N

N

Hierarchical Task Network Planning with Task Insertion
and State Constraints

Zhanhao Xiao, Andreas Herzig, Laurent Perrussel, Hai Wan, Xiaoheng Su

» To cite this version:

Zhanhao Xiao, Andreas Herzig, Laurent Perrussel, Hai Wan, Xiaoheng Su. Hierarchical Task Network
Planning with Task Insertion and State Constraints. 26th International Joint Conference on Artificial
Intelligence (IJCAI 2017), Aug 2017, Melbourne, Australia. pp.4463-4469. hal-03658077

HAL Id: hal-03658077
https://hal.science/hal-03658077

Submitted on 3 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03658077
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/19161

Official URL
https://www.ijcai.org/proceedings/2017/0623.pdf

To cite this version: Xiao, Zhanhao and Herzig, Andreas and
Perrussel, Laurent and Wan, Ha and Su, Xiaoheng Hierarchical
Task Network Planning with Task Insertion and Sate Constraints.
(2017) In: 26th International Joint Conference on Artificial
Intelligence (IJCAI 2017), 19 August 2017 - 25 August 2017
(Melbourne, Australia).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Hierarchical Task Network Planning with Task Insertion and State Constraints

Zhanhao Xiao'?, Andreas Herzig'®, Laurent Perrussel', Hai Wan*®°, and Xiaoheng Su*
HRIT, University of Toulouse, Toulouse, France
2AIRG, Western Sydney University, Penrith, Australia
3IRIT, CNRS, Toulouse, France
4School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
®Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China
zhanhao.xiao @ut-capitole.fr

Abstract

We extend hierarchical task network planning with
task insertion (TIHTN) by introducing state con-
straints, called TIHTNS. We show that just as for
TIHTN planning, all solutions of the TTHTNS plan-
ning problem can be obtained by acyclic decom-
position and task insertion, entailing that its plan-
existence problem is decidable without any restric-
tion on decomposition methods. We also prove
that the extension by state constraints does not in-
crease the complexity of the plan-existence prob-
lem, which stays 2-NEXPTIME-complete, based
on an acyclic progression operator. In addition,
we show that TIHTNS planning covers not only
the original TIHTN planning but also hierarchy-
relaxed hierarchical goal network planning.

1 Introduction

Hierarchical task network (HTN) planning [Erol et al., 1994]
is an approach for building plans via step-wise refinement of
high-level tasks into lower-level tasks in a top-down manner.
A task network may contain both compound (high-level) and
primitive tasks. Primitive tasks correspond to STRIPS-like
actions that can be applied in states where their precondi-
tions are met, while compound tasks are abstractions: for
every compound task, the domain features a set of decom-
position methods, each mapping the task to a task network.
The complexity of the plan-existence problem for HTN plan-
ning ranges up to undecidability even for propositional HTN
planning [Erol et al., 1994]. Even so, hierarchical planning
approaches are often chosen for real world application sce-
narios [Lin et al., 2008; Biundo et al., 2011]. On the other
hand, it is usually a challenge to provide a complete domain
which includes all possible methods for all compound tasks,
while defining only a partially hierarchical domain is not suf-
ficient to produce all desired solutions. Several HTN re-
searchers have investigated how partially hierarchical domain
knowledge can be exploited during planning without relying
on the standard HTN formalism [Kambhampati ef al., 1998;
Biundo and Schattenberg, 2001; Geier and Bercher, 2011;
Shivashankar et al., 2013]. Among them, hierarchical task
network with task insertion (TIHTN) planning [Geier and
Bercher, 2011] relaxes the restriction on solutions and allows

solutions generated not only by the decomposition of com-
pound tasks, but also by the insertion of primitive tasks from
outside the decomposition hierarchy.

Unfortunately, only ordering constraints are considered in
propositional TIHTN planning [Geier and Bercher, 2011] and
lifted TIHTN planning [Alford et al., 2015b]. In contrast,
state constraints are taken into account in the conventional
HTN planning [Erol er al., 1994], but there is few work on
considering them in TIHTN planning.

In this paper, we investigate the extension of TIHTN with

state constraints, noted TIHTNS for short. We first prove that,
just as for the TIHTN planning problem, all solutions of the
TIHTNS problems can be obtained by acyclic decomposition
and task insertion, entailing that it is decidable without any
restrictions on decomposition methods. We then show that
the extension by state constraints does not cause an increase
in complexity of the plan-existence problem, which stays 2-
NEXPTIME-complete, based on an acyclic progression op-
erator. We also show that TIHTNS planning includes lifted
TIHTN planning. As under task insertion semantics, hier-
archical goal network (HGN) planning [Shivashankar et al.,
2013] and goal-task network (GTN) planning [Alford et al.,
2016] can be translated to lifted TIHTN, our framework, TI-
HTNS, actually covers the two kinds of planning approaches.
In addition, we give an alternative embedding of hierarchy-
relaxed HGN (HR-HGN) [Shivashankar et al., 2017] in TI-
HTNS without introducing fresh operators.
State constraints State constraints can capture the pre- and
postcondition of compound tasks, though in the standard
HTN planning there is no notion of pre- and postcondition of
compound tasks. A compound task is considered as accom-
plished if its subtasks are accomplished. With a state con-
straint, a formula, as a postcondition, can be required to hold
after accomplishing a compound task.

Ordering constraints cannot fully represent state con-
straints. The ‘immediate’ state constraint, which requires a
formula holds immediately before or after a compound task,
can be simulated via introducing a virtual subtask to check
whether the formula holds. However, the ‘maintenance’ state
constraints (also called trajectory constraints in the Plan-
ning Domain Definition Language 3 (PDDL3) [Gerevini and
Long, 2005]) cannot be represented easily. For instance, sup-
pose a robot is required to always keep 10% battery for emer-
gency. Its initial compound task is to “clean a room”, de-

composed into “clean the ground” (¢1) and “clean the table”
(t2). Suppose that “clean the ground” requires the full battery.
Then there is no solution for the TIHTNS planning problem
with such a state constraint.!

Furthermore, state constraints are introduced into PDDL3
[Gerevini and Long, 2005] to support hard constraints over
state properties of a trajectory and the specification of prefer-
ences. Later [Sohrabi et al., 2009] extends PDDL3 into HTN
planning where state constraints are used to capture user pref-
erences. State constraints are also necessary in real-world ap-
plications, such as in web service composition where state
constraints are used to describe user preferences [Lin et al.,
2008] and to additionally capture the enforcement of regula-
tions [Sohrabi and Mcllraith, 2009].

The rest of the paper is structured as follows. Section 2
presents the definition of TIHTNS. Section 3 presents how to
embed lifted TIHTN and HR-HGN into TIHTNS. Section 4
presents the complexity results of TIHTNS. Section 5 con-
cludes and discusses the future work.

2 Extended TIHTN Planning

In this section we adapt the original TIHTN planning for-
malism of [Geier and Bercher, 2011; Alford et al., 2015b].
First, we define a function-free first order language £ from
a set of variables and a finite set £y of predicates and con-
stants. Next we take parts of variables in £ as task symbols
to identify fasks. Every task is associated with an action (task
name), which is syntactically a first-order atom in £. That
is, every action typically is associated with an arity and con-
tains variables that can be eliminated via grounding. For ex-
ample, by grounding the action “openDoor(X)” where X is
quantified as a door, we can obtain a set of ground actions
“openDoor(a)”, “openDoor(b)”, etc. Those actions which
can be executed directly are called operators, noted O, while
others are called compound actions,? noted C. Each opera-
tor o € O is represented as a triple of formulas: precondi-
tion pre(o), positive effect add (o), and negative effect del(o)
where add (o), del(0) are finite sets of atomic formulas. The
variables in add(o0) and del(o) should be associated with the
variables in the operator so that they are instantiated simulta-
neously. For example, the positive effect of “openDoor(X)”
being “Opened(X)”, after grounding “openDoor(a)” has
positive effect “Opened(a)” but not “Opened(b)”. The pos-
itive and negative effect of an operator should not conflict,
i.e., add(o) N del(o) = 0 for every o € O. We suppose
that O contains the ’empty’ primitive operator skip where
pre(skip) = T and add(skip) = del(skip) = 0.

For a function f : R — S, its restriction to a subset X of
its domain is f|x = {(r,s) € f | r € X}. Given a binary

"For the original TIHTN planning, there is an intuitive attempt
to simulate that constraint: introducing a virtual primitive task pt
whose precondition is “more than 10% battery” and introducing two
ordering constraints ¢1 < pt and pt < {2. Assume “charge” means
to charge the battery, then the plan (¢1;“charge”;pt;t2) is a solution
of the original TIHTN planning problem. But it is counter-intuitive
and the state constraint is still violated.

*In the original HTN, “non-primitive or compound task name” is
used to distinguish from STRIPS-like actions, i.e., operators.

relation Q C R x R, we define its restriction to X C R
by Qlx = Q N (X x X); similarly for ternary relations.
We extend the set union operator U to tuples: (Q1,Q2) U
(Q1,Q%) = (@1 UQ},Q2U Q5) and extend functions to
sequences: f((t1,...,tn)) = (f(t1),..., f(tn)).

2.1 HTN Problems

Task networks A task network tn = (7, A, «) is a tuple,
where

e T'is a finite and non-empty set of task symbols;

o A C (TU{nil}) x £ x (TU{nil}) is a set of constraints
over T'

e o :T — CU QO labels every task with an action.

With Function «, we allow multiple instances of an ac-
tion in a task network. Compared to the ordering constraints
in [Geier and Bercher, 2011] which are in form of task-task
pairs, we use a triple (¢;,,t;) to denote a state constraint
which intuitively means that formula ¢ must be true in all
states between ¢; and ¢;. Specially, we introduce an idle task
symbol nil which designates a task that is accomplished im-
mediately: (nil, ¢, ;) and (¢;, ¢, nil) mean formula ¢ holds
immediately before ¢; and after ¢;, respectively. We suppose
nil only occurs in constraints. When ¢ is the truth constant T
then the state constraint (¢;, ¢, ¢;) becomes an ordering con-
straint that just requires that ¢; is before ¢;. A task is primitive
if it is associated to an operator, otherwise compound. A task
network is primitive if it only contains primitive task.

We say that two task networks tn = (7, A, «) and tn’ =

(T, A’, &) are isomorphic, noted tn = tn’, if there exists a
bijection 6 : T — T’ where for all ¢,#' € T it holds that
a(t) = (6(t)) and (¢, o, t") € Aiff (6(t), p,0(t")) € A,
Methods Non-primitive task networks contain compound
tasks which cannot be executed directly by the agent, and de-
composition methods tell us how to decompose these hierar-
chically. Each decomposition method m is a tuple (¢, tn,,),
where ¢ is a compound action, called the method’s head,
and tn,,, is a task network, whose inner tasks are called the
method’s subtasks. The intuition is that compound action ¢
can be reduced by the subtask network tn,,,.
HTN problems TIHTNS problems only differ HTN prob-
lems in the solution criterion and share the syntactical
problem description. An HTN domain is a tuple D =
(£,C,0, M) where M is a set of methods and C N O = 0.
An HTN problem is a tuple P = (D, sy, tny) where s; is the
ground initial state and tn; is the initial task network.

The semantics of HTN planning is given through ground-
ing. According to [Alford er al., 2015al, it is easy to trans-
late a lifted HTN problem into a ground (or propositional)
HTN problem as the set of relations and constants Ly is fi-
nite. For an HTN problem (£,C,O, M, sy, tny), we use
P = (L,C,0,M, sy, tn}) to denote the ground (or propo-
sitional) problem obtain from it.

A ground state is a subset of the ground atoms in L. A set
of ground operators O determines a state-transition function
o 2L0 % O — 2£0_ where:

e ~y(s,0) is defined iff s |= pre(o);
e v(s,0) = (s\ del(0)) Uadd(o) if v(s, 0) is defined.

A sequence of operators (o1, ..., 0,) is executable in a state
so iff there exists a sequence of states si,..., s, such that
Vi<i<nY(8i—1,0:) = S;.

Example 1. Suppose we have an initial compound action
goMC for “go to Melbourne center”, operator o1 for “fly to
Melbourne”, and operator o5 for “take a taxi to the center”.
We use At(Mc)and At(Ma) to denote “being at Melbourne
center” and “being at Melbourne airport”. The primitive
operators are:

e 01 = (T,{At(Ma)},0)
e 0o = (At(Ma), {At(Mc)}, {At(Ma)})
and the method is:
o m = (goMC, tn,,), where tn,, = (t2, 0, (t2,01))

Then the HTN problem P is (L, goMC, {01,029}, m, sy, tny)
with s; = () and tn; = (t1, (t1, At(Mc), nil), (t1, goMC)).3

2.2 Task Decomposition

Next we borrow the notion of decomposition in [Geier and
Bercher, 2011] and define how to decompose a compound
task into a task network. In order to indicate the starting point
and the end point of a compound task ¢, we introduce a pair of
’dummy’ primitive tasks, noted ¢ and ¢x. As nil only occurs
in constraints, we suppose the restriction of constraint set A
to a set of tasks 7'is Al = AN((TU{nil}) x Lx (TU{nil})).

Definition 1 (Decomposition). Given an HTN domain D =
(L,C,O,M), lettn = (T, A, &) be a task network andt € T
be a compound task. Let m = (a(t), (T, Am, m)) and
T, N'T = (. The decomposition of task t by method m is
tn' = (77, A, &) where

T = (T\ {£}) U Ty U {5, ¢}
A = A‘T\{t} UA,, U {(*t, T, tj), (tj, T, t*) | tj S Tm}

U {(tl,QD, *t) | (tla 907t) € A}
U {(t*7 ®s t2) | (tv Savt?) € A}
of = O‘|T\{t} Uam, U {(*tvskip)v (t*v Sklp)}
We write tn Py tn” when tn’ is the decomposition of t by m.
In the resulting task network, the decomposed compound
task is replaced with subtasks defined by the method applied
and its corresponding starting and terminating tasks. The lat-
ter two are dummy tasks and are mapped to the action skip.
All state constraints about the decomposed task ¢ are propa-
gated by *t and ¢+ in A’. More precisely, if ¢ holds before ¢
then it also holds before *t and if ¢ holds after ¢ then it also
holds after ¢x. Subtasks should satisfy the inner constraints
introduced by the decomposition method and should be per-
formed between *t and tx.

Example 2 (Example 1 continued). We apply the method m
intny to decompose tq, i.e., tny —— tn’, where tn’ is:

t1,m
T ={tg, *t1,t1%}
A ={(ta, T, t1%), (xt1, T,t2), (t1x, At(Mc),nil)}
o ={(tz,01), (xt1,skip), (t1*,skip)}

3We will sometimes omit the braces of singleton sets.

Decomposition tree The hierarchical procedure of task de-
composition can be viewed as a tree. Given an HTN do-
main D = (£,C, 0, M), a decomposition tree is a five-tuple
Tr = (T,E,A,«, 3) where (T, F) is a tree, rooted in g
which is a fresh task symbol, with nodes 1" and with directed
edges F pointing towards the leaves; A is a set of constraints
over T'; function o« : T — C'UO links tasks and actions where
a(tp) = co such that ¢ is a fresh compound action with an
intuition “to achieve the initial task network”. g : T — M’
labels inner nodes with methods where M’ = MU{(co,tno)}
and tng is some task network.

We write 7(Tr) for the nodes (tasks) of the decomposition
tree Tr and ch(Tr, ¢) for the direct children of ¢ € 7(Tr) in
Tr. Hereafter sub(t) denotes the set of subtasks of ¢. The leaf
nodes of Tr together with the constraints about these nodes
define a task network, denoted by 9J(Tr).

Definition 2 (valid decomposition tree). A decomposi-
tion tree Tr is valid w.rt. an HTN problem P =
(L,C,0,M,sy,tny) iff the root node of Tr is to where
B(to) = (co,tny) and for any inner node t where 3(t) =
(¢, tny,), the followings hold:

1. a(t)=c

2. if t = tg then ch(Tr,t) = sub(t), otherwise ch(Tr,t) =
sub(t) U {xt, tx} such that

° (sub(t), A‘sub(t)y O“sub(t)) = tn,,

o foreveryt' € sub(t), (t',T,tx),(xt, T,t') € A
3. foreveryt' € 7(Tr) U {nil}:

o if (t,p,t') € Athen (tx,p,t') € A

o if (t',p,t) € Athen (', p,xt) € A

4. there are no constraints in A except for those demanded
by criterion 2. and 3.

When tn’ is reachable from tn by a finite sequence of de-
compositions then we write tn —7, tn’.

The decomposition tree focuses on the whole procedure
of decomposition and records all intermediate tasks and con-
straints during the procedure. In contrast, in a task network
the application of a decomposition method abandons the de-
composed task. However, they are compatible as the follow-
ing proposition states.

Proposition 1. Given an HTN problem P, tnf —7, tn iff
there exists a valid decomposition tree Tr with respect to P
where 9(Tr) = tn.

2.3 Solutions

A solution of an HTN problem is a sequence of primitive
tasks which is also called a plan of the problem.
Consistency with constraints Given a primitive task net-
work tn = (T, A, o) where |T| = n,leto : T — {1,...,n}
be a bijection. We use o to form a total ordering, noted o (tn),
of tasksin T as: (0 (1),...,07(n)) where o~ is the inverse
function of o, i.e., 0~ (o(t)) = t. Suppose a(o(tn)) is ex-
ecutable in s, i.e., there exists a sequence sy, ..., S, such
that y(s;_1, «(t;)) = s; for every i such that 1 < i < n.
We say that o(tn) is consistent with A in sg if for every
o~ (i),07(j) € T the following hold:

e forevery (nil, o, 07 (j)) € A, sj—1 = ¢;

o forevery (o7 (i), p,nil) € A, s; = 3

e forevery (07 (i),¢,07(j)) € A, i < jand s, |= ¢ for

every i < k<j.

Intuitively, a ‘maintenance’ state constraint (¢, ¢, t') is sat-
isfied if all states between ¢ and ¢’ satisfy ¢. An ‘immediate’
state constraint (nil, ¢, t) is satisfied if ¢ holds in the state
right before =t occurs (or ¢ if ¢ is a primitive task), in other
words right before all subtasks of ¢. Finally, an ‘immediate’
state constraint (t, ¢, nil) is satisfied if ¢ holds right after the
state where *t (or ¢ if ¢ primitive task) occurs, in other words
right after all subtasks of ¢. Note that it is impossible to satisfy
(t, L,t") because there is no state s such that s = L.
Executability A task network tn is primitive iff it contains
only primitive tasks. A primitive task network tn is exe-
cutable in a state s iff there exists a total ordering o(tn) of
the tasks in tn that is consistent with A in s. We called such
ao(tn) a plan of tn in s, noted oy 5.

It is possible that the task network is not executable in a
state. For instance, the primitive task network tn’ in Example
2 is not executable in s; because apart from skip it only in-
volves the operator o; and it is impossible to satisfy At(Mc).
However, if we extend the task network by inserting some
tasks, then we can make it executable.

Insertion Let tn = (7, A, «) and tn” = (77, A’) be two
task networks where tn’ is primitive. Inserting tn’ into tn
results in the task network tn; = tn U tn’.

Note that it is not required that 77 0T = () because the
insertion can involve some constraints about tasks in tn.
Solutions With respect to some initial tn, if tn’ is reachable
by a finite sequence of decompositions and an insertion we
write tn —7,; tn’. The plan obtained only by decomposi-
tion is called an HTN solution while the plan obtained addi-
tionally by insertion is called a TIHTNS solution:

Let tn be a primitive task network such that there exists a
plan of tn in s;. Given an HTN problem P, we call o, 5, an
HTN solution of P if tn; —7, tn; we call oy, ,, a TIHTNS
solution of P if tn; —7,; tn.

Example 3 (Example 2 continued). The plan (xt1,to, ts,t1%)
where a(t3) = o9 is a TIHTNS solution of P.

When considering whether an HTN problem P has a TI-
HTNS solution, we call P a TIHTNS problem.

The next proposition states that the state constraints about
compound tasks are satisfied in the solutions of the problem.

Proposition 2. Given a TIHTNS problem P, suppose Tr is
a valid decomposition tree with respect to P and tn' is the
final primitive task network obtained from 9(Tr) by insertion
and oy s, is a solution of P. Then all constraints in Tr are
satisfied by o ;-

Sketch of proof. Suppose there are two compound tasks t;
and ¢; in Trand tn’ = (T", A’,). For every (t;, o, t;) € A,
we have (t;%, p,*t;) € A’ and then all states sj, such that
o(tix) < k < o(xt;), sk = . Forevery (t;, ¢,nil) € A,
we have (t;x, p, nil), (st, T,¢;%) € A’ for all subtasks st €
sub(t;) and then s,(;,.) = ¢ and o(st) < o(t;*) for all
st € sub(t;). The case of (nil, ¢, t;) is similar. If one or both
of t;,; are primitive then just consider *¢; and ¢;* as ¢; and
t;, respectively. Then all constraints in Tr are satisfied. O

Remark 1. The state constraint here we define is weaker than
that in the original HTN planning [Erol et al., 1995]. Their
semantics considers every compound task starts by its first
‘real’ subtask and terminates by its last ‘real’ subtask instead
of the virtual starting and terminating tasks. The distinction
between two semantics stands on whether it is allowed to in-
sert tasks between xt and the first real subtask of t (between
the last real subtask and tx). Our weaker semantics can cap-
ture the pre- and postcondition of compound actions better.
In Example 1, after the subtask to of goM C' is accomplished,
the agent’s desirable goal “being in the center” does not hold
while by allowing the insertion of ts, the goal is achieved.

3 Embedding TIHTN and HGN

Recently HTN researchers work on enhancing the semantics
of HTN planning and have proposed variants of HTN plan-
ning. Propositional TIHTN was first proposed in [Geier and
Bercher, 2011] and later was extended into lifted TIHTN in
[Alford et al., 2015b]. Hierarchy goal network (HGN) plan-
ning [Shivashankar et al., 2012] operates over a hierarchy of
goals with methods that decompose goals with further sub-
goals. [Shivashankar er al., 2017] relaxes the hierarchy of
HGN planning and translates the variant which is called HR-
HGN planning into classical planning. Hereafter, we detail
that how lifted TIHTN and HR-HGN planning can be easily
encoded in our framework in polynomial time.

Embedding TIHTN Let us now translate lifted TIHTN into
our extended TIHTNs. By replacing all occurrences of ¢; <
t; in lifted TIHTN problem P with (t;, T,t;), we obtain a
TIHTNS problem, noted I'(P). The following proposition
shows that the two problems are equivalent.

Proposition 3. For a lifted TIHTN problem P, P has a solu-
tion iff U'r(P) has a solution.

Sketch of proof. Under the lifted TIHTN semantics, consider
the decomposition of ¢ by m, the new ordering constraint set
is obtained as: (1) keep the constraints not involving ¢; (2) in-
troduce the constraints about the subtasks; (3) if ¢ is before ¢/
then all subtasks are before t; (4) if ¢ is after ¢’ then all sub-
tasks are after . Under the extended semantics, according
to Definition 1, the change of state constraints includes (1)
and (2) and is analogous to (3) and (4). If ¢ is before ¢/, i.e.,
(t, T,t'), there will be (¢x, T,¢') introduced. As (t,,, T,1*)
for all subtasks ¢,, are introduced, it entails that (¢,, T,t)
which means t,,, is before ¢'. Then (3) is simulated and the
case of (4) is similar. The proposition follows. O

Alford et al. [2016] combine HTN and HGN planning into
goal-task network (GTN) planning where an element of the
network consists of a goal and a task. They also show that
allowing task insertion, HGN and GTN planning problems
can be translated polynomially into lifted TIHTN problems.
Therefore, our extension TIHTNS actually also covers them.
Embedding HR-HGN Hierarchical goal network planning
is a formalism which extends classical planning to include
hierarchical decomposition using methods.

HGN planning talks about goal network gn = (G, <)
where G is a set of formulas in disjunctive normal form over
ground literals, called goal formulas, and <C G x G is a

strict partial order on (. Similar with HTN problems, an
HGN problem is a tuple P = (£, O, M, sy, gn;) where M is
a set of HGN methods and gn; is an initial goal network.
For an HR-HGN problem, M is a empty set and omitted.
The solutions of HR-HGN are defined as the set of all op-
erators sequences that are executable in the initial state s;
and that achieve all initial goals according to the order. In
[Shivashankar er al., 2017], by introducing fresh operators
with the number of |gn;|, an HR-HGN problem can be trans-
lated into a classical planning problem. Now, we translate
HR-HGN planning into our framework without introducing
any fresh operators. Allowing task insertion, state constraints
simulate a goal formula by requiring that the formula holds
immediately before an empty task. Formally, given an HR-
HGN problem P = (£,0,sy,gn;), we define a TIHTNS
problem I';(P) = (£,0,0,0, s7,tn) as:

e for every g € G, Ay € tn and (nil,g,\y) € A and
a(Ag) = skip

o forevery g; < g;, (A, T, Ay;)
Next we show that the translation I'; is correct.

Proposition 4. For an HGN problem P, P has a solution iff
T'¢:(P) has a solution.

Sketch of proof. Suppose oy s, is a solution of I'(P).
Then tn’ is obtained from tn by an insertion. It forms a se-
quence Sy, . . . , S, where sg = s;. Forevery g € G, we have
Ag € T" and (nil, g, A\g) € A’ then s; = g where o(\g) = 4}
for every g; < g;j, we have (g, T, Ay)A" then i’ < j" and
si = giy s = gj,where a(Ag,) and o(Ay,). O

4 Complexity

In this section, we show that the solutions of TIHTNS can be
obtained by acyclic decomposition and it does not increase
the complexity, staying 2-NEXPTIME-complete.
Substitution Now we adapt the notion of subtree substitu-
tion initially proposed in [Geier and Bercher, 2011] which re-
places a subtree with another subtree. Given a decomposition
tree (T, E, A, «,3) and a node ¢t € T, we define the sub-
tree of Tr induced by ¢, as Tr[t] = (T', E', Alr+, |7+, B|1)
where (7", E') is the subtree in (7', E') which is rooted in ¢.
Let Tr = (T,E,A,«,3) be a decomposition tree and
t;,t; € T be two nodes of Tr where ¢; is an ancestor of ¢;. We
define the result of the subtree substitution on Tr that substi-
tutes ¢; by tj, written Tr[ti — tj] = (T/7 E,, A/, OZ|T/, B'T’)’
where
T = (T \ 7(Trlt:])) U r(Trlt;])
E = E|T’ U {(patj) | (pvti) € E}
A" = (Al \ {(nil, 1, 5t5), (5%, @2, nil) € A})
U{(t;, ¢1,t1), (tj%, 01, t1) | (ti, 1,t1) € A}
u {(tQa Y2, tj)v (tZa Y2, *tj) | (t2a 902>t7?) € A}
Compared to [Geier and Bercher, 20111, the substitution
operator here requires to remove ¢; corresponding starting
and terminating tasks before replacement because they are

generated from ¢;’s parent which will be dropped. The fol-
lowing proposition states that the resulting tree is still valid.

Proposition 5. Let Tr = (T, E, A, «, 8) be a valid decompo-
sition tree with respect to TIHTNS problem P and two nodes
t; e T, tj € T(Tl’[tl]) with Oé(ti) = Oé(ﬁj). Then Tr[tl — tj]
is also a valid decomposition tree w.r.t. P.

Acyclic decomposition The sequence of decompositions is
acyclic if for every node t in its corresponding tree Tr, the
ancestors of ¢ have different actions.

The insertion of tasks allow us to break the loop of gener-
ating same compound tasks during the decomposition proce-
dure and find a shortcut to generate the solution. The follow-
ing theorem states that we only need to consider the acyclic
sequences of decompositions to compute the solution.

Theorem 1. A TIHTNS problem P has a solution iff P has a
solution which is generated by an acyclic sequence of decom-
positions and an insertion.

Proof. The right-to-left direction is straightforward. Now we
prove the left-to-right direction.

Suppose oy, s, is a TIHTNS solution of P where tn; —7,
tn; and tn is obtained from tn; by insertion. Then tn; is a
primitive task network. If the sequence of decompositions
from tn; to tn; is acyclic, then it is proved. Now sup-
pose the sequence is not acyclic. Then in its corresponding
tree Tr, there exist two ancestors t;,¢; of some ¢ such that
a(t;) = «ftj). By Proposition 5, the tree Tr[t; < ¢;] is
valid with respect to P. By Proposition 1, there exists a prim-
itive task network tng such that tng = 9(Tr[t; < ¢;]) and
tn; —7 tna. As the substitution does not introduce any
new node, the leaf nodes of Tr[t; < ;] are a subset of the
leaf nodes of Tr. The only state constraints about leaf nodes
which are introduced by the substitution are (¢;%, ¢1,t1) and
(%t;,2,t2). Now we replace all occurrences of ¢;* with
ti*, *t; with t; in Tr[t; < t;]. Then except for those con-
straints between subtasks of ¢; and either ¢;* or *¢;, in form
of (xt;, T,t) and (¢, T,¢;x), the constraints in tny are a sub-
set of the constraints of tny. Because ¢; is an ancestor of
t; in Tr, there must be some tasks ¢/,#", ..., t*)such that
(et T,), (¢, T, "), ..., (t%) T, xt;). Thus, in the plan
Otn,s;» *t; is before *t; and then before all subtasks of ¢;.
Then those constraints (x¢;, T, ¢) are satisfied; the case of ¢
is similar. So oy, 5, includes all tasks in tny and is consistent
with all constraints in tns and then tn can be obtained from
tng by inserting an appropriate task network. O

The next lemma allows us to only check whether there is a
solution with an upper bound on length.
Lemma 1. [If TIHTNS problem P = (L,C,O, M, sy, tny)
has a solution then ‘P has a solution with a length of at most
| Ty| x (k+2)I€1%¢™ x 2P%€" ‘\where k is the maximal number
of subtasks in one method, c and p are the number of con-
stants and predicates respectively, m and n are the maximal
arity of compound actions and predicates respectively.

Sketch of proof. A valid decomposition tree generated by
acyclic decomposition has at most |T7| x (k+42)/€! leaf nodes
where |C' is the number of ground compound actions that is
|C| x ¢™. As the number of states is bounded by 2/“0 where
|Lo] is the number of ground atoms that is p x ¢™, at most
2%l tasks can be inserted between two neighbor tasks. [

As the state-transition function +y satisfies the frame axiom,
before performing an operator we can check whether a for-
mula is true in the next state. Given a formula ¢, we use ¢
to denote the formula obtained from ¢ by replacing p with T
and ¢ with L where p € add(o0) and ¢ € del(0). As all vari-
ables outside the effect of operator o keep their truth value, we
can check whether a formula ¢ holds in the next state before
operator o is performed, as the following lemma states:

Lemma 2. s |= ¢, iff v(s,0) = ¢.

Acyclic progression We adapt the acyclic progression opera-
tor proposed in [Alford er al., 2015b] to TIHTNS. To capture
the ‘maintenance’ state constraints we introduce a set X of
pairs (p,t) of formula and task which means ¢ should be
satisfied until performing task ¢. We use Fml(X) to denote
the conjunction of all formulas in 3. To forbid the recursion
of tasks, when decomposing a compound task ¢ by method
m, its subtasks cannot contain ¢’s ancestors denoted by h(t),
where h : T — 2¢. Formally, we use a tuple (s, tn, ¥, k) to
represent that task network tn still needs to be accomplished
at the current state s. Given a tuple (s, tn, 3, h), we define its
acyclic progression is (s’ tn’, ¥/, h’) with tn’ = (T", A/, o),
which is obtained from three possible options:

e Task insertion: if s = pre(o) A Fml(X); then s’ =
~v(s,0)and tn" =tn, > =3 b =h
The task inserted should satisfy the state constraints.

e Task performing: for a primitive task t € T, if s |
pre(a(t)) A FmI(Z_t);(t) where ¥_;, =X N (L x (T
{t})) and the followings hold:

— there is no ¢’ such that ¢ # nil and (¢, p,t) € A

- for every (nil, o, t) € A, s = ¢

- forevery (t,¢,t') € A, s =@
then

- T/ = T\ {t}, A/ = A|T/, Oé/ = OL‘T/

=Y =3U{(p,t)] (t,p,t') € Aand ' # nil}

— W' = h|p and §' = (s, a(t))
A primitive task is chosen only if its all predecessors
have been accomplished, its precondition is satisfied and
the state constraints in X, except for those constraints
ending with the primitive task, will hold after perform-

ing it. The ‘maintenance’ state constraints starting from
the primitive task will be added into X.

e Task decomposition: for a compound task ¢ € T" and a
method (a(t), (T, A, i) € M, if () N Ty, = 0,
then tn — tn” and

,m

= B = hlr U{(tm, h(t) U{a(®)}) | tm € Tin}

- Y= Z'T/ U {(907 *t) ‘ (307t) € E}
For a compound task, the method chosen to decomposed
cannot contain an action which is its ancestor in order to
avoid the recursion of tasks.

Note that the cardinality of ¥ may be exponential on size
but Fml(X) is polynomial which is restricted by the con-
straints in M. It entails that applying a step of acyclic pro-
gression is in P.

If all tasks can be eliminated by the acyclic progression,
then the TTHTNS problem has a solution:

Lemma 3. Given a TIHTNS problem P, P has a solu-
tion iff there is a sequence of acyclic progressions from
(sr,tng, 0, hy) to (s,tng, 0, 0) where hy = g and tng is the
empty task network.

As TIHTNS can cover lifted TIHTN whose plan-existence
problem is 2-NEXPTIME-complete [Alford et al., 2015b],
the plan-existence problem for TIHTNS is 2-NEXPTIME-
hard. The next theorem states its completeness by proving
the upper bound.

Theorem 2. Deciding whether a TIHTNS problem has a so-
lution is 2-NEXPTIME-complete.

Proof. Theorem 1 reduces deciding the problem into check-
ing all solutions generated by acyclic decomposition and
Lemma 1 reduces further deciding the problem into check-
ing solutions with an upper bound on length. By introducing
a counter on operators according to [Alford et al., 2015b],
the length of a solution can be restricted with a polynomial
translation on the problem. As the number of decomposing
compound tasks is bounded double exponentially, it can en-
sure that every sequence of acyclic progression terminates af-
ter a double exponential number of steps of insertion, per-
forming and decomposition. Therefore, by applying non-
deterministically acyclic decomposition, either it can reach
a solution or it cannot progress any more which entails that
the problem has no solution. L

5 Conclusion

In this paper, we extended TIHTN so that state constraints
can be captured. We have shown that this extension does not
increase the complexity while it can represent cover planning
frameworks: lifted TIHTN and HR-HGN.

State constraints are written as linear temporal logic (LTL)
formulas in PDDL3. It seems not difficult to adapt the notion
of consistency with constraint to LTL formulas.

The experimental results in [Shivashankar et al., 2013]
show that the completeness of methods can contribute to the
performance of the HGN planners. It is also interesting to
extend TIHTNS again with allowing method insertion. A
promising reference is [Herzig et al., 2016] which provides
a dynamic view of HTN planning and models decomposition
in propositional dynamic logic.

Acknowledgments

We wants to appreciate the reviewers for their insightful com-
ments. Zhanhao Xiao is partially supported by CSC (Chi-
nese Scholarship Council) and Hai Wan is partially sup-
ported by National Natural Science Foundation of China un-
der grants 61573386, Natural Science Foundation of Guang-
dong Province under grant 2016A030313292 and Guangdong
Province Science and Technology Plan projects under grant
2016B030305007. Laurent Perrussel is partially supported
by ANR-11-LABX-0040-CIMI within the program ANR-11-
IDEX-0002-02.

References

[Alford et al., 2015a] Ron Alford, Pascal Bercher, and
David W Aha. Tight bounds for HTN planning. In Pro-
ceedings of the 25th Intelligence Conference on Automated
Planning and Scheduling (ICAPS-15), pages 7-15. Cite-
seer, 2015.

[Alford et al., 2015b] Ron Alford, Pascal Bercher, and
David W Aha. Tight bounds for HTN planning with task
insertion. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI-15), 2015.

[Alford et al., 2016] Ron Alford, Vikas Shivashankar, Mark
Roberts, Jeremy Frank, and David W. Aha. Hierarchical
planning: Relating task and goal decomposition with task
sharing. In Proceedings of the 25fth International Joint
Conference on Artificial Intelligence, (IJCAI-16), pages
3022-3029, 2016.

[Biundo and Schattenberg, 2001] Susanne Biundo and
Bernd Schattenberg. From abstract crisis to concrete
relief (a preliminary report on combining state abstraction
and HTN planning). In Proceedings of the 6th European
Conference on Planning (ECP-01), pages 157-168. AAAI
Press, 2001.

[Biundo et al., 2011] Susanne Biundo, Pascal Bercher,
Thomas Geier, Felix Miiller, and Bernd Schattenberg.
Advanced user assistance based on Al planning. Cognitive
Systems Research, 12(3):219-236, 2011.

[Erol et al., 1994] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the 12th National Conference on Ar-
tificial Intelligence (AAAI), volume 94, pages 1123-1128,
1994.

[Erol et al., 1995] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. Semantics for hierarchical task-network
planning. Technical report, DTIC Document, 1995.

[Geier and Bercher, 2011] Thomas Geier and Pascal
Bercher. On the decidability of HTN planning with
task insertion. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-11),
volume 22, pages 1955-1961, 2011.

[Gerevini and Long, 2005] Alfonso Gerevini and Derek
Long. Plan constraints and preferences in pddl3. Tech-
nical Report, Department of Electronics for Automation,
University of Brescia, Italy, 75, 2005.

[Herzig et al., 2016] Andreas Herzig, Laurent Perrussel, and
Zhanhao Xiao. On hierarchical task networks. In Pro-
ceedings of the 15th European Conference on Logics in
Artificial Intelligence (JELIA), pages 551-557, 2016.

[Kambhampati ef al., 1998] Subbarao Kambhampati, Amol
Mali, and Biplav Srivastava. Hybrid planning for par-
tially hierarchical domains. In Proceedings of the 17th
National Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial Intel-
ligence (AAAI/TAAI-98), pages 882888, 1998.

[Lin et al., 2008] Naiwen Lin, Ugur Kuter, and Evren Sirin.
Web service composition with user preferences. In Pro-
ceedings of European Semantic Web Conference (EWSC-
08), pages 629-643. Springer, 2008.

[Shivashankar er al., 2012] Vikas Shivashankar, Ugur Kuter,
Dana Nau, and Ron Alford. A hierarchical goal-based
formalism and algorithm for single-agent planning. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages
981-988, 2012.

[Shivashankar et al., 2013] Vikas Shivashankar, Ronald Al-
ford, Ugur Kuter, and Dana S Nau. The godel planning
system: A more perfect union of domain-independent and
hierarchical planning. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
13), pages 2380-2386. AAAI Press, 2013.

[Shivashankar et al., 2017] Vikas Shivashankar, Ron Alford,
and David W. Aha. Incorporating domain-independent
planning heuristics in hierarchical planning. In Pro-
ceedings of the 31st Conference on Artificial Intelligence
(AAAI), pages 3658-3664, 2017.

[Sohrabi and Mcllraith, 2009] Shirin Sohrabi and Sheila A.
Mcllraith. Optimizing web service composition while en-
forcing regulations. In Proceedings of the Sth Interna-
tional Semantic Web Conference, (ISWC),, pages 601-617,
2009.

[Sohrabi et al., 2009] Shirin Sohrabi, Jorge A. Baier, and
Sheila A. Mcllraith. HTN planning with preferences. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), pages 1790-1797, 2009.

