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Abstract

In this paper, we propose a single-agent logic of
goal-directed knowing how extending the standard
epistemic logic of knowing that with a new know-
ing how operator. The semantics of the new opera-
tor is based on the idea that knowing how to achieve
ϕ means that there exists a (uniform) strategy such
that the agent knows that it can make sure ϕ. We
give an intuitive axiomatization of our logic and
prove the soundness, completeness and decidabil-
ity of the logic. The crucial axioms relating know-
ing that and knowing how illustrate our understand-
ing of knowing how in this setting. This logic can
be used in representing and reasoning about both
knowledge-that and knowledge-how.

1 Introduction

Standard epistemic logic focuses on reasoning about propo-
sitional knowledge expressed by knowing that ϕ [Hintikka,
1962]. However, in natural language, various other knowl-
edge expressions are also frequently used, such as knowing
what, knowing how, knowing why, and so on.

In particular, knowing how receives much attention in both
philosophy and AI. Epistemologists debate about whether
knowledge-how is also propositional knowledge (cf. the sur-
vey [Fantl, 2008]), e.g., whether knowing how to swim can be
rephrased using knowing that. In AI, it is crucial to let au-
tonomous agents know how to fulfill certain goals in robotics,
game playing, decision making, and multi-agent systems
(cf. the surveys [Gochet, 2013; Ågotnes et al., 2015]). In
fact, a large body of AI planning can be viewed as find-
ing algorithms to let the autonomous planner know how to
achieve some propositional goals, i.e., to obtain goal-directed
knowledge-how. Here, both propositional knowledge and
knowledge-how matter, especially in the planning problems
where initial uncertainty and non-deterministic actions are
present. From a logician’s point of view, it is interesting to see
how knowing how interacts with knowing that, and how they
differ in their reasoning patterns. A logic of knowing how
also helps us to find a consistency notion regarding knowl-
edge database with knowing how expressions.
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Figure 1: A scenario representing how to cure the pain.

Example 1.1. Consider the scenario where a doctor needs a
plan to treat a patient and cure his pain (p), under the uncer-
tainty about some possible allergy (q). If there is no allergy
(¬q) then simply taking some pills can cure the pain, and the
surgery is not an option. On the other hand, in presence of
the allergy, the pills may cure the pain or have no effect at all,
while the surgery can cure the pain for sure. The model from
Figure 1 represents this scenario with an additional action of
testing whether q. The dotted line represents the initial uncer-
tainty about q, and the test on q can eliminate this uncertainty
(there is no dotted line between s3 and s4). According to the
model, to cure the pain (guarantee ¬p) at the end, it makes
sense to take the surgery if the result of the test of whether q
is positive and take the pills otherwise. We can say the doctor
in this case knows how to cure the pain.

How to formalize the knowledge-how of the agent in such
scenarios with uncertainty? Already since the early days
of AI, people have been looking at it in the setting of log-
ics of knowledge and action [McCarthy and Hayes, 1969;
McCarthy, 1979; Moore, 1985; Lespérance et al., 2000;
van der Hoek et al., 2000]. However, there has been no con-
sensus on how to capture the logic of “knowing how” for-
mally (cf. the recent surveys [Gochet, 2013] and [Ågotnes et
al., 2015]). The difficulties are well discussed in [Jamroga
and Ågotnes, 2007] and [Herzig, 2015]: simply combining
the existing modalities for “knowing that” and “ability” in a
logical language like ATEL [van der Hoek and Wooldridge,
2003] does not lead to a genuine notion of “knowing how”,
e.g., knowing how to achieve p is not equivalent to merely
knowing that there exists some strategy to make sure p. It
does not work even when we replace the strategy by a uni-
form strategy where the agent has to choose the same ac-
tion on indistinguishable states [Jamroga and Ågotnes, 2007].
Let ϕ(x) express that x is a way to make sure some goal is
achieved, and let K be the standard knowledge-that modal-
ity. There is a crucial distinction between the de dicto read-



ing of knowing how (K∃xϕ(x)) and the desired de re read-
ing (∃xKϕ(x)) endorsed also by linguists and philosophers
[Stanley and Williamson, 2001]. The latter intuitively implies
the former, but not the other way round. For example, con-
sider a variant of Example 1.1 where no test is available: then
the doctor has de dicto knowledge-how to cure, but not de re
knowledge. Proposals to capture the de re reading have been
discussed in the literature, such as making the knowledge
operator more constructive [Jamroga and Ågotnes, 2007],
making the strategy explicitly specified [Herzig et al., 2013;
Belardinelli, 2014], or inserting K in-between an existen-
tial quantifier and the ability modality in see-to-it-that (STIT)
logic [Broersen and Herzig, 2015].

In [Wang, 2015; 2016b], a new approach is proposed by
introducing a single new modality Kh of (conditional) goal-
directed knowing how, instead of breaking it down into other
modalities. This approach is in line with other de re treat-
ments of non-standard epistemic logics of knowing whether,
knowing what and so on (cf. [Wang, 2016a] for a survey).
The semantics of Kh is inspired by the idea of confor-
mant planning based on linear plans [Smith and Weld, 1998;
Yu et al., 2016]. It is shown that Kh is not a normal modal-
ity, e.g, knowing how to get drunk and knowing how to
drive does not entail knowing how to drive when drunk.
The work is generalized further in [Li and Wang, 2017;
Li, 2017]. However, in these previous works, there was no
explicit knowing that modality K in the language and the se-
mantics of Kh is based on linear plans, which does not cap-
ture the broader notion allowing branching plans or strategies
that are essential in the scenarios like Example 1.1. In this
paper, we extend this line of work in the following aspects:

• Both the knowing how modality Kh and knowing that
modality K are in the language, and we capture the inter-
actions of the two explicitly by several axioms. Accord-
ingly, we have both the action transitions and epistemic
uncertainty in the models.

• In contrast to the essentially state-independent (global)
semantics in [Wang, 2015; 2016b], we interpret Kh lo-
cally w.r.t. the local uncertainty, in accordance with the
standard semantics for the knowing that operator K.

• Instead of linear plans in [Wang, 2015], the semantics of
our Kh operator is based on the existence of strategies
(branching plans). In this way, the agent can make use of
the knowledge learned during the execution of the plan,
which helps us to capture situations where the agent in-
tuitively knows how but does not have a linear plan.

The intuitive idea behind our semantics of Khϕ is that the
agent knows how to achieve ϕ iff (s)he has an executable uni-
form strategy σ such that the agent knows that:

• σ guarantees ϕ in the end given the uncertainty;

• σ always terminates after finitely many steps.

Note that for an agent to know how to make sure ϕ, it is not
enough to find a plan which works de facto, but the agent
should know it works in the end. This is a strong requirement
inspired by planning under uncertainty, where the collection
of final possible outcomes after executing the plan is required

to be a subset of the collection of the goal states [Geffner and
Bonet, 2013].

Technically, our contributions are summarized as follows:

• A logical language with both Kh and K operators with
a semantics which fleshes out formally the above intu-
itions about knowing how.

• A complete axiomatization with intuitive axioms.

• Decidability of our logic.

The paper is organized as follows: Section 2 lays out the lan-
guage and semantics of our framework; Section 3 proposes
the axiomatization and proves its soundness; We prove the
completeness of our proof system and show the decidability
of the logic in Section 4 before we conclude with future work.

2 Language and Semantics

Let PROP be a countable set of propositional symbols.

Definition 2.1 (Language). The language is defined by the
following BNF where p ∈ PROP:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Khϕ.

We use ⊥,∨,→ as usual abbreviations and write K̂ for ¬K¬.

Definition 2.2 (Models). A model M is a quintuple

〈W,ACT,∼, {
a
−→| a ∈ ACT}, V 〉 where:

• W is a non-empty set,

• ACT is a set of actions,

• ∼ ⊆W ×W is an equivalence relation on W ,

•
a
−→ ⊆W ×W is a binary relation for each a ∈ ACT

• V :W → 2PROP is a valuation.

Note that the labels in ACT do not appear in the lan-
guage but only in the models. The graph in Example
1.1 represents a model with omitted self-loops of ∼ (dot-
ted lines), and the equivalence classes induced by ∼ are
{s1, s2}, {s3}, {s4}, {s5}, {s6}. In this paper we do not re-

quire any properties between ∼ and
a
−→ to lay out the most

general framework. We will come back to particular assump-
tions like perfect recall at the end of the paper. Given a model

and a state s, if there exists t such that s
a
−→ t, we say that a

is executable at s. Also note that the actions can be non-
deterministic as in [Wang, 2015]. For each s ∈ W , we use
[s] to denote the equivalence class {t ∈ W | s ∼ t}, and use
[W ] to denote the collection of all the equivalence classes on

W w.r.t. ∼. We use [s]
a
−→ [t] to indicate that there are s′ ∈ [s]

and t′ ∈ [t] such that s′
a
−→ t′. If there is t ∈ W such that

[s]
a
−→ [t], we say a is executable at [s].

Definition 2.3 (Strategies). Given a model, a (uniformly ex-
ecutable) strategy is a partial function σ : [W ] → ACT such
that σ([s]) is executable at all s′ ∈ [s]. Particularly, the
empty function is also a strategy, the empty strategy.

Note that the executability is as crucial as uniformity, with-
out which knowledge-how may be trivialized. We use dom(σ)
to denote the domain of σ. Function σ can be seen as a bi-
nary relation such that ([s], a), ([s], b) ∈ σ implies a = b.
Therefore, if τ is a restriction of σ, i.e. τ ⊆ σ, it follows that
dom(τ) ⊆ dom(σ), and τ([s]) = σ([s]) for all [s] ∈ dom(τ).



Definition 2.4 (Executions). Given a strategy σ w.r.t a model
M, a possible execution of σ is a possibly infinite sequence

of equivalence classes δ = [s0][s1] · · · such that [si]
σ([si])
−−−−→

[si+1] for all 0 ≤ i < |δ|. Particularly, [s] is a possible
execution if [s] 6∈ dom(σ). If the execution is a finite sequence
[s0] · · · [sn], we call [sn] the leaf-node, and [si] (0 ≤ i < n)
an inner-node w.r.t. this execution. If it is infinite, then all
[si] (i ∈ N) are inner-nodes. A possible execution of σ is
complete if it is infinite or its leaf-node is not in dom(σ).

Given δ = [s0] · · · [sn] and µ = [t0] · · · [tm], we use δ ⊑ µ
to denote that µ extends δ, i.e., n ≤ m and [si] = [ti] for
all 0 ≤ i ≤ n. If δ ⊑ µ, we define δ ⊔ µ = µ. We use
CELeaf(σ, s) to denote the set of all leaf-nodes of all the σ’s
complete executions (can be many due to non-determinism)
starting from [s], and CEInner(σ, s) to denote the set of all
the inner-nodes of σ’s complete executions starting from [s].
CELeaf(σ, s)∩CEInner(σ, s) = ∅ since if [s] is a leaf-node

of a complete execution then σ is not defined at [s].

Definition 2.5 (Semantics). Given a pointed model
M, s, the satisfaction relation � is defined as follows:
M, s � p ⇐⇒ p ∈ V(s)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Kϕ ⇐⇒ for all s′ : s∼s′ implies M, s′ � ϕ
M, s � Khϕ ⇐⇒ there exists a strategy σ such that

1.[t]⊆JϕK for all [t]∈CELeaf(σ, s)
2. all its complete executions
starting from [s] are finite,

where JϕK = {s ∈W | M, s � ϕ}.

Note that the two conditions for σ in the semantics of Kh
reflect our two intuitions mentioned in the introduction. The
implicit role of K in Kh will become clearer when the ax-
ioms are presented. Going back to Example 1.1, we can ver-
ify that Kh¬p holds on s1 and s2 due to the strategy σ =
{{s1, s2} 7→ test, {s3} 7→ pills, {s4} 7→ surgery}.
Note that CELeaf(σ, s1) = {[s5], [s6]} = {{s5}, {s6}} and
J¬pK = {s5, s6}. On the other hand, Kh¬q is not true on s1:
although the agent can guarantee ¬q de facto on s1 by taking
a strategy such that {s1, s2} 7→ test and {s3} 7→ pills,
he cannot know it beforehand since nothing works at s2 to
make sure ¬q. Readers may also verify that Kh(p ↔ q)
holds at s1 and s2 (hint: a strategy is a partial function).

Let us compare our work to [Wang, 2015; 2016b], where
the knowing that operator is not in the language. We in-
clude the knowledge operator K to precisely capture the in-
teractions of knowing that and knowing how by the axioms
to be introduced in the next section. Although the univer-
sal modality definable in the previous work can be viewed
as a restricted kind of knowing that operator, it can only ex-
press global background knowledge to some extent. More-
over, in our models, both epistemic uncertainty and action
transitions are present to model the changes of knowledge
after actions, which is essential to facilitate strategies based
on local knowledge, compared to the quite restricted linear
plans of [Wang, 2015; 2016b]. Finally, the Kh(ψ,ϕ) oper-
ator there (‘the agent knows how to achieve ϕ given ψ’) is
state-independent. In the present perspective, the condition ψ
there exactly defines an initial uncertainty set.

3 Axiomatization

3.1 The Proof System SKH

Axioms
TAUT all axioms of propositional logic
DISTK Kp ∧ K(p→ q) → Kq
T Kp→ p
4 Kp→ KKp
5 ¬Kp→ K¬Kp
AxKtoKh Kp→ Khp
AxKhtoKhK Khp→ KhKp
AxKhtoKKh Khp→ KKhp
AxKhKh KhKhp→ Khp
AxKhbot Kh⊥ → ⊥

Rules

MP
ϕ,ϕ→ ψ

ψ
NECK

ϕ

Kϕ

MONOKh
ϕ→ ψ

Khϕ→ Khψ
SUB

ϕ(p)

ϕ[ψ/p]

Note that we have the S5 axioms for K. AxKtoKh says if p
is known then you know how to achieve p by doing nothing
(we allow the empty strategy). AxKhtoKhK reflects the first
condition in the semantics that the goal is known after the
executions. We will come back to this axiom at the end of
the paper. Note that the termination condition is not fully ex-
pressible in our language, but AxKhbot captures part of it by
ruling out strategies that have no terminating executions at all.
AxKhKh essentially says that strategies can be composed. Its
validity proof is quite involved and we devote the next sub-
section to it. Finally, AxKhtoKKh is the positive introspection
axiom for Kh; it is valid due to uniformity of strategies. The
corresponding negative introspection can be derived from ax-
ioms AxKhtoKKh, 5 and T:

Proposition 3.1. ⊢ ¬Khp→ K¬Khp.

It is also not hard to show that in SKH, Khp is provably
equivalent to KKhp, KhKp, and KhKhp.

Note that we do not have the K axiom for Kh. Instead,
we have the monotonicity rule MONOKh. In fact, the logic is
not normal, as desired, e.g., Khp ∧ Khq → Kh(p ∧ q) is not
valid: the existence of two different strategies for different
goals does not imply the existence of a unified strategy to
realize both goals.

3.2 Validity of AxKhKh

AxKhKh is about the “sequential” compositionality of strate-
gies. Suppose on some pointed model there is a strategy σ
to guarantee that we end up with the states where on each
s of them we have some other strategy σs to make sure p
(KhKhp). Since the strategies are uniform, we only need to
consider some σ[s] for each [s]. Now to validate AxKhKh, we
need to design a unified strategy to compose σ and those σ[s]
into one strategy to still guarantee p (Khp). The general idea
is actually simple: first, order those leaf nodes [s] (using Ax-
iom of Choice); then by transfinite induction adjust σ[s] one
by one to make sure these strategies can fit together as a uni-
fied strategy θ; finally, merge the relevant part of σ with θ into
the desired strategy. We make this idea precise below. First
we need an observation:



Proposition 3.2. Given strategies τ and σ with τ ⊆ σ, if
[s] ∈ dom(τ) and dom(σ) ∩ CELeaf(τ, s) = ∅, then a se-
quence is σ’s complete execution from [s] if and only if it is
τ ’s complete execution from [s].

Proof. Left to Right: Let [s0] · · · [sn] · · · be a σ’s complete
execution from [s] (it also means that [s] = [s0], similarly
in later proofs). We will show it is also a τ ’s complete
execution from [s]. Firstly, we show it is a possible exe-
cution give τ from [s]. If it is not, there exists [si] such
that [si] is not the leaf-node of this execution and such
that [si] 6∈ dom(τ). Let [sj ] be the minimal equivalence
class in the sequence with such properties. It follows that
[sj ] ∈ CELeaf(τ, s) and [sj ] ∈ dom(σ). These are contradic-
tory with dom(σ) ∩ CELeaf(τ, s) = ∅.

Next we will show that [s0] · · · [sn] · · · is a τ ’s complete
execution from [s]. It is obvious if the sequence is infinite. If
it is finite, let the leaf-node be [sm]. It follows that [sm] 6∈
dom(σ). Since τ ⊆ σ, it follows [sm] 6∈ dom(τ). Therefore,
the execution is complete given τ .

Right to Left: Let [s0] · · · [sn] · · · be a τ ’s complete exe-
cution from [s], we will show it is also a σ’s complete ex-
ecution from [s]. Since τ ⊆ σ, it is also a possible ex-
ecution given σ. If the execution is infinite, it is obvious.
If it is finite, let the leaf-node be [sm]. It follows that
[sm] ∈ CELeaf(τ, s). Since dom(σ) ∩ CELeaf(τ, s) = ∅,
it follows that [sm] 6∈ dom(σ). Therefore, the execution is
also complete give σ.

Proposition 3.3. � KhKhϕ→ Khϕ.

Proof. Supposing M, s � KhKhϕ, we will show that
M, s � Khϕ. It follows by the semantics that there exists
a strategy σ such that all σ’s complete executions from [s]
are finite and [t] ⊆ JKhϕK for all [t] ∈ CELeaf(σ, s) (∗). If
[s] 6∈ dom(σ), then CELeaf(σ, s) = {[s]}, and then it is trivial
that M, s � Khϕ. Next we focus on the case of [s] ∈ dom(σ).

According to the well-ordering theorem (equivalent to Ax-
iom of Choice), we assume CELeaf(σ, s) = {Si | i < γ}
where γ is an ordinal number and γ ≥ 1. Let si be an el-
ement in Si, then [si] = Si. Since M, si � Khϕ for each
i < γ, it follows that for each [si] there exists a strategy σi
such that all σi’s complete executions from [si] are finite and
[v] ⊆ JϕK for all [v] ∈ CELeaf(σi, si) (◭). Next, in order
to show M, s � Khϕ, we need to define a strategy τ . The
definition consists of the following steps.

Step I. By induction on i, we will define a set of strate-
gies τi where 0 ≤ i < γ. Let fi =

⋃
β<i τβ and Di =

CEInner(σi, si) \ (dom(fi) ∪ {[v] ∈ CELeaf(fi, t) | [t] ∈
dom(fi)}); we define:

• τ0 = σ0|CEInner(σ0,s0);

• τi = fi ∪ (σi|Di
) for i > 0.

Claim 3.3.1. We have the following results:

1. For each 0 ≤ i < γ, τj ⊆ τi if j < i;

2. For each 0 ≤ i < γ, τi is a partial function;

3. For each 0 ≤ i < γ, dom(τi)∩CELeaf(τj , t) = ∅ where
t ∈ dom(τj) if j < i;

4. For each 0 ≤ i < γ, if δ = [t0][t1] · · · is a τi’s complete
execution from [t] ∈ dom(τi) then |δ| = n for some n ∈
N and [tn] ⊆ JϕK;

5. For each 0 ≤ i < γ, [si] ∈ dom(τi) or [si] ⊆ JϕK.

Proof of Claim 3.3.1:

1. It is obvious.

2. We prove it by induction on i. For the case of i = 0,
it is obvious. For the case of i = α > 0, it follows
by the IH that τβ is a partial function for each β < α.
Furthermore, it follows by (1) that τβ1

⊆ τβ2
for all

β1 < β2 < α. Thus, we have fα =
⋃
β<α τβ is a

partial function. Since σα is a partial function, in order
to show τα is a partial function, we only need to show
that dom(fα)∩Dα = ∅. SinceDα = CEInner(σα, sα)\
dom(fα) \ {[v] ∈ CELeaf(fα, t) | t ∈ dom(fα)}, it is
obvious that dom(fα) ∩Dα = ∅.

3. We prove it by induction on i. It is obvious for the
case of i = 0. For the case of i = α > 0, given
j < α and t ∈ dom(τj), we need to show that dom(τα)∩
CELeaf(τj , t) = ∅. Supposing [v] ∈ CELeaf(τj , t), we
will show that [v] 6∈ dom(τα), namely [v] 6∈ dom(fα) ∪
Dα. Since j < α and fα =

⋃
β<α τα, it follows t ∈

dom(fα). Moreover, due to Dα = CEInner(σα, sα) \
(dom(fα) ∪ {[v] ∈ CELeaf(fα, t) | t ∈ dom(fα)}), it
follows [v] 6∈ Dα.

Next, we only need to show [v] 6∈ dom(fα). Assuming
[v] ∈ dom(fα), it follows that [v] ∈ dom(τβ) for some
β < α. There are two cases: j < β or j ≥ β. If j < β,
it follows by the IH that dom(τβ) ∩ CELeaf(τj , t) = ∅.
Contradiction. If j ≥ β, it follows by (1) that τβ ⊆ τj .
Due to [v] ∈ dom(τβ), it follows [v] ∈ dom(τj). It is
contradictory with [v] ∈ CELeaf(τj , t). Thus, we have
[v] 6∈ dom(fα).

4. We prove it by induction on i. For the case of i = 0, due
to dom(τ0) = CEInner(σ0, s0), it follows that there is a
σ0’s possible execution [s0] · · · [sm] such that m ∈ N

and [sm] = [t]. Let µ = [s0] · · · [sm−1] ◦ δ. (If
m = 0 then µ = δ). Since δ is a τ0’s complete ex-
ecution from [t], it follows that µ is a σ0’s complete
execution from [s0]. It follows by (◭) that µ is finite.
Thus, δ = [t0] · · · [tn] for some n ∈ N. Since [tn] ∈
CELeaf(σ0, s0), it follows by (◭) that [tn] ⊆ JϕK.

For the case of i = α > 0, there are two situations:
[t] ∈ dom(fα) or [t] ∈ Dα. If [t] ∈ dom(fα), it follows
that [t] ∈ dom(τβ) for some β < α. By (3), we have
dom(τα)∩CELeaf(τβ , t) = ∅. Since δ is a τα’s complete
execution, it follows by Proposition 3.2 that δ is also a
τβ’s complete execution from [t]. It follows by the IH
that |δ| = n for some n ∈ N and [tn] ⊆ JϕK.

If [t] ∈ Dα, there are two cases: there exist k < |δ| and
β < α s.t. [tk] ∈ dom(τβ), or there do not exist such k
and β. (Please note that |δ| > 1 due to the fact that δ =
[t0] · · · is τα’s complete execution from [t] ∈ dom(τα)).

– [tk] ∈ dom(τβ) for some k < |δ| and some β <
α: It follows that µ = [tk] · · · is a τα’s complete



execution from [tk]. By (3) and Proposition 3.2, µ
is a τβ’s complete execution from [tk]. By IH, µ =
[tk] · · · [tk+n] for some n ∈ N and [tk+n] ⊆ JϕK.
Therefore, |δ| = k + n.

– If there does not exist k < |δ| and β < α s.t.
[tk] ∈ dom(τβ), it follows that δ = [t0] · · · is a
σα’s possible execution from [t]. Since [t] ∈ Dα ⊆
CEInner(σα, sα), there is a σα’s possible execu-
tion [s0] · · · [sm] s.t. m ∈ N, [s0] = [sα] and
[sm] = [t]. Let µ = [s0] · · · [sm−1] ◦ δ. (If m = 0
then µ = δ). It follows that µ is σα’s possible ex-
ecution from sα. By (◭), all σα’s complete execu-
tions from sα are finite. Thus, µ is finite. There-
fore, δ = [t0] · · · [tn] for some n ∈ N.

We continue to show that [tn] ⊆ JϕK. Since δ =
[t0] · · · [tn] is a τα’s complete execution from [t]
and it is also a σα’s possible execution from t, there
are two cases: [tn] ∈ CELeaf(fα, t

′) for some t′ ∈
dom(fα), or δ is a σα’s complete execution from t.
If [tn] ∈ CELeaf(fα, t

′) for some [t′] ∈ dom(fα),
then there exists β < α s.t. [t] ∈ CELeaf(τβ , t

′)
and [t′] ∈ dom(β). By IH, [tn] ⊆ JϕK. If δ is a σα’s
complete execution from [t], it follows that µ is a
σα’s complete execution from [sα]. Then by (◭),
we have [tn] ⊆ JϕK.

5. If [si] 6∈ dom(σi), it follows by (◭) that [si] ⊆ JϕK.
Otherwise, there are two cases: i = 0 or i = α > 0.
If i = 0, it follows by [s0] ∈ dom(σ0) that [s0] ∈
CEInner(σ0, s0). Thus, [s0] ∈ dom(τ0).

If i = α > 0 and [sα] ∈ dom(σα), we will show that
if [sα] 6∈ dom(τα) then [sα] ⊆ JϕK. Firstly, we have
that [si] ∈ CEInner(σα, sα). Since [sα] 6∈ dom(τα),
it follows that [sα] ∈ CELeaf(fα, t) for some [t] ∈
dom(fα). It follows that there exists β < α such that
[sα] ∈ CELeaf(τβ , t) and t ∈ dom(τβ). It follows by (4)
that [si] ⊆ JϕK.

�

Step II. We define τγ =
⋃
i<γ τi. It follows by (1) and (2)

of Claim 3.3.1 that τγ is indeed a partial function. Then we
prove the following claim.

Claim 3.3.2. If δ = [t0] · · · is a τγ’s complete execution from
[t] ∈ dom(τγ) then |δ| = n for some n ∈ N and [tn] ⊆ JϕK.

Proof of Claim 3.3.2: Since [t] ∈ dom(τγ), it follows that
[t] ∈ dom(τi) for some i < γ. It follows by (5) of Claim 3.3.1
that all τi’s complete executions from [t] are finite. Thus,
there exists µ ⊑ δ such that |µ| = n for some n ∈ N and µ
is τi’s complete execution from [t]. It follows by (5) of Claim
3.3.1 that [tn] ⊆ JϕK.

Next, we only need to show δ = µ. If not, then δ =
[t0] · · · [tn][tn+1] · · · . We then have that there exists j < γ
such that {tk | 0 ≤ k ≤ n} ⊆ dom(τj). It cannot be that
j ≤ i. Otherwise, µ is not τi’s complete execution since
τj ⊆ τi by (1) of Claim 3.3.1. Thus, we have j > i. Since
we also have that [tn] ∈ dom(τj), [tn] ∈ CELeaf(τi, t) and
t ∈ dom(τi), this is in contradiction with (3) of Claim 3.3.1.
Therefore, we have δ = µ. �

Step III. We define τ as τ = τγ ∪ (σ|C) where C =
CEInner(σ, s) \ (dom(τγ) ∪ {[v] ∈ CELeaf(τ ′, t) | [t] ∈
dom(τγ)}) and σ is the strategy mentioned at (∗). Since both
τγ and σ|C are partial functions, τ is also a partial function.
We then prove the following claim.

Claim 3.3.3. If δ = [t0] · · · is a τ ’s complete execution from
[t] ∈ dom(τ) then |δ| = n for some n ∈ N and [tn] ⊆ JϕK.

Proof of Claim 3.3.3: Since dom(τ) = dom(τγ)∪C, there are
two cases: [t] ∈ dom(τγ) or [t] ∈ C.

If [t] ∈ dom(τγ), it follows that CELeaf(τγ , t) ∩ C = ∅.
Moreover, we have CELeaf(τγ , t) ∩ dom(τγ) = ∅. Thus, we
have CELeaf(τγ , t) ∩ dom(τ) = ∅. It follows by Proposition
3.2 that δ is a τγ’s complete execution from from [t]. It fol-
lows by Claim 3.3.2 |δ| = n for some n ∈ N and [tn] ⊆ JϕK.

If [t] ∈ C, there are two cases: there exists k < |δ| such
that [tk] ∈ dom(τγ), or there does not exists such k. (Please
note that |δ| > 1 due to the fact that δ = [t0] · · · is τ ’s com-
plete execution from [t] ∈ dom(τ)).

• [tk] ∈ dom(τγ) for some k < |δ|: It follows that
µ = [tk] · · · is a τ ’s complete execution from [tk]. Since
dom(τ) ∩ CELeaf(τγ , tk) = ∅, it follows by Proposition
3.2 that µ is a τγ’s complete execution from [tk]. It fol-
lows by Claim 3.3.2 that µ = [tk] · · · [tk+n] for some
n ∈ N and [tk+n] ⊆ JϕK. Therefore, |δ| = k + n.

• If there does not exist k < |δ| s.t. [tk] ∈ dom(τγ), then
δ = [t0] · · · is a σ’s possible execution from [t]. Since
[t] ∈ C ⊆ CEInner(σ, s), then there is a σ’s possible
execution [s0] · · · [sm] s.t. m ∈ N, [s0] = [s] and [sm] =
[t]. Let µ = [s0] · · · [sm−1]◦δ. (Ifm = 0 then µ = δ). It
follows that µ is σ’s possible execution from s. By (∗),
all σ’s complete executions from s are finite. Thus, µ is
finite. Therefore, δ = [t0] · · · [tn] for some n ∈ N.

We continue to show that [tn] ⊆ JϕK. Since δ =
[t0] · · · [tn] is a τ ’s complete execution from t and it is
also a σ’s possible execution from t, there are two cases:
[tn] ∈ CELeaf(τγ , t

′) for some t′ ∈ dom(τγ), or δ is a
σ’s complete execution from t. If [tn] ∈ CELeaf(τγ , t

′)
for some [t′] ∈ dom(τγ), it follows by Claim 3.3.2 that
[tn] ⊆ JϕK. If δ is a σ’s complete execution from
[t], it follows that µ is a σ’s complete execution from
[s]. It follows that [tn] = Si for some 0 ≤ i < γ.
Since δ = [t0] · · · [tn] is τ ’s complete execution from
[t] ∈ dom(τγ), it follows [tn] 6∈ dom(τγ). We then have
[tn] 6∈ dom(τi), namely Si 6∈ τi. It follows by (5) of
Claim 3.3.1 that Si ⊆ JϕK, namely [tn] ⊆ JϕK.

�

Next, we continue to show that M, s � Khϕ with the as-
sumption that [s] ∈ dom(σ). Since [s] ∈ dom(σ), we have
[s] ∈ CEInner(σ, s). There are two cases: [s] ∈ dom(τ)
or not. If [s] ∈ dom(τ), it follows by Claim 3.3.3 that
M, s � Khϕ. If [s] 6∈ dom(τ), due to [s] ∈ CEInner(σ, s), it
follows that [s] ∈ CELeaf(τγ , t) for some [t] ∈ dom(τγ).
It follows by Claim 3.3.2 that [s] ⊆ JϕK. It follows that
M, s � Kϕ. It is obvious that M, s � Khϕ.

The validity of the rest of the axioms can be checked (cf.
the explanation right after the system SKH), then we have:



Theorem 3.4 (Soundness). If ⊢ ϕ then � ϕ.

4 Completeness and Decidability

Let Φ be a subformula-closed set of formulas. It is obvious
that Φ is countable since the whole language itself is count-
able. Given a set of formulas ∆, let: ∆|K = {Kϕ | Kϕ ∈
∆}, ∆|¬K = {¬Kϕ | ¬Kϕ ∈ ∆}, ∆|Kh = {Khϕ | Khϕ ∈
∆}, ∆|¬Kh = {¬Khϕ | ¬Khϕ ∈ ∆}. Below we define the
closure of Φ, and use it to build a canonical model w.r.t. Φ.
We will show that when Φ is finite then we can build a finite
model.

Definition 4.1. The closure cl(Φ) is Φ ∪ {Kϕ | ϕ ∈ Φ}.

Definition 4.2 (Atom). We enumerate the formulas in cl(Φ)
by {ψi | i ∈ N}. The formula set ∆ = {Yi | i ∈ N} is an
atom of cl(Φ) if

• Yi = ψi or Yi = ¬ψi for each ψi ∈ cl(Φ);

• ∆ is consistent.

Note that if Φ is the whole language then an atom is simply
a maximal consistent set. By a standard inductive construc-
tion, we can obtain the Lindenbaum-like result in our setting
(which is useful to show the existence lemma for K):

Proposition 4.3. Let ∆ be an atom of cl(Φ), Γ ⊆ ∆ and
ϕ ∈ cl(Φ). If Γ ∪ {±ϕ} is consistent then there is an atom
∆′ of cl(Φ) such that (Γ ∪ {±ϕ}) ⊆ ∆′, where ±ϕ = ϕ or
±ϕ = ¬ϕ.

Definition 4.4. Given a subformula-closed Φ, the canonical

model MΦ = 〈W,ACT,∼, {
x
−→| x ∈ ACT}, V 〉 is defined as:

• W = {∆ | ∆ is an atom of cl(Φ)};

• ACT = {ϕ | Khϕ ∈ Φ};

• ∆ ∼ ∆′ iff ∆|K = ∆′|K;

• for each ϕ ∈ ACT, ∆
ϕ
−→ ∆′ iff Khϕ,¬Kϕ ∈ ∆ and

Kϕ ∈ ∆′;

• for each p ∈ Φ, p ∈ V (∆) iff p ∈ ∆.

Note that we use the ϕ in Khϕ formulas as the action labels,
and we introduce an action transition if it is necessary, i.e.,
Khϕ but ¬Kϕ (i.e., empty strategy does not work). Requiring
Kϕ ∈ ∆′ is to reflect the first condition in the semantics of
Kh. Using NECK, DISTK and Proposition 4.3, it is routine to
show the existence lemma for K:

Proposition 4.5. Let ∆ be a state in MΦ, and Kϕ ∈ cl(Φ).
If Kϕ 6∈ ∆ then there exists ∆′ ∈ [∆] such that ¬ϕ ∈ ∆′.

Proof. Let Γ = ∆|K ∪∆|¬K ∪ {¬ϕ}. Γ is consistent. If not,
there are Kϕi, · · · ,Kϕn and ¬Kψ1, · · · ,¬Kψm in ∆:

⊢ Kϕ1 ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm → ϕ.

Following by NECK and DISTK, we have

⊢ K(Kϕi ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm) → Kϕ.

Since the epistemic operator K is distributive over ∧ and ⊢
KKϕi ↔ Kϕi for all 1 ≤ i ≤ n and ⊢ K¬Kψi ↔ ¬Kψi for
all 1 ≤ i ≤ m, we have

⊢ Kϕi ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm → Kϕ.

Since Kϕi, · · · ,Kϕn and ¬Kψ1, · · · ,¬Kψm are all in ∆ and
Kϕ ∈ cl(Φ), it follows that Kϕ ∈ ∆. It is contradictory with
the assumption that Kϕ 6∈ ∆. Therefore, Γ is consistent. It
follows by Proposition 4.3 that there exists an atom ∆′ of
cl(Φ) such that Γ ⊆ ∆′. Since (∆|K ∪∆|¬K) ⊆ ∆′, we have
∆′ ∼ ∆, that is, ∆′ ∈ [∆].

Proposition 4.6. Let ∆ and ∆′ be two states in MΦ such
that ∆ ∼ ∆′. We have ∆|Kh = ∆′|Kh.

Proof. For each Khϕ ∈ ∆, by Definition 4.1, Khϕ ∈ Φ.
Then KKhϕ ∈ cl(Φ). For each Khϕ ∈ ∆, by Axiom
AxKhtoKKh, we have KKhϕ ∈ ∆. Since ∆ ∼ ∆′, then
KKhϕ ∈ ∆′, and by Axiom T, Khϕ ∈ ∆′. Then we showed
that Khϕ ∈ ∆ implies Khϕ ∈ ∆′. Similarly we can prove
Khϕ ∈ ∆′ implies Khϕ ∈ ∆. Hence, ∆|Kh = ∆′|Kh.

The following is a crucial observation for the later proofs.

Proposition 4.7. Let ∆ be a state in MΦ and ψ ∈ ACT be

executable at [∆]. If Khϕ ∈ ∆′ for all ∆′ with [∆]
ψ
−→ [∆′]

then Khϕ ∈ ∆.

Proof. First, we show that Kψ is not consistent with ¬Khϕ.
It is obvious that Khϕ ∈ cl(Φ). Since ψ is executable at [∆],

there are atoms Γ1 and Γ2 s.t. Γ1
ψ
−→ Γ2. Then Kψ ∈ Γ2.

Assuming that Kψ is consistent with ¬Khϕ, by Proposition
4.3 there exists an atom Γ of cl(Φ) s.t. {Kψ,¬Khϕ} ⊆ Γ.
Since ψ ∈ ACT is executable at [∆], then by definition of
ψ
−→,∼ and Proposition 4.6, Khψ,¬Kψ ∈ ∆. It follows that

∆
ψ
−→ Γ, then [∆]

ψ
−→ [Γ]. This is in contradiction with the

assumption that Khϕ ∈ ∆′ for all ∆′ with [∆]
ψ
−→ [∆′]. Then

Kψ is not consistent with ¬Khϕ. Hence, ⊢ Kψ → Khϕ.
Since ⊢ Kψ → Khϕ, it follows by Rule MONOKh and Ax-

iom AxKhtoKhK that ⊢ Khψ → KhKhϕ. Moreover, it fol-
lows by Axiom AxKhKh that ⊢ Khψ → Khϕ. Since ψ is ex-

ecutable at [∆], it follows by the definition of
ψ
−→ and Propo-

sition 4.6 that Khψ ∈ ∆. Therefore, we have Khϕ ∈ ∆.

Lemma 4.8. For each ϕ ∈ cl(Φ), MΦ,∆ � ϕ iff ϕ ∈ ∆.

Proof. We prove it by induction on ϕ. We only focus on the
case of Khϕ ∈ cl(Φ); the other cases are straightforward,
e.g., Kϕ case can be proved based on Proposition 4.5. Note
that if Khϕ ∈ cl(Φ) then Khϕ ∈ Φ, therefore ϕ ∈ Φ since Φ
is subformula-closed. Thus by Definition 4.1, Kϕ ∈ cl(Φ).

Right to Left: If Khϕ ∈ ∆, we will show MΦ,∆ � Khϕ.
Firstly, there are two cases: Kϕ ∈ ∆ or Kϕ 6∈ ∆. If Kϕ ∈ ∆,
then Kϕ,ϕ ∈ ∆′ for all ∆′ ∈ [∆]. Since ϕ ∈ Φ, it fol-
lows by IH that MΦ,∆′ � ϕ for all ∆′ ∈ [∆]. Therefore,
MΦ,∆ � Kϕ. It follows by Axiom AxKtoKh and the sound-
ness of SKH that MΦ,∆ � Khϕ. If ¬Kϕ ∈ ∆, we first
show that Kϕ is consistent. If not, namely ⊢ Kϕ → ⊥, it
follows by Rule MONOKh that ⊢ KhKϕ → Kh⊥. It follows
by Axiom AxKhbot that ⊢ KhKϕ → ⊥. Since Khϕ ∈ ∆, it
follows by Axiom AxKhtoKhK that ∆ ⊢ ⊥, which is in con-
tradiction with the fact that ∆ is consistent. Therefore, Kϕ is
consistent.



By Proposition 4.3 there exists an atom ∆′ s.t. Kϕ ∈ ∆′.

Note that ϕ ∈ ACT. Thus, we have ∆
ϕ
−→ ∆′, then [∆]

ϕ
−→

[∆′]. Let [∆′′] be an equivalence class s.t. [∆]
ϕ
−→ [∆′′],

which indicates Γ
ϕ
−→ Γ′′ for some Γ ∈ [∆] and Γ′′ ∈ [∆′′].

By definition of
ϕ
−→ and ∼ we get Kϕ ∈ Θ for all Θ ∈ [∆′′].

By IH, MΦ,Θ � ϕ for all Θ ∈ [∆′′], namely [∆′′] ⊆ JϕK.

Moreover,
ϕ
−→ is not a loop on [∆] because ¬Kϕ ∈ ∆. Thus,

the partial function σ = {[∆] 7→ ϕ} is a strategy s.t. all its
complete executions starting from [∆] are finite and [∆′′] ⊆
JϕK for each [∆′′] ∈ CELeaf(σ,∆). Then, MΦ,∆ � Khϕ.

Left to Right: Suppose MΦ,∆ � Khϕ, we will show
Khϕ ∈ ∆. By the semantics, there exists a strategy σ s.t.
all σ’s complete executions starting from [∆] are finite and
[Γ] ⊆ JϕK for all [Γ] ∈ CELeaf(σ,∆). By IH, ϕ ∈ Γ′ for all
Γ′ ∈ [Γ] and [Γ] ∈ CELeaf(σ,∆). By Proposition 4.5, we
get Kϕ ∈ Γ for all [Γ] ∈ CELeaf(σ,∆). By Axiom AxKtoKh

and Proposition 4.6, Khϕ ∈ Γ for all [Γ] ∈ CELeaf(σ,∆).
If [∆] 6∈ dom(σ), it is obvious that Khϕ ∈ ∆ because

[∆] ∈ CELeaf(σ,∆). Next, we consider the case of [∆] ∈
dom(σ), then [∆] ∈ CEInner(σ,∆). In order to show Khϕ ∈
∆, we will show a stronger result that Khϕ ∈ ∆′ for all
[∆′] ∈ CEInner(σ,∆). Firstly, we show the following claim:

Claim 4.8.1. If there exists [∆′] ∈ CEInner(σ,∆) such that
¬Khϕ ∈ ∆′ then there exists an infinite execution of σ start-
ing from [∆].

Proof of Claim 4.8.1: Let X be the set {[Θ] ∈
CEInner(σ,∆) | ¬Khϕ ∈ Θ}. It follows that [∆′] ∈ X
and X ⊆ dom(σ). We define a binary relation R on X as

R = {([Θ], [Θ′]) | [Θ]
σ([Θ])
−−−−→ [Θ′]}.

For each [Θ] ∈ X , we have that σ([Θ]) is executable at [Θ].
Since ¬Khϕ ∈ Θ, by Proposition 4.7 there exists an atom Θ′

s.t. [Θ]
σ([Θ])
−−−−→ [Θ′] and ¬Khϕ ∈ Θ′. Since Khϕ ∈ Γ

for all [Γ] ∈ CELeaf(σ,∆) and [Θ] ∈ CEInner(σ,∆),we
have [Θ′] ∈ CEInner(σ,∆). Then [Θ′] ∈ X . Therefore,
R is an entire binary relation on X , namely for each [Θ] ∈
X there is [Θ′] ∈ X such that ([Θ], [Θ′]) ∈ R. Then by
Axiom of Dependent Choice there exists an infinite sequence
[Θ0][Θ1] · · · s.t. ([Θn], [Θn+1]) ∈ R for all n ∈ N.

From the definition of R, [Θ0][Θ1] · · · is a complete exe-
cution of σ starting from [Θ0]. Since [Θ0] ∈ CEInner(σ,∆)
and all complete execution of σ from [∆] are finite, there is a
possible execution [∆0] · · · [∆j ] for some j ∈ N s.t. [∆0] =
[∆] and [∆j ] = [Θ0]. Therefore, [∆0] · · · [∆j ][Θ1] · · · is an
infinite complete execution of σ from [∆]. �

Therefore, we have Khϕ ∈ ∆′ for all [∆′] ∈
CEInner(σ, s). Otherwise, by Claim 4.8.1 there is an infi-
nite complete execution given σ from [∆]. This is contra-
dictory with all σ’s complete execution from [∆] are finite,
then Khϕ ∈ ∆′ for all [∆′] ∈ CEInner(σ, s). Since [∆] ∈
dom(σ), we get [∆] ∈ CEInner(σ,∆). Then Khϕ ∈ ∆.

Now let Φ be the set of all formulas, then each maximal
consistent set ∆ is actually an atom which satisfies all its for-
mulas in MΦ, according to the above truth lemma. Com-
pleteness then follows immediately.

Theorem 4.9. SKH is strongly complete.

Note that if Φ is the set of all subformulas of a given for-
mula ϕ, then cl(Φ) is still finite. Due to the soundness of
SKH and Proposition 4.3, a satisfiable formula ϕ must be
consistent thus appearing in some atom, and thus ϕ is satis-

fiable in MΦ. It is not hard to see that |MΦ| ≤ 22|ϕ| where
2|ϕ| is the bound on the size of cl(Φ). This gives us a small
model property of our logic, then decidability follows.

Theorem 4.10. SKH is decidable.

5 Conclusion

In this paper, we propose an epistemic logic of both (goal-
directed) knowing how and knowing that, and capture their
interactions. A sound and complete proof system SKH is
obtained, and we prove the decidability of the logic. We hope
the axioms are illuminating towards a better understanding of
knowing how.

Note that we do not impose any special properties between

the interaction of
a
−→ and ∼ in the models so far. In the future,

it would be interesting to see whether assuming properties of
perfect recall and/or no learning (cf. e.g., [Fagin et al., 1995;
Wang and Li, 2012]) changes the logic or not.

Our notion of knowing how is relatively strong, particu-
larly evidenced by the axiom AxKhtoKhK : Khϕ → KhKϕ,
which is due to the first condition of our semantics for Kh,
inspired by planning with uncertainty. We believe it is rea-
sonable for the scenarios where the agent has perfect recall
(or, say, never forgets), which is usually assumed implic-
itly in the discussions on planning (cf. [Li et al., 2017]).
However, for a forgetful agent it may not be intuitive any-
more, e.g., I know how to get drunk when sober but I may
not know how to get to the state that I know I am drunk,
assuming drunk people do not know they are drunk. The
axiom AxKhKh is also interesting in distinguishing different
types of knowing how. We have been focusing on the goal-
directed knowing how [Gochet, 2013], but for other types
of knowing how such as knowing how to swim, the axiom
may not be reasonable anymore, e.g., I know how to let my-
self to know how to swim (by registering an excellent swim-
ming course) does not mean that I know how to swim right
now. We leave the discussion of other types of knowing
how in the future. Moreover, by introducing suitable no-
tions of bisimulations we will be able to compare their ex-
pressive power. Another obvious next step is to consider
knowing how in multi-agent settings, which brings us closer
to coalition logics (cf. e.g., [Ågotnes and Alechina, 2012;
Naumov and Tao, 2017].
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Thomas Ågotnes. Constructive knowledge: what agents
can achieve under imperfect information. Journal of
Applied Non-Classical Logics, 17(4):423–475, 2007.

[Lespérance et al., 2000] Yves Lespérance, Hector J.
Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1):165–186, 2000.

[Li and Wang, 2017] Yanjun Li and Yanjing Wang. Achiev-
ing while maintaining: A logic of knowing how with in-
termediate constraints. In Proceedings of ICLA’17, pages
154–167, 2017.

[Li et al., 2017] Yanjun Li, Quan Yu, and Yanjing Wang.
More for free: a dynamic epistemic framework for confor-
mant planning over transition systems. Journal of Logic
and Computation, 2017. forthcoming.

[Li, 2017] Yanjun Li. Stopping means achieving: A weaker
logic of knowing how. Studies in Logic, 9(4):34–54, 2017.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In Machine Intelligence, pages
463–502. Edinburgh University Press, 1969.

[McCarthy, 1979] John McCarthy. First-Order theories of in-
dividual concepts and propositions. Machine Intelligence,
9.:129–147, 1979.

[Moore, 1985] Robert C Moore. A formal theory of knowl-
edge and action. In Jerry R. Hobbs and Robert C. Moore,
editors, Formal Theories of the Commonsense World.
Ablex Publishing Corporation, 1985.

[Naumov and Tao, 2017] Pavel Naumov and Jia Tao. Coali-
tion power in epistemic transition systems. In Proceedings
of AAMAS 2017, pages 723–731, 2017.

[Smith and Weld, 1998] David E. Smith and Daniel S. Weld.
Conformant graphplan. In AAAI 98, pages 889–896, 1998.

[Stanley and Williamson, 2001] Jason Stanley and Timothy
Williamson. Knowing how. The Journal of Philosophy,
pages 411–444, 2001.

[van der Hoek and Wooldridge, 2003] Wiebe van der Hoek
and Machael Wooldridge. Cooperation, knowledge, and
time: Alternating-time temporal epistemic logic and its ap-
plications. Studia Logica, (1):125–157, 2003.

[van der Hoek et al., 2000] Wiebe van der Hoek, Bernd van
Linder, and John-Jules Ch. Meyer. On agents that have the
ability to choose. Studia Logica, 66(1):79–119, 2000.

[Wang and Li, 2012] Yanjing Wang and Yanjun Li. Not all
those who wander are lost: Dynamic epistemic reasoning
in navigation. In Proceedings of AiML 2012, pages 559–
580, 2012.

[Wang, 2015] Yanjing Wang. A logic of knowing how. In
Proceedings of LORI 2015, pages 392–405, 2015.

[Wang, 2016a] Yanjing Wang. Beyond knowing that: a new
generation of epistemic logics. In Hans van Ditmarsch and
Gabriel Sandu, editors, Jaakko Hintikka on knowledge and
game theoretical semantics. Springer, 2016. forthcoming.

[Wang, 2016b] Yanjing Wang. A logic of goal-directed
knowing how. Synthese, pages 1–21, 2016. in press.

[Yu et al., 2016] Quan Yu, Yanjun Li, and Yanjing Wang. A
dynamic epistemic framework for conformant planning. In
Proceedings of TARK’15, pages 298–318. EPTCS, 2016.




