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2Université Paul Sabatier, IRIT, CNRS, France
1{dgrossi, wiebe, cmoyzes}@liverpool.ac.uk

Abstract

In this paper we attempt to shed light on the concept
of an agent’s knowledge after a non-deterministic
action is executed. We start by making a compar-
ison between notions of non-deterministic choice,
and between notions of sequential composition, of
settings with dynamic and/or epistemic character;
namely Propositional Dynamic Logic (PDL), Dy-
namic Epistemic Logic (DEL), and the more recent
logic of Semi-Public Environments (SPE). These log-
ics represent two different approaches for defining
the aforementioned actions, and in order to provide
unified frameworks that encompass both, we define
the logics DELVO (DEL+Vision+Ontic change) and
PDLVE (PDL+Vision+Epistemic operators). DELVO is
given a sound and complete axiomatisation.

1 Introduction

The paper focuses on the dynamics of knowledge in environ-
ments where agents are aware of (possibly non-deterministic)
actions that are executed, but data is distributed privately:
Semi-Public Environments as they are called, more recently
in [Grossi et al., 2016] and earlier in [van der Hoek et al.,
2011]. By data being distributed privately we mean that the
agents may or may not have constant, real-time knowledge,
of the value of the variables involved. The paper sets out to
investigate how non-deterministic choice in this type of envi-
ronments affects the knowledge of an agent after an action is
executed.

Non-deterministic choice is a central action composition
operator for most logics of action. In this paper our starting
points will be Propositional Dynamic Logic (PDL, [Harel et al.,
2000]), Dynamic Epistemic Logic with Action Models (DEL,
[van Ditmarsch et al., 2007], [Baltag and Moss, 2004; Baltag
et al., 1998]) and the aforementioned logic for Semi-Public
Environments (SPE, [Grossi et al., 2016]). For the presentation
to follow, the reader is assumed to be familiar with DEL. In DEL

and PDL, for any actions a and b of the respective language, we
have the validity

([a]ϕ ∧ [b]ϕ) ↔ [a ∪ b]ϕ. (1)

If ϕ expresses knowledge, e.g. is Kiψ, the scheme expresses
a strong relation between knowledge and non-determinism:
an agent knows ψ after non-deterministically executing a or

b, if and only if he knows ψ after executing just a and after
executing just b. In DEL, an instance of (1) is

[x!](Kix∨Kiy)∧ [y!](Kix∨Kiy) ↔ [x!∪ y!](Kix∨Kiy).
This property makes perfect sense; after being announced
that x, or being announced that y, the agent at least knows
one of the two to be true. Another interesting instance of
(1), however, should arguably fail. That is what happens in
SPE, where the following formula is not valid (let Kw ix be
shorthand forKix∨Ki¬x, and x:=⊥ (respectively, ⊤) stands
for the action of setting variable x to false (respectively, true):

[x:=⊥]Kw ix ∧ [x:=⊤]Kw ix↔ [x:=⊤ ∪ x:=⊥]Kw ix.

The failure of (1) in SPE also has an intuitive appeal: some
part of a non-deterministic action is executed, but which part
is actually performed is not necessarily revealed to the agent.

So, in contrast to what happens in DEL (or PDL extended with
epistemic operators), it is not the case that if the agent knows
ψ after executing a and after executing b, that he necessarily
knows ψ after the execution of the non-deterministic choice
between them.

A similar analysis applies to sequential composition. In the
same fashion as before, we have the validity that essentially
defines sequential composition in PDL:

[a; b]ϕ↔ [a][b]ϕ. (2)

And in DEL, we have that formula [x!; y!]Ki(x ∧ y) ↔
[x!][y!]Ki(x ∧ y) is a validity, for x, y being atoms. This
is again intuitive: announcing x ∧ y ought to be the same as
announcing x and then announcing y. But also this schema
is not valid in SPE; we very briefly refer to an example from
[Grossi et al., 2016] below. In its perspective the failure of (2)
should not come as a surprise.

Example 1 The agent can see only variable x, and we ex-
ecute the action where we non-deterministically toggle the
values of x and y, or just y. After this action, we also non-
deterministically toggle the value of x, or of y.

In both steps the agent can distinguish between the two
possible actions; one changes x, the other does not. Consider
that the agent has the opportunity to observe the impact of the
first action, before the second starts, and then the impact of
the second. As a result, he can distinguish between any of
the four total alternatives (where both x and y, or just x, or
just y, or nothing, was changed; for later use let us denote the
four individual actions with v1, v2, v3, v4 respectively). But
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what if the agent has no opportunity to observe what happened
in-between? Then he can only observe what happened at the
very end, and in our example, he will not be able to distinguish
between all possibilities, particularly those with same truth
value for x, but different for y.

The paper introduces and studies a logic that integrates both
the above approaches to choice and composition, defining two
novel action operators which we call opaque choice and com-
position. The proposed logic is a generalisation of both SPE

and DEL and is called DELVO: DEL plus vision plus ontic change,
which are features of SPE. Logic DELVO is then compared with
an extension of PDL with vision and epistemic modalities we
also introduce (called PDLVE). This logic can be considered
the natural ‘abstraction’ of DELVO in PDL style, in the sense that
the actions involved will be arbitrary connections between
possible worlds (as opposed to the other dynamic logic, DL-PA

[Balbiani et al., 2013], that uses assignments). The relation-
ship between DELVO and PDLVE is studied in detail. The drawing
below recapitulates the relations among the investigated logics.

SPEDEL

DELVO

PDL

PDLVE

Th. 2 Th. 3
Th. 5

Th. 6

2 Preliminaries

Throughout the paper, we will be dealing with a finite set
Ag = {1, . . . ,m} of agents, and a countable set of proposi-
tional variables Var = {x1, x2, . . . }. A valuation θ : Var →
{true, false} assigns a truth value to each variable x ∈ Var.
The set of all valuations is denoted by Θ. Given a relation
R ⊆ A × A, R∼ is its reflexive, symmetric, and transitive
closure. For S ⊆ A, R(S) = {w ∈ A | ∃v ∈ S s.t. vRw}.

Let us next give a summary of the notation for the different
classes of models we will be using, given that several logics
are involved in this study.

DEL SPE DELVO PDL PDLVE

Static Models EM EMV EMV DM DEM
Dynamic Models �� �� ��� − −

A model M from any of the above classes, has a set of
worlds/points W . We then have single-pointed models to be
pairs of the form (M,w), for w ∈W , and multi-pointed mod-
els to be pairs of the form (M,S), for S ⊆ W . We will use
the prefix σ or µ, and the name of a class in brackets, to denote
the corresponding classes of single-pointed and multi-pointed
models (e.g., µ(��) stands for multi-pointed action models).
To justify the abbreviations: EM stands for Epistemic Mod-
els, EMV for the Epistemic Models with Vision, DM for
Dynamic Models and DEM for Dynamic Epistemic Models,
�� for Action Models,��� for Action Models with Toggle
sets, �� for Program Models.

We recapitulate the basic notions of DEL, we refer the reader
to [van Ditmarsch et al., 2007, Ch. 6] for a comprehensive ex-
position. Let L be a logical language for given parameters Ag
and Var. An action model M is a tuple 〈W,R, pre〉 such that

W is a finite set, R : Ag → 2(W×W) assigns an equivalence re-
lation to each agent i ∈ Ag , and pre : W → L. We will denote
the class of action models for LDEL with��. Language LDEL

is given by syntax ϕ ::= x | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [a]ϕ, where
x ∈ Var, i ∈ Ag and a ::= (M,w) | (a ∪ a) where w ∈ W.
An epistemic model for LDEL is M = 〈W,R, f〉, where W
is a (possibly empty) set, the set of states; f :W → Θ assigns

a valuation θ to each state in W ; R : Ag → 2(W×W ) assigns
an equivalence relation to each agent i ∈ Ag . EM denotes the
class of epistemic models. The model resulting from the appli-
cation of an action model M to an epistemic modelM , referred
to here as model product, is the modelM⊗M = 〈W ′, R′, f ′〉
such that W ′ = {(w,w) ∈ W × W | M,w |= pre(w)},
(w,w)R′(u, u) iff wRu and wRu. and f(w,w) = f(w). Ac-
tions of DEL are defined by syntax a ::= (M,w) | a ∪ a.
Finally, for each action a, we have the induced relation
[|a|]: for M,w ∈ σ(��) we have (M,w)[|M,w|](M ′, w′) iff
M,w |= pre(w) and (M ′, w′) = (M ⊗ M, (w,w)), while
[|a ∪ b|] = [|a|] ∪ [|b|]. We have M,w |= [a]ϕ iff for all
M ′, w′ ∈ [|a|](M,w) we have M ′, w′ |= ϕ. The rest of the
truth definitions are as usual.

Let us denote the actions of DEL with LAct
1 . In the remainder

of the section we define an equivalent presentation of DEL based
on multi-pointed action models. This allows us to have a uni-
fied model structure to handle all actions of LAct

1 , which facili-
tates later comparison with SPE. So let us consider the language
LAct
2 where actions are only multi-pointed action models, that

is, a ::= M, S where M, S ∈ µ(��); and the language of DEL

using LAct
2 denoted by L′

DEL . Now the induced relation is
defined as [|M, S|](M,w) = {M ⊗M, (w,w) | w ∈ S}.

In what follows, “⊔” denotes the disjoint union of two
action models, whose sets of worlds are, for simplicity, already
assumed to be disjoint.

Definition 1 (Translation to µ(��)) We define function t :
LAct
1 7→ LAct

2 = µ(��) as follows: If M,w ∈ σ(��),
then t(M,w) = M, {w}. If a, b ∈ LAct

1 and t(a) =
Ma, Sa, t(b) = Mb, Sb, then t(a ∪ b) = Ma ⊔Mb, Sa ⊔ Sb.

The fact that this translation is truth-preserving is formally
stated in the following Theorem.

Theorem 1 For all ϕ ∈ LDEL let t(ϕ) denote the formula that
is ϕ but for each action a all its occurrences in ϕ are replaced
by t(a). For all M,w ∈ σ(EM) and ϕ ∈ LDEL, we have
M,w |= ϕ iff M,w |= t(ϕ).

3 The Logic DELVO

The first traditional setting on which we would like to expand
and incorporate both alternative versions of choice and com-
position mentioned in the introductory section is DEL. The
difference in behaviour we have observed relies on vision—
that is, what agents can observe—and ontic change—that is,
the ‘factual’ differences among points of evaluation in the
model. It thus seems reasonable to introduce a DEL-style logic,
with epistemic models enriched with vision, and action models
that allow for ontic change.

Definition 2 (Toggling values) Let θ ∈ Θ and S ⊆ Var.
The toggling of values for the variables in S in θ, notation
˜(S)(θ), is the atomic valuation (member of Θ) defined as
˜(S)(θ)(x) = not θ(x) if x ∈ S, otherwise ˜(S)(θ)(x) =
θ(x). Given two sets of variables S1 and S2, we denote their
symmetric difference by S1△S2 , i.e., S1△S2 = (S1 ∪ S2) \
(S1 ∩ S2).



Definition 3 (DELVO Action Models) A (DELVO) action model
is a tuple M = 〈W,R, pre, tgl〉, where W 6= ∅ is finite, R :
Ag → 2(W×W) assigns an equivalence relation to each agent
i ∈ Ag , pre : W → L, tgl : W → P(Var) and each tgl(w)
is finite. A pair (M, S), where M is an action model and
∅ ⊂ S ⊆ W, is called a (Multi-)Pointed Action Model. When
clear from context, instead of M, {w} we may also write M,w.
The class of all action models is denoted by ���.

In comparison with the standard manifestation of post-
condition effects in DEL, which uses assignments (see for exam-
ple [van Benthem et al., 2006]), our action models use toggle
sets, as in [Grossi et al., 2016]. The reason is that it allows for
a more elegant handling of the notion of vision, since the agent
successfully resolves uncertainty based on the difference in
ontic changes caused by the actions. The two formulations are
technically equivalent: one can simulate ‘assignments’ to vari-
ables using toggle sets [Grossi et al., 2016]. Pairs (M, S) now
are essentially the multi-pointed action models of DEL, but with
each point w carrying additional information about a finite tog-
gle set tgl(w). Finally the syntax of formulas ϕ ∈ LDELVO

is:
ϕ ::= ⊤ | x | Vix | ¬ϕ | ϕ ∧ ϕ | [M, S]ϕ | Kiϕ

where x ∈ Var, i ∈ Ag , (M, S) ∈ µ(���).

Definition 4 (DELVO models) An epistemic model (with vi-
sion) M for LDELVO is a tuple M = 〈W,R, V, f〉 where
〈W,R, f〉 ∈ EM, V : Ag → 2Var, and

• wRiu implies (f(w)△f(u)) ∩ V (i) = ∅.

EMV denotes the class of epistemic models with vision.
The set of all vision functions V is denoted by Vis.

So the models of DELVO are standard epistemic models en-
hanced with a vision function recording information about
which propositional variables each agent observes. If an agent
considers two worlds indistinguishable, then it must be the
case that he cannot observe a difference in their valuation.

There exists the possibility that the indistinguishability re-
lation of an action model is not compatible with the vision
function of an epistemic model. The way we address these
cases when trying to calculate a model product, is by ‘rewiring’
the action models to be ‘in sync’ with the agents’ vision, but
without them hiding any information at all, or giving informa-
tion not acquired by vision.

Definition 5 Let V ∈ Vis and M ∈ ���. We define the

action model MV = 〈WV ,RV , preV , tglV 〉 as follows:

• WV = W; preV = pre; tglV = tgl;

• wRV
i u iff

(

wRiu and
(

tgl(w)△tgl(u)
)

∩ V (i) = ∅
)

.

Now that we have everything else in place, we proceed to
define the semantics of formulas and actions in DELVO.

Definition 6 Let M = 〈W,R, V, f〉 ∈ EMV . The truth
conditions are as for DEL, plus (M,w) |= Vix iff x ∈ V (i).

Relation [|M, S|] ⊆ σ(EMV)× σ(EMV) is defined again
as in DEL: [|M, S|](M,w) = {M ⊗M, (w,w) | w ∈ S}, while
(M ⊗M) is now the epistemic model M ′ = 〈W ′, R′, V ′, f ′〉
defined as:

• W ′ = {(w,w) | w ∈W,w ∈ W & (M,w) |= pre(w)};

• (w,w)R′
i(u, u) iff wRiu and wRV

i u;

• V ′ = V , f ′((w,w)) = ˜
(

tgl(w)
)(

f(w)
)

.

We conclude the section thus far by introducing a notion of
bisimulation between DELVO models [Blackburn et al., 2001].

Definition 7 Let M,M ′ ∈ EMV . A non-empty relation Z ⊆
W ×W ′ is a bisimulation iff for all (w,w′) ∈ Z and i ∈ Ag:

Atoms For all x ∈ V ar, x ∈ f(w) iff x ∈ f ′(w′), and x ∈

V (i) iff x ∈ V ′(i); Forth For all v ∈W , if wRiv then there

is a v′ ∈ W ′ such that w′R′
iv

′ and (v, v′) ∈ Z; Back For

all v′ ∈W ′, if w′R′
iv

′ then there is a v ∈W such that wRiv
and (v, v′) ∈ Z. Two multi-pointed action models (M,S) and
(M ′, S′) are bisimilar (written (M,S) ↔ (M ′, S′)) iff there
is a bisimulation Z between M and M ′, such that for any
w ∈ S, there is a w′ ∈ S′ with (w,w′) ∈ Z, and vice versa.

Axiomatisation The axiomatisation for DELVO is comprised
of the axioms and rules for logic S5, axioms for vision
Vix→ (Kix ∨Ki¬x) and Vix→ KjVix, and reduction ax-
ioms that allow any formula that includes dynamic modalities
to be reduced to one that does not. These reduction axioms are
identical to those of SPE [Grossi et al., 2016], except the slightly
changed reduction action for knowledge: [M,w]Kiϕ ↔
(

pre(w) →
∧

V ∈VisM(χV →
∧

wRV

i
u
Ki[M

V, u]ϕ)
)

, with χV

being a characteristic formula of vision function V over the
variables that appear in M. Soundness is derived easily from
the definitions, and completeness is proven along the lines of
DEL and SPE via the standard reduction technique; complete-
ness is then further reduced to that of logic S5+V, that is, the
multi-agent epistemic logic S5n [Fagin et al., 1995], with the
two additional axioms for vision.

Opaque Choice and Composition The logic DELVO pro-
vides us with a setting in which to properly capture not only
the traditional forms of choice and composition (cf. Theo-
rem 1) but also their opaque variants—opaque choice and
composition—we motivated in the introductory section.

Let the set of actions Act be defined inductively as:
Act ∋ a ::= ϕ! | ϕ? | ˜x | a ∪ a | a ⊎T a | a; a | a; ; a,
where ϕ ∈ L, x ∈ Var and T ⊆ Ag .

The constructs ⊎T and ; ; denote the opaque variants of
the standard ∪ and ;. For T = Ag we write ⊎ omitting the
subscript. Each of the above actions we recursively define in
terms of suitable DELVO action models. By writing action “a”
in a formula we will mean the multi-pointed action model that
corresponds to a.

Definition 8

1. (Announcement) Let Mϕ! = 〈W,R, pre, tgl〉, where W =
{e}, Ri = {(e, e)}, pre(e) = ϕ and tgl(e) = {}. The
multi-pointed action model for ϕ! is Mϕ!, {e}.

2. (Toggle) Let M˜x = 〈W,R, pre, tgl〉, where W = {t},
Ri = {(t, t)}, pre(t) = ⊤ and tgl(t) = {x}. The multi-
pointed action model for ˜x is M˜x, {t}.

3. (Test) Let Mϕ? = 〈W,R, pre, tgl〉, where W = {w, v},
Ri = W × W, pre(w) = ϕ, pre(v) = ¬ϕ and tgl(w) =
tgl(v) = {}. The multi-pointed action model for ϕ? is
Mϕ?, {w}.

In order to define test as a multi-pointed action model, we
have based ourselves on the archetype that the test relation
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Figure 1: Epistemic model M (left) for which x ∈ V (1), x /∈ V (2),
action models (˜x ⊎ ⊤!) (top) and (˜x ∪ ⊤!) (bottom), and the
resulting model products (right).

represents, in PDL models. Specifically, given a PDL model
M , then [|ϕ?|] = {(w,w) ∈ M × M | M,w |= ϕ}. The
relation induced by action models (in our case Def. 6) is not
between worlds of the same model, but between the original
epistemic model, and the model product. The reader can check
that with the action model for test in Definition 8, we have,
given M,w ∈ σ(EMV), if M,w 6|= ϕ then [|ϕ?|](M,w) = ∅,
and if M,w |= ϕ then [|ϕ?|](M,w) =M ⊗Mϕ?, (w,w), and
M,w is isomorphic to M ⊗Mϕ?, (w,w).

The action model for standard non-deterministic choice is a
disjoint union of action models, as in DEL (Def. 1).

Definition 9 (Opaque Non-det. Choice) Let a, b ∈ Act.
The action model for a ⊎T b is Ma⊎T b, Sa⊎T b = 〈W′,R′,
pre′, tgl′〉, S′ where, if Ma∪b, Sa∪b = 〈W,R, pre, tgl〉, S :
• W′ = W; pre′ = pre; tgl′ = tgl; S′ = S

• For i ∈ T , R′
i = ( Ri∪ (S′×S′) )∼. For i /∈ T , R′

i = Ri.

The intuition behind opaque choice compared to standard
choice, is that, for agents in T , it ‘overrides’ any information
gained by the distinction between points in S. It can be read
as “non-deterministically execute one of the action points in S,
but, after execution you will only be able to tell between them
if your vision allows it”. To do this, we simply take the ac-
tion model of the standard non-deterministic choice, and then
connect, for the agents in T , the worlds in S. As mentioned
earlier, an agent’s uncertainty is bound by the information it
acquires by vision (recall M ⊗M in Def. 6).

Example 2 Consider the epistemic model M with a sin-
gle world w with x ∈ V (1), x /∈ V (2). In Figure 1 we
compare the action models ˜x ∪ ⊤! and ˜x ⊎ ⊤!, along
with the resulting model products. Note that for opaque
choice, M,w |= [˜x ⊎ ⊤!]¬Kw2x while for standard choice
M,w |= [˜x ∪ ⊤!]Kw2x. And for agent 1 that ‘sees’ x we
have M,w |= [˜x ⊎ ⊤!]Kw1x ∧ [˜x ∪ ⊤!]Kw1x.

This example demonstrates that both directions of valid-
ity (1) fail for opaque choice. Indeed, we have M,w |=
[˜x]Kw2x ∧ [⊤!]Kw2x but M,w |= ¬[˜x ⊎ ⊤!]Kw2x,
and similarly M,w |= [˜x ⊎ ⊤!]¬Kw2x but M,w |=
¬[˜x]¬Kw2x. The uncertainty of the agent described by
the intuition above and portrayed by this example can be
described more generally by the following formula: let
(M,w), (M′,w′) ∈ µ(���) and V be the vision function for
which agent i can see none of the variables in tgl(w)△tgl(w′).
Then we have:

χV ∧ [M,w]x ∧ [M′,w′]¬x
∧(pre(w) ↔ pre(w′))

}

→ [M,w ⊎M′,w′]¬Kw ix

We now move on to the subject of sequential composition,
which poses some more difficulties. It becomes evident that it
is not possible to define regular composition only as a function

of the models Ma,Mb, without vision as a parameter; this is
in contrast with the action models and the other constructs
defined so far. As proof recall the actions of Example 1: if
V (i) = ∅ then vjRivk for 1 ≤ j, k ≤ 4 in the action model,
and for the resulting worlds also (w, vj)Ri(w, vk). If we set
V (i) = {x} then the action model would be the same but
it should not be the case e.g. that (w, v2)Ri(w, v3). We are
therefore led to the following definition.

Definition 10 (Composition) Let V ∈ Vis, Ma = 〈Wa,Ra

, prea, tgla〉, Sa and Mb = 〈Wb,Rb, preb, tglb, 〉, Sb. Their
composition w.r.t. V is the pointed action model MV

a;b, S
V
a;b =

〈W,R, pre, tgl〉, S where: W = Wa ×Wb, S = Sa × Sb,

• (w,w′)Ri(v, v
′) iff wRV

ai
v & w′RV

bi
v′;

• pre(w, v) = 〈Ma,w〉preb(v), tgl(w, v) = tgla(w)△tglb(v)

We need not advocate the correctness of the definition re-
garding W, pre, tgl, and S, as they are what is expected for
the composition of two action models in DEL as well as SPE.
Vision influences only the accessibility relation R, and regard-
ing that we need only note that it is again the one normally
expected, with the exception that the agent has the opportunity
to apply his vision after execution of actions a and b. Hence
RV
ai

is used (Def. 5) and not Rai
. Finally, let us point out that

with this definition a vision function V is linked to an action
model directly, and an epistemic model M may have a vision
function V ′ 6= V . In that case, a formula using such an action
model cannot be interpreted in M .

We do not run into the same kind of problem with opaque
composition as it uses the same idea behind opaque choice: it
disregards previous connections (or more precisely, the lack
thereof) in the model. Intuitively speaking, the agent is ab-
sent while actions a and then b are executed, ‘missing’ any
announcements made and also the opportunity to apply his
vision as changes occur to the variables.

Definition 11 (Opaque Composition) Let a, b ∈ A. The
pointed action model for a; ; b is Ma;;b, Sa;;b = 〈W,R,
pre, tgl〉, S defined as in Definition 10 but Ri = W ×W.

We can now see how to falsify property (2) from the in-
troduction. Consider again the epistemic model of Exam-
ple 2. Action model for (˜x ∪ ⊤!); ;⊤! is the action model
of (˜x ⊎ ⊤!), found in the first row of Figure 1, while in
the second row we have the action model of (˜x ∪ ⊤!) and
the resulting epistemic model. Applying action ⊤! does not
change anything, and so M,w |= ¬[(˜x ∪ ⊤!); ;⊤!]Kw2x,
while M,w |= [˜x ∪ ⊤!][⊤!]Kw2x.

Relation to DEL and SPE Not coincidentally, the class of
DELVO (static) models—i.e. epistemic models with vision—is
exactly the class of models of SPE, and subsumes the class of
standard epistemic models (without vision, that is, where vi-
sion is empty), which are the models of DEL. In this section we
define the relevant translations among these classes of models
and state, without proof, and state the two truth-preserving
embeddings.

Definition 12 We define function h : EM → EMV as
follows: Let M = 〈W,R, f〉 ∈ EM. Then h(M) =
〈W,R, V, f〉, where V is such that for all i ∈ AG, V (i) = ∅.



Definition 13 Let M, S = 〈W,R, pre〉, S. We define g :
µ(��) → µ(���) as g(M, S) = 〈W,R, pre, tgl〉, S, where
tgl is the function such that for all w ∈ W, tgl(w) = ∅.

Theorem 2 For all ϕ ∈ L′
DEL let g(ϕ) denote the formula

that is ϕ but for each action a all its occurrences in ϕ are
replaced by g(a). Let M,w ∈ σ(EM) and ϕ ∈ L′

DEL. We
have M,w |= ϕ iff h(M), w |= g(ϕ).

We work similarly for SPE; its models are exactly those of
DELVO, and its action models can be seen as a special case of
DELVO action models.

Definition 14 We define function g : σ(��) 7→ µ(���) as
follows: Let M = {w1 = (ϕ1, X1), . . . , wn = (ϕn, Xn)} ∈
�� and w ∈ M. Then g(M,w) = 〈W,R, pre, tgl〉, {w}
where W = {w1, . . . ,wn}, pre(wi) = ϕi, tgl(wi) = Xi and
Rj = W ×W.

Theorem 3 For all ϕ ∈ LSPE let g(ϕ) denote the formula
that is ϕ but for each action M,w all its occurrences in ϕ are
replaced by g(M,w). Let M,w ∈ σ(EMV) and ϕ ∈ LSPE.
We have M,w |= ϕ iff M,w |= g(ϕ).

4 The Logic PDLVE

We now attempt a generalisation of opaque choice and com-
position to a more abstract PDL-like setting. For DELVO, a large
part of the intuitions and formal techniques stem from the
use of action models. The latter do not exist in PDL and it is
interesting to examine how it would be possible to circumvent
their use. Furthermore, actions of PDL are strictly more general;
to see this consider that an atomic PDL action can connect a
finite component of worlds to an infinite one - this cannot be
achieved by any [|M,w|] as action models are finite. Therefore
with PDLVE we attempt not only to represent the opaque con-
structs in the PDL paradigm, but also extent their use to a richer
class of actions.

In addition to sets Ag and Var, let also a countable set of
atomic actions Atom = {a1, a2, . . . } be given.

The language of PDLVE is defined by the following syntax:
ϕ ::= ⊤ | x | Vix | ¬ϕ | ϕ ∧ ϕ | [a]ϕ | Kiϕ

where a ::= π ∈ Atom | a ∪ a | a ⊎ a | a; a | a; ; a and
x ∈ Var, i ∈ Ag . We avoid the generalisation for T ⊆ Ag
consciously, so as to not further encumber notation.

To capture opaque choice in PDLVE we rely on the basic
intuition behind it. Given actions a, b, and world w, “either a
or b is executed atw, but the agent does not know which, unless
his vision allows him to do that”. Based on the above, we first
give an auxiliary definition: given M ∈ EMV and relations
for a, b ∈ Act, this definition describes a representation of the
epistemic model that should be the image of a ⊎ b.

So let M = 〈W,R, V, f〉 ∈ EMV . For S ⊆ W let N(S)
denote the epistemic submodel generated by S, and Nw(S)
the worlds of that model. We remind that for E ⊆ W ×W ,
E(S) = {w ∈W | ∃v ∈ S s.t. vEw}.

Definition 15 Let M = 〈W,R, V, f〉 ∈ EMV , and E ⊆
W×W . LetM ′ = N(E(W )) = 〈W ′, R′, V ′, f ′〉. Finally let
E be injective and E(W ) =W ′. We then define g(M,E) =
〈W ′′, R′′, V ′′, f ′′〉 such that: W ′′ =W ′, V ′′ = V ′, f ′′ = f ′,
• for u ∈ E(w), z ∈ E(v), we have uR′′z iff wRv and
(

(f(w)△f ′′(u))△(f(v)△f ′′(z))
)

∩ V (i) = ∅

In words, given a model M and an injective relation E (that
is later to play the role of choice or composition between two
actions), we first get the epistemic submodel generated by
worlds that are an image through E, namely M ′. Note also
that E is such that its co-domain is exactly the set of worlds
of M ′. Then we ‘tinker’ M ′ to get the model g(M,E), that
is the same as M ′ but the agents cannot distinguish between
worlds that are images through E (uR′′z), if and only if the
origin worlds were indistinguishable to begin with (wRv)
and their vision does not help them notice a difference in
the changes caused among the possible executions; that is,
(

(f(w)△f ′′(u))△(f(v)△f ′′(z))
)

∩ V (i) = ∅}.

We can now define the class of PDLVE models (denoted
by DEM). For brevity, let ∗ denote either regular choice
or composition, and ⊛ their opaque variant. Also let
(g(M,E), E(w)) = g(M,w,E).

Definition 16 (PDLVE Models) Let M = 〈W,R,E, V, f〉
where 〈W,R, V, f〉 ∈ EMV (Def. 4) and E is a family of
relations Ea ⊆ W ×W , where a is either atomic or of the
form “b ⊎ c” or “b; ; c”. Furthermore, E is such that:

• for a = b ⊛ c, if Eb∗c is an injection and Eb∗c(W ) =
Nw(Eb∗c(W )), thenN(Ea(w)), Ea(w) ↔ g(M,w,Eb∗c),
otherwise Ea = ∅;

We interpret formulas at pointed dynamic models as usual.
And regarding standard choice and composition we define
Ea∪b = Ea ∪ Eb and Ea;b = Eb ◦ Ea, again as normal.

In contrast to what happens with relations Ea∪b and Ea;b,
relations Ea⊎b and Ea;;b are not necessarily expressed only
in terms of the source world w, Ea(w), or Eb(w). Different
worlds whose names we cannot dictate beforehand may be
involved. What we do is therefore require that these worlds are
‘correct’, in the sense that they are bisimilar to the correspond-
ing set of worlds in the model that would be the representation
(Def. 15) of opaque choice or opaque composition.

Is this representation we have chosen a correct one? The
next theorem shows that at least as far as a special subset of
DELVO actions is concerned, this is indeed the case. Let, for
M ∈ EMV , PM = {M,w | w ∈M}.

Theorem 4 Let M,w ∈ σ(EMV) and (Ma, Sa), (Mb, Sb)
∈ µ(���) such that Ma,Mb are disjoint, [|Ma∗b, Sa∗b|](PM )
= PM⊗Ma∗b

. Let M ′ = M ∪ (M ⊗Ma∗b). Define wEav iff
(M,w)[|Ma, Sa|](M ⊗Ma∗b, v) and similarly for b. Also let
M ′′ =M ′ ⊔ g(M ′, Ea⋆b). Assume that for the disjoint union,
every w ∈ g(M ′, Ea⋆b) was renamed to w′. Finally, for
w ∈M ′′ let Ea⊛b(w) = {v′ | v ∈ Ea∗b(w)}. Then

[|Ma⊛b, Sa⊛b|](M,w) ↔ M ′′, Ea⊛b(w).

Relation to DELVO We now have two logics for describing
knowledge, and epistemic & ontic change. A natural question
is whether the actions of PDLVE are more general than those of
DELVO. We find that, under mild restrictions, they are not.

As one would expect, the transition from DELVO to PDLVE

can be done simply enough. After all DELVO can be reduced
to S5+V, and epistemic models with vision are part of PDLVE

models. To evaluate a given DELVO formula ϕ in a model
M,w ∈ σ(EMV), one would have to potentially evaluate
subformulas of ϕ in M and in the respective model products.



The idea for the transition from DELVO to PDLVE, is to define a
single PDLVE model by putting together all such models.

Definition 17 Let M ∈ σ(EMV) and ϕ ∈ LDELVO (M may
be omitted when clear from context) by induction on the com-
plexity of ϕ as follows: T1(⊤) = T1(x) = T1(Vix) = {M},
T1(¬ϕ) = T1(Kiϕ) = T1(ϕ), T1(ϕ ∧ ψ) = T1(ϕ) ∪ T1(ψ),
T1([M, S]ϕ) = {N ⊗M | N ∈ T1(ϕ)}.

We then define TM
2 (ϕ) = {M ′ ∈ EMV | ∃n ≥ 0 and

M1, . . . ,Mn ∈ µ(���) s.t. M ′ ⊗M1 · · · ⊗Mn ∈ T1(ϕ)}

TM
2 (ϕ) therefore contains a tree with all the models in-

volved in the process of evaluating ϕ in some w ∈ M . This
idea is not new, see e.g. [van Benthem and Pacuit, 2006].

Theorem 5 Let ϕ ∈ LDELVO and M,w ∈ σ(EMV).
Let TM

3 (ϕ) = 〈W,R,E, V, f〉 such that 〈W,R, V, f〉 =
⊔

TM
2 (ϕ) and regarding E, for all multi-pointed action mod-

els Mi, Si that appear in ϕ it holds that, for w ∈ M and
w′ ∈ M ′, wEai

v′ iff (M,w)[|Mi, Si|](M
′, w′). Finally let

TM
4 (ϕ) be a model that has TM

3 (ϕ) as a submodel but con-
tains appropriate definitions for opaque choice and compo-
sition, so that TM

4 (ϕ) ∈ DEM. Let t : LDELVO → LPDLVE

be a function such that t(ϕ) is ϕ, but for all action models
Mi, Si that appear in ϕ, all its occurrences are replaced with
ai. Then it holds that M,w |= ϕ iff TM

4 (ϕ), w |= t(ϕ).

For the direction “PDLVE to DELVO”, the problem we will be
trying to solve is, given M,w ∈ σ(DEM) and ϕ ∈ LPDLVE,
is there a translation t for ϕ, where actions of PDL have
been translated into multi-pointed action models, such that
N(w), w |= t(ϕ)? Such a translation is impossible to define
homogeneously for all models of PDLVE, as action a changes
depending on its relation, in each PDLVE model M . So let
M ∈ DEM, and a ∈ Act. Action a is perhaps executable in
a number of worlds, and for each such world, the action may
have a number of different possible executions. When focusing
on the case where a single world w is connected through a
with a world v, then the question is: is there a multi-pointed
action model to transform N(w), w into N(v), v?

This question relates to epistemic planning, which is unde-
cidable for the multi-agent case [Aucher and Bolander, 2013],
and it has been answered in [van Ditmarsch and Kooi, 2008]

for finite S5 models (and other models under certain restric-
tions) and using action models with assignment to achieve
ontic change. Our construct will follow the same idea, but
we will be focusing on PDLVE models that (i) have finite W ,
(ii) are an epistemic bisimulation contraction (cf. [Blackburn
et al., 2007]), and (iii) for which wEav implies that for all
v′ ∈ Nw(v), f(w)△f(v

′) is finite.
Note that for anyM,w ∈ σ(DEM) satisfying (i)-(ii), there

exists a characteristic formula ϕw ∈ LDELVO [Barwise and
Moss, 1996], i.e., for v ∈M we have M,v |= ϕw iff v = w.

Definition 18 Let M,w ∈ σ(DEM), satisfying (i)-(iii) and
wEav. We define h(M,w, v) = 〈W,R, pre, tgl〉 ∈ ��� as:

• W = Nw(v), R = R|Nw(v);

• for all w ∈ W, pre(w) = ϕw, tgl(w) = f(w)△f(w).

Back to the more general problem; action a can lead a world
w to a multitude of worlds vi, finite in number. A way to get
an equivalent result by using action models, is to put ‘side by

side’, via disjoint union, models h(M,w, vi). Furthermore,
we can have the case where action a is executable in a multi-
tude of worlds wj , again finite in number. Again, this can be
solved by taking the disjoint union of h(M,wj , v).

Definition 19 Let M,w ∈ σ(DEM), ϕ ∈ LPDLVE and a an
action that appears in ϕ. Let M satisfy (i)-(iii). Define:

Ma, Sa =
⊔

w∈M

⊔

v∈Ea(w) h(M,w, v), v.

Theorem 6 LetM,w ∈ σ(DEM) as above and ϕ ∈ LPDLVE.
Let t : LPDLVE 7→ LDELVO be a function such that t(ϕ) is ϕ,
but for all actions “a” that appear in ϕ, all its occurrences
are replaced with Ma, Sa. Then it holds that M,w |= ϕ iff
N(w), w |= t(ϕ).

5 Conclusion

We pointed to two different ways to understand the interaction
between knowledge dynamics and non-determinism, starting
from logics DEL, PDL, and SPE. We presented a multi-pointed
action model formulation of DEL to express non-deterministic
choice. We defined the logic DELVO, which is capable of han-
dling epistemic and ontic change (for DEL-based work that also
combines epistemic and ontic change see [van Eijck, 2004a;
2004b], [van Benthem et al., 2006], and [van Ditmarsch and
Kooi, 2008]), along with the notion of vision, and allows for a
richer set of actions than those of DEL and SPE. Within DELVO,
we defined both standard and opaque forms of choice and
composition. We also provided a sound and complete axioma-
tisation for it, and a number of embedding results situating it
among its related formalisms.

We also explored a more abstract logic, capable of epistemic
and ontic change, with an even richer class of actions: PDLVE.
Its semantics are based on PDL models with epistemic relations
and vision atoms. Here, our contribution is the definition of
opaque non-deterministic choice and composition in this PDL-
like setting. Finally, we provided theorems that compare DELVO

and PDLVE, thus also investigating the relation between action
models, and atomic actions defined arbitrarily.

Several opportunities for future work exist; we briefly men-
tion that for DELVO we would like vision atoms to exist for
other formulas as well, not only variables. For PDLVE there is
the obvious need for a proof system. Furthermore, two pa-
pers that in our opinion are especially relevant are [van Eijck,
2012] and [Charrier et al., 2016]. The former distinguishes
between actual use of vision and the capability to use it. In
the latter, vision is necessarily common knowledge and the
notions of higher order and joint vision are introduced. One
may also consider the agents not being aware of the actions
being executed or some of the variables [van Ditmarsch et al.,
2012]. Another worthwhile endeavour would be a systematic
comparison between our framework and the Situation Calcu-
lus (cf. [Scherl and Levesque, 2003; van Ditmarsch et al.,
2011]) and the standard and opaque variants. The difference
between the variants is demonstrated by the difference between
MDP and POMDP (see for example [Boutilier et al., 2000;
Delgrande and Levesque, 2013] and [Bacchus et al., 1999]).
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