ◦ σ)(t′)
(M, s, σ) |= ¬φ iff (M, s, σ) 6|= φ
(M, s, σ) |= φ→ φ′ iff (M, s, σ) 6|= φ or (M, s, σ) |= φ′

(M, s, σ) |= [α]φ iff for all s′, Rα(s, s
′) implies (M, s′, σ) |= φ

(M, s, σ) |= ∀xφ iff for all u ∈ adom(s), (M, s, σx

u
) |= φ

where the relation Rα is defined by mutual recursion as

Rv:=t(s, s
′) iff s′(v) = (s ◦ σ)(t)

and for every v′ 6= v, s′(v′) = s(v′)
Rv:=?(s, s

′) iff s′(v) ∈ U
and for every v′ 6= v, s′(v′) = s(v′)

Rα;β(s, s
′) iff for some s′′, Rα(s, s

′′) and Rβ(s
′′, s′)

Rα∪β(s, s
′) iff either Rα(s, s

′) or Rβ(s, s
′)

Rα∗(s, s′) iff R∗
α(s, s

′), where R∗
α is the reflexive and

transitive closure of Rα

Rφ?(s, s
′) iff (M, s, σ) |= φ and s′ = s

We remark that the interpretation of actions is as standard
in first-order dynamic logic. In particular, atomic assign-
ments v := t and v :=? update variable v with the value
of term t, or, respectively, of any value in U .

As regards formulas, differently from [Harel et al., 2000],
quantification is restricted to the active domain adom(s) in
a given state s. This is a typical assumption in the theory of
databases [Abiteboul et al., 1995], which we will show to be
sufficient for our expressivity purposes, as it is the case in
formulas (1) and (2).

We say that formula φ is true at state s of DaS M, or
(M, s) |= φ, iff for every interpretation σ, (M, s, σ) |= φ;
while φ is true in M, or M |= φ, iff for all s ∈ M,
(M, s) |= φ. As an example, the formula

[a :=?][b :=?](a < b→ 〈c :=?〉(a < c ∧ c < b))

is true for every dense linear order <, in particular for the
structure 〈Q,≤〉 of the rational numbers seen as a DaS M =
〈{a, b, c}, ∅,Q〉. On the other hand, the formula

[a :=?][b :=?](a < b→ ∃x(a < x ∧ x < b))

is not true in general on dense orders, as parameter x ranges
over the finite set adom(s) = {s(a), s(b), s(c)} of active el-

ements. As a consequence, wildcard assignments and first-
order quantification express different notions in our semantics
for FO-DL.

To investigate their relationship further, notice that if for-
mula φ does not exhaust the finite set V of variables, then
standard universal quantification, ranging on U rather than
adom(s), is captured by formula [v :=?]∀x(x = v → φ),
with the proviso that variable v does not occur in φ. How-
ever, since set V is finite, the translation scheme above is not
applicable in general. In particular, first-order quantification
is always restricted to the active domain.

In Example 1 we informally discussed the verification of
programs against specifications (1) and (2). More precisely,
we now state the model checking problem for this setting.

Definition 4 (Model Checking Problem) Given a DaS M
and formula φ in FO-DL, determine whether M |= φ.

Since M is an infinite-state system in general, Def. 4 as-
sumes some finitary representation of M, in particular of the
interpretation domain U . This can be achieved in standard
ways [Bagheri et al., 2013; Belardinelli et al., 2014].

Then, verifying the correctness of the swap and max pro-
grams in Example 1 when the variables are assigned real val-
ues is tantamount to model checking formulas (1) and (2) on
all states interpreting the variables on the reals R. Notice that
in this case M has infinitely many states: it is therefore not
obvious whether the model checking problem is decidable.

2.1 Example: Auctions

In this section we model a toy example of an English (as-
cending bid) auction as a DaS. We assume familiarity with
English auctions, in which a number of bidders bid for one
or more items put on offer by an auctioneer. Bidders are as-
sumed to be rational, in particular they have a true value up
to which they are ready to bid. The auctioneer keeps track of
the bids and, at the end of the bidding phase, she assigns the
item to the bidder with the highest offer. We refer to [Easley
and Kleinberg, 2010] for a detailed presentation of English
auctions.

To represent the scenario above as a DaS with n bidders,
we assume that the set V contains variables bidi and t valuei
for every bidder i ≤ n, respectively representing the current
bid and the true value of bidder i; moreover, we suppose that
V contains a variable high for the highest offer so far. All
these variables range over the rationals Q. Also, we consider
a variable time out to terminate the bidding phase, taking
values 0 and 1. We then model an English auction for n bid-
ders as a DaS M = 〈V, {0, 1},Q〉.

Then, we can specify the bidding cycle by means of the
following action α:

time out := 0;
while (time out = 0) do {⋃

i≤n (bidi :=?;
if (bidi ≤ t valuei) ∧ (high < bidi)
then high := bidi)

∪ time out := 1 }

Action α consists in an initial assignment of false (0) to
time out, and then a while ψ do β loop (expressible in dy-
namic logic as (ψ?;β)∗;¬ψ?), whose exit condition is that
the bidding process has timed out (by means of the non-
deterministic assignment time out := 1). Within the loop,
a bidder is chosen non-deterministically to pass a bid via a
wildcard assignment bidi :=?. If the bid is comprised be-
tween bidder i’s true value and the highest bid so far, then it
becomes the new high.

By means of action α we can specify in FO-DL a number
of properties of auctions. For instance, we might want to say
that throughout the auction, for every bidder, the values of
bids are comprised between the highest offer so far and her
true value:

∧

i≤n

[α]((bidi ≤ t valuei) ∧ (high < bidi)) (3)

Moreover, in FO-DL we can also compare values for the
same variable at different points in the bidding process. As
an example, we can express that true values do not change
during the auction:

∧

i≤n

∀x((x = t valuei) → [α](x = t valuei)) (4)

In (4) parameter x allows us to compare the value of
t valuei before and after the execution of α.

Finally, in FO-DL we can specify that the value of the high-
est bid does not decrease throughout the auction:

∀x((x = high) → [α](x ≤ high)) (5)

Formulas (3)-(5) are simple specifications that nonetheless
allow us to make comparisons between the values of vari-
ables at different points of the system’s execution, which are
typically not expressible in propositional languages. How-
ever, to verify properties such as (3)-(5), we cannot rely on
standard model checking techniques because we are work-
ing with data-aware systems, for which the model checking
problem is known to be undecidable in general [Deutsch et
al., 2009]. In the next section we will develop a verification
method adapted to the present framework and language.

3 Decidability via Finite Abstractions

In this section we introduce an abstraction-based technique to
prove that the model checking problem in Def. 4 is indeed de-
cidable. Then, we apply this result to the particular scenario
of English auctions of Section 2.1. In the rest of the section
we assume a (possibly finite) abstract domain UA ⊇ C.

Definition 5 (Abstract State) Given a (possibly finite) ab-
stract domain UA ⊇ C, an abstract state is a function
s : V → UA together with a total order ≤s defined on UA

that extends the restriction ≤ |C of ≤ on C.

Notice that, differently from the standard states in Sec-
tion 2, the total order ≤s depends on the particular abstract
state s. In particular, for different s and s′, ≤s may be dif-
ferent from ≤s′ . Nonetheless, each ≤s is an extension of re-
striction ≤ |C , that is, the order ≤ on C is preserved. Hence,
for every c, c′ ∈ C, c ≤s c

′ iff c ≤s′ c
′. Total extensions (for

a finite UA) can be found constructively, using topological
sorting algorithms [Cormen et al., 1990]. Hereafter, we do
not discuss this matter further, and assume that suitable total
extensions are always at hand.

Further, given a DaS M = 〈V,C, U〉 and UA ⊇ C, let the
abstraction of M be the DaS MA = 〈V,C, UA〉. Next, we
introduce a notion of isomorphism between states and their
abstractions.

Definition 6 (Isomorphism) A state s ∈ M and an abstract
state s′ ∈ MA are isomorphic, or s ≃ s′, iff for some bijec-
tion ι : adom(s) → adom(s′) ∪ C,

(i) s′ = ι ◦ s;

(ii) ι is the identity on C;

(iii) ι preserves ≤, that is, for every u, u′ ∈ adom(s), u ≤ u′

iff ι(u) ≤s′ ι(u
′).

Any bijection ι as above is a witness for s ≃ s′, or s
ι
≃ s′ for

short.

Intuitively, isomorphic states share the same relational
structure. Observe that, as regards order ≤s′ , witness ι pre-
serves the interpretation of individuals in the active domain
s′(V) only (as well as the constant in C). This feature of
isomorphisms is key to obtain finite abstractions.

Now we show that isomorphic states satisfy the same first-
order formulas φ as defined by the following BNF:

φ ::= t = t′ | t ≤ t′ | ¬φ | φ→ φ | ∀xφ

However, φ might contain free parameters interpreted out-
side the active domain. This remark motivates the following
definition.

Definition 7 (Equivalent Interpretations) Given a state
s ∈ M, an isomorphic abstract state s′ ∈ MA, and a
formula φ, the interpretations σ : P → U and σ′ : P → UA

are equivalent for φ w.r.t. s and s′ iff for some bijection
θ : adom(s) ∪ σ(fr(φ)) → adom(s′) ∪ σ′(fr(φ)),

(i) the restriction θ|adom(s) is a witness for s ≃ s′;

(ii) σ′ = θ ◦ σ;

(iii) for every u, u′ ∈ adom(s) ∪ σ(fr(φ)), u ≤ u′ iff
θ(u) ≤s′ θ(u

′).

Again, as regards ≤s′ , a witness θ preserves only the order
of individuals in s′(V) ∪ C ∪ σ′(fr(φ)), which is a finite set.
As customary in first-order logic, we can prove that equiva-
lent interpretations on isomorphic states preserve first-order
formulas [Abiteboul et al., 1995]. We report this result for
our particular setting.

Lemma 1 Given a state s ∈ M, an isomorphic abstract
state s′ ∈ MA, and an FO-formula φ, if interpretations σ
and σ′ are equivalent for φ w.r.t. s and s′, then (M, s, σ) |= φ
iff (MA, s′, σ′) |= φ.

We now prove that Lemma 1 can be lifted to the full lan-
guage FO-DL. To do so, we need one more assumption.
Given total order ≤, the corresponding strict linear order <
is dense with no endpoints iff (i) for every u, u′ ∈ U , u < u′

implies that for some u′′ ∈ U , u < u′′ and u′′ < u′; and (ii)
for every u ∈ U ′, u < u′ and u′′ < u for some u′, u′′ ∈ U .
It is well-known that every non-empty countable dense linear

order without endpoints is order-isomorphic to Q [Roitman,
1990, Theorem 27]. Hence, hereafter we assume U = Q as
interpretation domain.

We can now prove the main preservation result of this pa-
per. Hereafter we write Rα(s) = {s′ | Rα(s, s

′)}.

Theorem 2 Let M = 〈V,C,Q〉 be a DaS with abstraction
MA = 〈V,C, UA〉. Then, consider a state s ∈ M, an iso-
morphic abstract state s′ ∈ MA, and an FO-DL formula φ.
If |UA| ≥ |V |+ |C|+#P (φ), then for all interpretations σ
and σ′ equivalent for φ w.r.t. s and s′,

1. if φ is of the form [α]ψ, then

(a) for every state w ∈ Rα(s), there exists an abstract
state w′ ∈ R′

α(s
′), isomorphic to w, such that σ

and σ′ are equivalent for ψ w.r.t. w and w′;

(b) for every abstract w′ ∈ R′
α(s

′), there exists a state
w ∈ Rα(s), isomorphic to w′, such that σ and σ′

are equivalent for ψ w.r.t. w and w′.

2. Further, (M, s, σ) |= φ iff (MA, s′, σ′) |= φ.

Sketch of Proof. We prove both item 1 and 2 by mutual
induction on the structure of φ. We start by proving item 1,
specifically by induction on the structure of α. As for the base
case, let α ≡ v := t and consider interpretations σ and σ′

equivalent for φ w.r.t. s and s′. If Rα(s, w) then w(v) = (s ◦
σ)(t), while the interpretation of the other variables remains
the same. Then consider abstract state w′ such that w′(v) =
(s′ ◦ σ′)(t) and w′ coincides with s′ on all other variables.
Clearly w and w′ are isomorphic, as s and s′ are and σ and
σ′ are equivalent. In particular, w′ can be chosen so that the
total order ≤w′ preserves order ≤ on w′(V) ∪ C ∪ σ(fr(ψ)):
if t is either a variable or a constant, then the result follows
by condition (iii) in Def. 6; if t is a parameter, then it follows
by (iii) in Def. 7. Finally, R′

α(s
′, w′) and by construction σ

and σ′ are equivalent for ψ w.r.t. w and w′.

Let α ≡ v :=? and again consider interpretations σ
and σ′ equivalent for φ w.r.t. s and s′. Let θ be a wit-
ness for s ≃ s′. If Rα(s, w) then w(v) ∈ U . Since
|UA| ≥ |V | + |C| + #P (φ), we can find a ‘fresh’ element
u′ ∈ UA \ (s′(V \ {v})∪C ∪ σ′(fr(φ))) and set w′(v) = u′,
while w′ coincides with s′ on all other variables. Then define
θ′ as θ but θ′(w(v)) = u′. Clearly, θ′ is a witness for w ≃ w′

and σ′ = θ′ ◦ σ. Moreover, the total order ≤w′ can be com-
pleted so that item (iii) in Def. 7 is satisfied. Thus,R′

α(s
′, w′)

and σ and σ′ are equivalent for ψ w.r.t. w and w′.

The inductive steps for α ≡ β′;β′′ and α ≡ β′ ∪ β′′ are
immediate. The case for α ≡ β∗ can be proved by induction
on the length of the path connecting states s and w such that
R∗

β(s, w), by using the induction hypothesis.

Finally, let α ≡ χ?. Then, Rα(s, w) implies that
(M, s, σ) |= χ and w = s. Since σ and σ′ are equivalent
for φ w.r.t. s and s′, and |UA| ≥ |V |+ |C|+#P (φ) ≥ |V |+
|C| +#P (χ), we have in particular that σ and σ′ are equiv-
alent for χ (w.r.t. s and s′). By item 2 and the induction hy-
pothesis we obtain that (M, s, σ) |= χ iff (MA, s′, σ′) |= χ,
that is, R′

α(s
′, w′) for w′ = s′.

The proof of item 1.(b) is similar, we only notice that in
the base case for α ≡ v :=? we use the fact that the linear

order < on Q is dense and without endpoints, to find u ∈ Q
that simulates w′(v) ∈ UA. We now move to prove item 2.

The base case for first-order formulas follows by Lemma 1;
the inductive cases for propositional connectives are immedi-
ate. In particular, notice that, since |UA| ≥ |V | + |C| +
#P (¬ψ) = |V | + |C| + #P (ψ) and |UA| ≥ |V | + |C| +
#P (ψ1 ∧ ψ2) ≥ |V | + |C| + #P (φi), for i = 1, 2, the in-
duction hypothesis holds.

For φ ≡ ∀xψ, (M, s, σ) |= ψ iff for all u ∈ adom(s),
(M, s, σx

u) |= φ. If θ is a witness to the fact that σ and σ′

are equivalent for φ w.r.t. s and s′, then interpretations σx
u

and σ′x
θ(u) are equivalent for ψ (also w.r.t. s and s′). More-

over, |UA| ≥ |V | + |C| + #P (φ) = |V | + |C| + #P (ψ).
Hence, the induction hypothesis holds and it follows that
(MA, s′, σ′x

θ(u)) |= φ. As u is arbitrary and θ is a bijection be-

tween adom(s) and adom(s′), we obtain (MA, s′, σ′) |= φ.
Suppose that φ ≡ [α]ψ. As regards the ⇐ direction,

(M, s, σ) 6|= φ iff for some w ∈ Rα(s), (M, w, σ) 6|= ψ. By
item 1.a there exists w′ ∈ R′

α(s
′) such that w′ is isomorphic

to w, and σ and σ′ are equivalent for ψ w.r.t. w and w′. Since
|UA| ≥ |V |+ |C|+#P (φ) ≥ |V |+ |C|+#P (ψ), by induc-
tion hypothesis (MA, w′, σ′) 6|= ψ, that is, (MA, s′, σ′) 6|=
φ. The ⇒ direction is proved similarly, by using item 1.b.

By Theorem 2 a state s and its abstraction s′ satisfy the
same formulas in FO-DL, whenever the abstract domain UA

contains enough elements to mimick transitions from s. Most
importantly, UA can be assumed to be finite. However, the
linear order < on Q has to be dense, with no endpoints.

Furthermore, we say that DaS M and abstraction MA are
bisimilar iff (i) for every s ∈ M, there is an isomorphic s′ ∈
MA, and (ii) for every s′ ∈ MA, there is an isomorphic s ∈
M. As a consequence of Theorem 2 we obtain the following
result.

Corollary 3 Let M = 〈V,C,Q〉 be a DaS with bisimilar
abstraction MA = 〈V,C, UA〉. For every FO-DL formula φ,
if |UA| ≥ |V |+ |C|+#P (φ) then M |= φ iff MA |= φ.

In particular, whenever UA is finite, the number of states
in MA is finite as well. Therefore, by Corollary 3 we can
verify an FO-DL formula φ on the infinite-state DaS M by
model checking the finite abstraction MA (e.g. by translating
to propositional DL).

Discussion. We briefly discuss the application of our re-
sults to the auction DaS M for n bidders in Section 2.1.
Observe that for M = 〈V, {1, 2},Q〉, we have V =⋃

i≤n{bidi, t valuei} ∪ {high, time out}, and therefore

|V | = 2(n+1), |C| = 2. Further, for formula (3), we
have #P (3) = n2. Hence, in order to verify (3) it is suf-
ficient to consider an abstract domain UA of finite cardinality
|UA| ≥ |V |+|C|+#P (3) = n(n+2)+4. Then, formula (3)
can be verified on such abstraction MA, and finally the result
can be transfered to M in virtue of Corollary 3.

Furthermore, Corollary 3 gives us some useful insight on a
problem related to model checking. Given a class C of DaS
and an FO-DL formula φ, the satisfiability problem consists
in determining whether φ is satisfied in C, that is, true in
some DaS belonging to C. We remarked earlier that every
non-empty countable dense linear order without endpoints is

order-isomorphic to Q. As a consequence, the satisfiability
problem for the class of non-empty countable dense linear
orders without endpoints can be reduced to the model check-
ing problem for the rationals Q. In particular, we obtain the
following result.

Corollary 4 The satisfiability problem of FO-DL formulas
for the class of DaS whose interpretation domain U is a non-
empty countable dense linear order without endpoints is de-
cidable.

In future work we plan to extend these results to other
classes of DaS and to determine the exact complexity of the
model checking and satisfiability problems.

4 Conclusions

In this paper we introduced a formal framework for Data-
aware Systems inspired by (first-order) dynamic logic. The
data content of a DaS is modelled by a finite set of vari-
ables (and constants) that can range over a possibly infinite
interpretation domain. As a result, DaS are infinite-state sys-
tems in general (Section 2). We showed that DaS are rich
enough to express elaborate multi-agent scenarios, including
auction-based mechanisms (Section 2.1), and then we con-
sidered the verification problem w.r.t. the first-order exten-
sion FO-DL of dynamic logic. The main theoretical result
of the paper consists in showing that, under specific condi-
tions, the model checking problem for DaS w.r.t. FO-DL is
decidable. The decidability result is obtained by defining fi-
nite, bisimilar abstractions that preserve the interpretation of
FO-DL (Section 3). Hence, to verify an FO-DL formula φ in
a concrete, infinite-state DaS M, we build the finite abstrac-
tion MA, then model check φ on MA, and finally transfer
the verification result to M by virtue of Corollary 3.

We envisage a number of extensions for the present con-
tribution. Propositional Dynamic Logic is one of the success
stories of formal methods applied to computer science, with
a steady stream of fundamental contributions [Harel, 1984;
Harel et al., 2000]. On the other hand, its first-order
extensions are much less investigated. In particular, the
well-known undecidability results in first-order logic have
spawned a wealth of contributions in mathematical logic and
theoretical computer science [Börger et al., 1997]. For first-
order dynamic logic the situation is even more complex, as
many well-known results that hold for first-order logic, fail
for its dynamic counterpart, e.g., Löwenheim-Skolem the-
orem, completeness, compactness. However, in first-order
dynamic logic there has not been a comparable push aimed
at singling out decidable and tractable fragments. In future
work we plan to individuate further classes of DaS and frag-
ments of FO-DL that have a decidable model checking and
satisfiability problems, and study their exact complexity. We
deem results along this line valuable to improve the under-
standing of (first-order) dynamic logics, data-aware systems,
and auction-based mechanisms.

Acknowledgments

F. Belardinelli acknowledges the support of the ANR JCJC
Project SVeDaS (ANR-16-CE40-0021).

References

[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[Bagheri et al., 2011] B. Bagheri, D. Calvanese, G. De Gia-
como, R. De Masellis, and P. Felli. Foundations of rela-
tional artifacts verification. In Proc. of the 9th Int. Confer-
ence on Business Process Management (BPM11), p. 379–
395. Springer, 2011.

[Bagheri et al., 2013] B. Bagheri, D. Calvanese, M. Montali,
G. De Giacomo, and A. Deutsch. Verification of relational
data-centric dynamic systems with external services. In
Proc. of the 32nd Symposium on Principles of Database
Systems (PODS13)., p. 163–174. ACM, 2013.

[Baldoni et al., 2016] M. Baldoni, C. Baroglio, D. Cal-
vanese, R. Micalizio, and M. Montali. Towards data- and
norm-aware multiagent systems. In Engineering Multi-
Agent Systems - 4th International Workshop, EMAS 2016,
Revised, Selected, and Invited Papers, p. 22–38. Springer,
2016.

[Belardinelli et al., 2012] F. Belardinelli, A. Lomuscio, and
F. Patrizi. An Abstraction Technique for the Verification
of Artifact-Centric Systems. In Proc. of the 13th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’12), p. 319 – 328, 2012.

[Belardinelli et al., 2014] F. Belardinelli, A. Lomuscio, and
F. Patrizi. Verification of agent-based artifact systems.
Journal of Artificial Intelligence Research, 51:333–376,
2014.

[Bhattacharya et al., 2007] Kamal Bhattacharya, Cagdas E.
Gerede, Rick Hull, Rong Liu, and Jianwen Su. To-
wards Formal Analysis of Artifact-Centric Business Pro-
cess Models. In Proc. of the 5th Int. Conference on Busi-
ness Process Management (BPM07), 2007.

[Börger et al., 1997] E. Börger, E. Grädel, and Y. Gurevich.
The Classical Decision Problem. Perspectives in Mathe-
matical Logic. Springer, 1997.

[Calvanese et al., 2016a] D. Calvanese, G. De Giacomo,
M. Montali, and F. Patrizi. On first-order µ-calculus
over situation calculus action theories. In Principles of
Knowledge Representation and Reasoning: Proceedings
of the 15th International Conference, KR 2016, p. 411–
420. AAAI Press, 2016.

[Calvanese et al., 2016b] D. Calvanese, M. Montali, F. Pa-
trizi, and M. Stawowy. Plan synthesis for knowledge and
action bases. In Proc. of the 25th International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, p. 1022–
1029. IJCAI/AAAI Press, 2016.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and D. A.
Peled. Model Checking. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

[Cohn and Hull, 2009] D. Cohn and R. Hull. Business Ar-
tifacts: A Data-Centric Approach to Modeling Business
Operations and Processes. IEEE Data Eng. Bull., 32(3):3–
9, 2009.

[Cormen et al., 1990] T. Cormen, C. Leiserson, R. Rivest,
and C. Stein. Introduction to Algorithms. MIT Press, 1990.

[De Giacomo et al., 2012] G. De Giacomo, Y. Lespérance,
and F. Patrizi. Bounded Situation Calculus Action The-
ories and Decidable Verification. In Proc. of the 13th In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’12), p. 467–477, 2012.

[de Giacomo et al., 2014] G. De Giacomo, Y. Lesperance,
F. Patrizi, and S. Vassos. Progression and verification of
situation calculus agents with bounded beliefs. In Proc. of
the International conference on Autonomous Agents and
Multi-Agent Systems (AAMAS14), p. 141–148. IFAAMAS,
2014.

[De Giacomo et al., 2016] G. De Giacomo, Y. Lespérance,
and F. Patrizi. Bounded situation calculus action theories.
Artificial Intelligence, 237:172–203, 2016.

[Deutsch et al., 2007] A. Deutsch, L. Sui, and V. Vianu.
Specification and Verification of Data-Driven Web Appli-
cations. Journal of Computer System Science, 73(3):442–
474, 2007.

[Deutsch et al., 2009] A. Deutsch, R. Hull, F. Patrizi, and
V. Vianu. Automatic Verification of Data-Centric Busi-
ness Processes. In Proc. of the International Conference
on Database Theory, 2009.

[Easley and Kleinberg, 2010] D. Easley and J. Kleinberg.
Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press,
New York, 2010.

[Giacomo et al., 2016] G. De Giacomo, Y. Lesprance, F. Pa-
trizi, and S. Sardiña. Verifying congolog programs on
bounded situation calculus theories. In Proc. of the con-
ference of the American Association for Artificial Intelli-
gence, p. 950–956. AAAI Press, 2016.

[Harel et al., 2000] D. Harel, J. Tiuryn, and D. Kozen. Dy-
namic Logic. MIT Press, Cambridge, MA, USA, 2000.

[Harel, 1984] D. Harel. Dynamic logic. In Handbook of
Philosophical Logic, volume II: Extensions of Classical
Logic, chapter 10, p. 497–604. Reidel, 1984.

[Montali et al., 2014] M. Montali, D. Calvanese, and G. De
Giacomo. Verification of data-aware commitment-based
multiagent system. In Proc. of the International confer-
ence on Autonomous Agents and Multi-Agent Systems, AA-
MAS ’14, p. 157–164. IFAAMAS/ACM, 2014.

[Pratt, 1976] V. R. Pratt. Semantical considerations on floyd-
hoare logic. Technical report, Cambridge, MA, USA,
1976.

[Roitman, 1990] J. Roitman. Introduction to Modern Set
Theory. Wiley, 1990.

[Singh and Huhns, 2005] M. Singh and M. Huhns. Service-
Oriented Computing: Semantics, Processes, Agents. Wi-
ley, 2005.

