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A B S T R A C T   

We investigated the contributions and the evolution of organic aerosol (OA) sources at the Marseille-Longchamp supersite (MRS-LCP, France) based on Time-of-flight 
Aerosol Chemical Speciation Monitor (ToF-ACSM) measurements of non-refractory PM1 over a fourteen-month period (1 February – 3 April 2018). The OA source 
apportionment was performed by positive matrix factorization (PMF) using the novel “rolling window” approach implemented in the Source Finder Professional 
(SoFi Pro). Here, PMF is performed over a 14-days window moving over the entire OA dataset, in order to account for the temporal variability of the source profiles. 

Six factors were resolved, including hydrocarbon-like organic aerosol (HOA) which is related to traffic exhausts, cooking-like organic aerosol (COA), biomass 
burning aerosol (BBOA), less oxidized organic aerosol (LOOA), more oxidized organic aerosol (MOOA) and a new defined source related to the mix between shipping 
and industrial plumes (Sh-IndOA). While HOA and COA consistently contribute to the total OA with on average 11.2% (ranging between 9.2 and 12.1% over the 
seasons) and 11.5% (11–12.1%), respectively, BBOA (11.7% on average) shows a larger seasonal variability with 18% in winter and no contribution in summer. 
BBOA profiles during winter were attributed to fresh biomass burning emissions from domestic heating, and more oxygenated profiles were assigned to regional land 
and agricultural waste burning for spring and early autumn. Sh-IndOA fraction is estimated to 4.5% (3.7–6.1%) and contributes to the total OA mass concentrations 
to a minor extent. The secondary organic aerosol (SOA) fraction includes both LOOA with 21.5% (18.8–27.2%) and MOOA with 39.6% (36.8–42.6%). Based on the 
f44/f43 analysis these sources appeared to be more linked to biogenic influences in summer, whereas the concentrations were associated with oxidized anthro-
pogenic sources (biomass burning and road traffic) for the rest of the year. The investigation of MOOA geographical origins suggests some influence of air masses 
transported from the Rhône Valley and the west basin of the Mediterranean Sea.   

1. Introduction 

The exposure to atmospheric particulate matter (PM) causes millions 
of annual premature deaths worldwide (Cohen et al., 2017; Lelieveld 
et al., 2015). It is well known that fine particles (PM1; PM with an 
aerodynamic diameter smaller than 1 μm) may cause the highest dam-
age to human health (Kreyling et al., 2006; Oberdörster et al., 2004) and 
trigger respiratory and cardiovascular diseases and lung cancers (Pope 
et al., 2002; Pope and Dockery, 2006). The health effect might also differ 
according to the different aerosol sources (Daellenbach et al., 2020). 

Organic aerosol (OA) represents the major constituent of the fine PM 
mass composition (Jimenez et al., 2009) and knowledge about its main 
sources and formation processes increased considerably over the last 
decades. This fraction can be classified as primary OA (POA) 

corresponding to particles directly emitted in the atmosphere, or sec-
ondary OA (SOA) which are formed via condensation or uptake of 
oxidized gas-phase precursors. The aerosol mass spectrometer (AMS) 
(Canagaratna et al., 2007; Jayne et al., 2000) has been extensively used 
for the online analyses of the non-refractory submicron aerosol 
(NR-PM1) composition. While the studies using AMS are limited to 
short-term campaigns, the aerosol chemical speciation monitor (ACSM) 
(Fröhlich et al., 2013; Ng et al., 2011b), based on the same technology, is 
easily deployed for unattended long-term monitoring (up to multiple 
years). A great advantage is to allow the investigation of the seasonality 
and yearly variations of the dataset. 

AMS and ACSM are widely deployed worldwide in order to quantify 
and identify the OA emission sources (Fröhlich et al., 2015a; Zhang 
et al., 2011). Source apportionment of OA is commonly performed using 
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positive matrix factorization (PMF; Paatero and Tapper, 1994). The PMF 
algorithm can be solved with the multilinear engine (ME-2; Paatero, 
1999) which allows to introduce a-priori information to the factor 
profiles and/or time series (Canonaco et al., 2013; Crippa et al., 2014; 
Lanz et al., 2008). In Europe, several studies conducted OA source 
apportionment over large dataset (>1 year) using AMS (Ovadnevaite 
et al., 2014; Young et al., 2015), offline-AMS (Bozzetti et al., 2017b; 
Daellenbach et al., 2016, 2017; Vlachou et al., 2018, 2019) and ACSM 
(Bressi et al., 2016; Canonaco et al., 2015; Fröhlich et al., 2015b; 
Heikkinen et al., 2020; Minguillón et al., 2015; Ripoll et al., 2015; 
Schlag et al., 2016; Stavroulas et al., 2019; Via et al., 2021; Zhang et al., 
2019). As factors seasonal variations can’t be properly modelled with 
static profiles generated with a year-long PMF, most of the studies had to 
apply multi-seasonal PMF over their dataset. However, this method is 
likely to produce several seasonal factors representations leading to 
discontinuities between each PMF solutions. To overcome this limita-
tion, a novel approach was developed and consists in applying PMF on a 
smaller and moving time window (Canonaco et al., 2021; Parworth 
et al., 2015). This so-called “rolling window” method allows to capture 
the temporal variability of the factor profiles and results in shorter 
computational times for each PMF run. and was successfully applied to 
two sites in Switzerland (Zurich; Canonaco et al., 2021 and Magadino; 
Chen et al., 2021) and one in Poland (Krakow; Tobler et al., 2021). 

This study presents a fourteen-month long dataset measured with a 
ToF-ACSM in Marseille, a coastal city in the south of France, between 
February 2017 and April 2018. We conducted a complete PMF analysis 
on organic aerosol based on the “rolling window” technique. To our 
knowledge, this is the first study using this novel PMF approach over an 
up-to-1 year ToF-ACSM dataset. We compare the rolling results to 
standard seasonal PMF analysis and further, estimate and investigate the 
BBOA and SOA origins over the study period. 

2. Materials ad methods 

2.1. Sampling site and instrumentation 

Sampling site description and general conditions were detailed 
elsewhere (Chazeau et al., 2021; El Haddad et al., 2011a, 2013) and will 
be briefly outlined in this paper. Marseille-Longchamp supersite 
(MRS-LCP) is located in the downtown park “Longchamp” 
(43◦18′18.84′′N; 5◦23′40.89′′E; 71 m a.s.l.) and hosted for 15 years a 
monitoring station of the regional association of air quality (AtmoSud, 
https://www.atmosud.org). This site is representative of urban back-
ground pollution over the area of Marseille. 

The chemical composition of non-refractory submicron aerosol was 
measured continuously from February 2017 to April 2018 using the 
time-of-flight aerosol chemical speciation monitor (ToF-ACSM). A 
detailed description of the instrument operating principle and analysis 
procedures are provided by Fröhlich et al. (2013) and Timonen et al. 
(2016). The NR-PM1 aerosol is sampled at a flow rate of 3 L min− 1 and 
dried using a Nafion dryer system (Perma Pure, New Jersey, USA) which 
allowed to keep the relative humidity (RH) below 40%. The ToF-ACSM 
was operated between m/z 12 and 214 and produced averaged scans 
every 15 min. The data were acquired using Igor-DAQ v.2.1.4 software 
and by Tofware v.2.5.13 written in Igor Pro (Wave Metric inc., Lake 
Oswego, Oregon, USA). 

Necessary calibrations and data corrections are detailed in Chazeau 
et al. (2021). Calibrations of ionization efficiency (IE) of nitrate and 
relative ionization efficiency (RIE) of ammonium and sulfate were per-
formed three times over the 2017–2018 period, and blank measure-
ments were achieved one time for determining detection limits of 
ToF-ACSM species. The collection efficiency (CE) values were cor-
rected using algorithms described by Middlebrook et al. (2012) and an 
averaged value of 0.47 was used for this dataset. According to Pieber 
et al. (2016) ammonium nitrate can contribute to m/z 44 and cause an 
overestimation of the organic signal. This interference was corrected 

and showed negligible contribution of NH4NO3 on the organic m/z 44 
(CO2

+) with value ranging from 0.1 to 0.5%. 
A dual spot Magee Scientific AE-33 Aethalometer (Drinovec et al., 

2015) was deployed since 2014 on MRS-LCP site, operating at a 1 min 
resolution and a 5 L min− 1 flow rate. The light attenuation was measured 
at seven wavelengths ranging from the ultraviolet to near infrared (at 
370, 470, 520, 590, 660, 880 and 950 nm). The BC concentrations can 
be deconvolved into two contributions, fossil fuel (BCFF) and wood 
burning (BCWB) using the aethalometer model (Sandradewi et al., 2008). 
The 470 and 950 nm wavelengths were used with an Angström exponent 
of 1.68 and 1.02 for pure wood burning and traffic, respectively, as 
recommended by Zotter et al. (2017) and Chazeau et al. (2021). Aerosol 
number size distribution was investigated with the model 3031 ultrafine 
particle monitor (TSI Inc., Minnesota, USA) providing measurements 
from 20 to 1000 nm with six channels of size resolution. Furthermore, a 
Scanning Mobility Particle Sizer system (SMPS, L-DMA, CPC5403, 
GRIMM) was deployed over two periods: from 23 June to August 12, 
2017 (summer period) and from November 6, 2017 to January 11, 2018 
(winter period). The particle size distribution was measured in the size 
range 10.25–1084 nm. In addition, all data including O3, NOx, SO2, PM1, 
PM2.5 and PM10 15 min-averaged concentrations were also measured 
with the standard real-time equipment of AtmoSud available directly on 
site. Finally, temperature, wind directions and speeds were recorded 
with an anemometer sonic 3D since June 2017. Non-parametric wind 
regressions (NWR) were performed to estimate the OA source concen-
trations at given wind direction and speed (Henry et al., 2009). The OA 
factors were also coupled with 72h-backtrajectories calculated every 6 h 
from the HYSPLIT model (Stein et al., 2015) using weekly 1◦ Global Data 
Assimilation System (GDAS) meteorological field data. Their 
geographical origin was explored through Concentration-Weighted 
Trajectory (CWT) (Ashbaugh et al., 1985) which were performed at 
the MRS-LCP endpoint (43◦18′18.84′′N; 5◦23′40.89′′E; 64 m a.g.l.) with 
a resolution of 0.1◦ × 0.1◦ and for the entire study period. To minimize 
the important dilution affecting air masses in the free troposphere 
backtrajectories above 1500 m a.g.l. were discarded (Debevec et al., 
2017; Michoud et al., 2017). These analyses were conducted with the 
ZeFir toolkit v.3.7 (Petit et al., 2017b). 

2.2. Source apportionment method 

Source apportionment was performed on ToF-ACSM OA mass spectra 
using Positive Matrix Factorization (PMF; Paatero and Tapper, 1994) for 
the 14 months period in Marseille. PMF algorithm is solved by the 
multi-linear engine (ME-2; Paatero, 1999) with the software package 
SoFi (Source Finder; Canonaco et al., 2013) coded in Igor Pro. PMF is a 
bilinear unmixing model that describes the variability of a multivariate 
dataset as a linear combination of factor profiles times their time series 
as described in the following: 

xi,j =
∑p

k=1
gi, k . fk,j + ei, j (1) 

Here, xi,j corresponds to the measurement matrix, gi,k the factor time 
series, fk,j the factor profiles and ei,j the model residuals. The index i, j, k 
and p correspond to the time elements, variables (ToF-ACSM OA frag-
ments), factor numbers and total number of factors selected, respec-
tively. ME-2 solver fits the non-negative entries in gi,k and fk,j using a 
least squares algorithm to iteratively minimize the object function Q 
(Eq. (2)) defined as the sum of the squared residuals (eij) weighted by 
their respective uncertainties (σij): 

Q= Σ
i
Σ
j

(
eij

σij

)2

(2) 

The error matrix σij was calculated by Tofware v.2.5.13 software and 
includes ion counting statistics (Allan et al., 2004), background errors 
and electronic noise. A minimum error corresponding to the 
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measurement of a single ion was also applied to the error matrix. To 
inspect the object function Q for different PMF runs, Q/Qexp is calculated 
and defined as Q normalized by the degree of freedom of the model 
solution (Qexp). Following the recommendations of Paatero and Hopke 
(2003), a step function is applied for removing variables with 
signal-to-noise ratio (S/N) less than 0.2 (“bad” variables) and 
down-weighting those with S/N between 0.2 and 2 (“weak variables”). 
Here no variable was considered as “bad” (Figure A1) and m/z 208 was 
down-weighted by a factor of 2 (Ulbrich et al., 2009). Variables calcu-
lated based on m/z 44 in the OA fragmentation table (ie. m/z 16, 17, 18 
and 28) were automatically excluded for the PMF analysis and rein-
serted for post-PMF analysis. 

The PMF input matrix included 185 variables (from m/z 12 to m/z 
214) and 16,485 time points (data with a time step of 15 min were re- 
averaged to 30 min for speeding up computation time). PMF was 
operated in the robust mode, in which outliers with σij « eij were down- 
weighted. A common potential problem in PMF is the solution rotational 
ambiguity, where several combinations of fk,j and gi,k may result in the 
same goodness-of-fit. The ME-2 solver enables efficient exploration of 
the rotational ambiguity and offers high rotational control. Here, the 
solutions were oriented toward environmentally meaningful rotations 
by constraining elements of factor profiles (fk,j) and factor time series (gi, 

k). Constraints are achieved with known inputs profile/time series and 
the scalar a defined as the extent to which the outputs f’k,j/g’i,k are 
allowed to vary during the model iteration: 

fkj = f ′

kj ± a⋅f ′

kj (3)  

gik = g′
ik ± a⋅g′

ik (4) 

The index j represents the m/z variable and i the measured point in 
time of the kth factor. The a-value approach is a successfully applied and 
well documented method for unmixing sources and it removes envi-
ronmentally unreasonable factors for AMS/ACSM datasets (Canonaco 
et al., 2013; Lanz et al., 2008). 

PMF was performed using a fixed rolling PMF window, which moves 
over the entire input dataset. Instead of modelling static factor profiles 
this dynamic PMF allows catching source profiles variability over time. 
The technique is available in the additional module ‘SoFi Pro’, recently 
implemented in the SoFi software package (Canonaco et al., 2021). With 
this tool the user can easily select the width of the PMF window, the shift 
and the number of repeats per PMF window adapted to the dataset. Due 
to the large number of generated PMF runs, a criteria-based panel was 
built to either automatically accept or reject environmentally reasonable 
solutions. The results are then explored through several statistical ana-
lyses and graphic visualisations available in the current version of the 
module. 

3. Optimization of the OA source apportionment and rolling 
PMF approach 

3.1. Number of factors 

The number of factors was first inspected based on residual analysis 
of unconstrained seasonal runs. These tests were achieved separately for 
different seasons in order to take into consideration the variability in the 
source profiles. A range of solutions with 1–10 factors was examined for 
each season according to the Q/Qexp evolution when increasing the 
number of factor. The large changes of the Q/Qexp indicate a significant 
decrease in residuals and an improvement in the explained variability by 
the model. The ΔQ/Qexp were calculated as the difference between p 
factor solutions and the p-1 factor solutions. For winter and autumn the 
ΔQ/Qexp largely decreased until six factors and for summer and spring 
until five factors (Table A1). Solutions with higher number of factors 
provided small changes in terms of ΔQ/Qexp. The second step was to 
inspect whether seasonal solutions with the recommended factors 

combination from residual analysis were environmentally meaningful. 
Comparison with reference mass spectra, time series of external tracers 
and diurnal trends were used to relate the factors extracted by PMF to 
specific sources or processes. A detailed discussion of factors identifi-
cation is described in the Supplement. For all seasons, 2 primary factors 
(HOA and COA) and 2 secondary/oxygenated factors (LOOA and 
MOOA) were identified. The oxygenated OA (OOA) was separated into 
two different factors as they displayed distinct diurnal variability and 
different relative contributions from oxygenated ions at m/z 43 and m/z 
44 (Figure A2). A BBOA factor was determined during all seasons except 
summer, which can be easily explained by the absence of domestic 
heating in summer and a lack of wildfire in the area during summer 
2017. The residual did not exhibit strong diurnal structures (Figure A3), 
which also suggests that the model captures the major sources (Crippa 
et al., 2014). However, HOA and COA factors were mixed in a single 
factor in all the seasonal unconstrained solutions and did not have 
typical diurnal profiles (Figure A4). Unconstrained PMF does not allow a 
clear separation as their mass spectra profiles are very similar (contri-
butions of alkyl fragments like m/z 43, m/z 55 and m/z 57) and thus the 
use of constraint from reference mass spectra is required. 

In previous studies an industrial related OA factor was resolved at the 
MRS-LCP station with online and offline AMS datasets (Bozzetti et al., 
2017a; El Haddad et al., 2013). This factor was attributed to plumes 
(associated with high ultrafine particle number and SO2 concentrations) 
emitted from the industrial area of Fos-sur-mer located 40 km northwest 
of the city. As discussed in Chazeau et al. (2021), these plumes are 
advected by West/South-West sea breeze toward the receptor site and 
are highly mixed with shipping emissions from the Marseille harbour. In 
this study, the PMF analysis revealed an influence of this mixed ship-
ping/industrial factor (Sh-IndOA) only with a solution up to 13 factors 
(Figure A5). As not all the remaining factors in the 13-factor solution 
could be interpreted, we have selected 5–6 factor solutions where the 
Sh-IndOA was constrained. 

3.2. Rotational ambiguity exploration 

Both HOA and COA factor profiles were constrained using the a- 
value approach, with reference profiles derived from several datasets 
from Ng et al. (2011a) and Crippa et al. (2013), respectively. The 
identification of COA is based on its diurnal cycles with maxima at lunch 
and dinner times. We have considered that the increase in COA con-
centrations during traffic rush hours to be an indication of the mixing 
between HOA and COA. We conducted an a-value sensitivity analysis 
over the whole study period by scanning a-value combinations for HOA 
and COA with an a-value step size of 0.1 in the range between 0 and 1 
leading to 121 possible outcomes (Bozzetti et al., 2017a; Daellenbach 
et al., 2016; Elser et al., 2016). A-value combinations were retained 
based on statistical criteria as described in the following. For the set of 
121 PMF solutions obtained from the sensitivity analysis, solutions were 
categorized according to the Pearson correlation coefficient between 
HOA and COA profiles and reference mass spectra. The main goal was to 
prove that a profile can unambiguously be ascribed to a specific source 
and to reject the solution where this is not the case. This was achieved by 
conducting chi squared tests (χ2) which investigate if a set of variables 
(here correlation coefficients) is identical. This test computes the χ2 

value for the correlation coefficients and compares it to the critical value 
(Eq. (5)) at a significance level α = 0.05: 

χ2 =
∑n− 1

i=0
z2

i (ni − 3) −
( ( ∑n− 1

i=0

(
ni − 3

))2

∑n− 1
i=0

(
ni − 3

) (5)  

Where zi is the Fisher’s transform of the correlation coefficients and ni is 
the corresponding sample size. For the case of COA, each factor resulting 
from the sensitivity analysis was both correlated to the reference mass 
spectra of COA (Crippa et al., 2013) and HOA (Ng et al., 2011a) using R 
Pearson correlations. Here the chi squared test is performed and verify 
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the null hypothesis H0 = all the correlation coefficients are the same. If 
H0 can’t be rejected it means that the two correlations of the average 
profiles are not statistically different and thus COA profile can be mixed 
with HOA profile for the given a-value. The runs for which H0 is rejected 
were retained and a range of accepted a-values is obtained. Here, we 
consider an a-value as valid only if 100% of the runs for this a-value get a 
positive test (i.e., H0 is rejected). According to the Chi squared test COA 

was statistically different from HOA for a-values between 0 and 0.2 
(Fig. 1a). In the same way HOA mass spectra correlations with reference 
HOA and reference COA were inspected and showed an accepted range 
of a-value between 0 and 0.6 (Fig. 1b). It has to be emphasized that HOA 
a-values did not affect the COA separation in the selected range, and vice 
versa (Figure A6). 

As Sh-IndOA is specific to the environment of Marseille, reference 

Fig. 1. Sensitivity and Chi squared test results for HOA (a), COA (b) and Sh-IndOA (c). Green bars correspond to the runs with significant a-values and red bars to the 
rejected runs with wrong a-values according to the Chi squared test results. Rolling PMF runs of all scores (grey points) are displayed for the three criteria: correlation 
between HOA and BCFF (d), optimization of the ratio of COA lunch peak (e) and correlation between BBOA and BCWB (f). Scores fulfilling the applied thresholds (blue 
points). For (f) the values set to 0 correspond to the 5 factors runs where there is no BBOA evaluation. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

B. Chazeau et al.                                                                                                                                                                                                                                



Atmospheric Environment: X 14 (2022) 100176

5

mass spectra in the literature are scarce. Therefore, we have constrained 
the factor time series using SO2 concentrations, as SO2 can be considered 
as a specific tracer for industrial and shipping plumes. In addition, we 
have used the fine particle number between 10 and 20 nm, N(10–20nm), to 
support the PMF results for the Sh-IndOA factor, as industrial and 
shipping plumes are characterized by formation of new particles from 
the condensation of primary or secondary sulfuric acid (Burtscher, 2005; 
González et al., 2011). Because traffic can be an important source of fine 
particles, we have estimated the traffic contribution to N(10–20nm), Nff 

(10–20nm), using BCFF as a tracer and following the methodology of 
(Rodríguez and Cuevas, 2007). The particle number associated with 
industrial/shipping plumes (N2(10–20nm)) is then estimated as 
N(10–20nm)-Nff(10–20nm). The estimated fraction corresponded to 90% of 
the N(10–20nm) number concentration for the summer 2017 period 
(Chazeau et al., 2021). Sh-IndOA was constrained with SO2 time series 
and a-values were investigated. The R Pearson correlations between 
Sh-IndOA and SO2 were compared to the fixed R Pearson correlation 
between SO2 and N2(10–20nm) time series. If H0 can’t be rejected the test 
will be positive and the a-value will be considered to be valid. The re-
sults are displayed in Fig. 1c and a-values resulted to be statistically 
significant between 0 and 0.2. 

A window of 2 weeks shifting by one day was selected based on 
Canonaco et al. (2021), Parworth et al. (2015) and Tobler et al. (2021). 
The rotational ambiguity of the PMF results was explored by a bootstrap 
approach (Efron, 1979) combined with random a-values. Bootstraps 
recreate new input matrices (2 weeks in length) with randomly selected 
time points that are used as PMF inputs. The variability in the bootstrap 
solution is considered as our best estimates for the rotational and sta-
tistical uncertainties. With the bootstrap strategy 63 repeats (7 × 3 × 3) 
for a given PMF window run are needed to cover the a-value space. Due 
to the absence of BBOA during some periods PMF runs with both 5 and 6 
factors are conducted. In sum, 53,298 runs (423 days × 63 repeats × 2) 
were examined through specific criteria described in the following 
section. 

3.3. Post-analysis with predefined criteria selection 

In order to provide efficient evaluation of thousands PMF runs a set 
of criteria defined within ‘SoFi Pro’ was used. Here, three criteria were 
applied for HOA, COA and BBOA, while for the three other factors (Sh- 
IndOA, LOOA and MOOA) all runs were considered to be “good” due to 
the lack of specific tracers. BCFF is a pure tracer for traffic, thus the 
Pearson correlation coefficient between the diurnal cycle of HOA and 
BCFF is used as first criterion. For COA, the ratio between the lunch peak 
(11h00 and 12h00 UTC) and the average background concentration in 
the morning (06h00-08h00 UTC) was used as criterion. This ratio is 
expected to be above one when cooking emissions are well separated; a 
score below this value would indicate a contribution from HOA during 
morning rush hour peaks. BCWB was used to evaluate BBOA. The R 
Pearson correlation between BCWB and BBOA time series is inspected. If 
BBOA has not been identified according to this criterion, then a 5-factor 
solution was selected instead of the 6-factor solution. The scores of the 
three criteria are presented in Fig. 1 (d,e,f) for all the 53,298 runs. 

Statistical thresholds must be applied for each score in order to 
differentiate the “good” and “bad” runs. A significant drop of the lowest 
score plots (displayed in descending order in Fig. 1d and e) indicates 
some rare unstable solutions which might include mixing within the 
factors. As first data cleansing, the corresponding runs are removed. For 
the remaining runs of HOA and COA criteria thresholds have to be 
chosen based on a statistical assessment. The time series of HOA and 
BCFF were resampled together by bootstrap and the Pearson correlation 
coefficient was evaluated for each resample. The time series of COA 
were also bootstrapped and the lunch ratio evaluated each time. It turns 
out that this statistical method is relevant since the resulting variance of 
the distributions can be used as threshold of acceptance for the runs. 
Here 1000 resamples were conducted to evaluate the spread of the 

designed scores (R Pearson between HOA and BCFF and the COA lunch 
ratio). The 10th percentile results are used as lower boundaries for both 
HOA and COA criteria (Canonaco et al., 2021). The distributions for 
each criterion score evaluated from bootstrap resamples are shown in 
Figure A7. On the basis of these considerations, the runs presenting 
correlation coefficients between HOA and BCFF time series under 0.62 
and COA lunchtime ratio below 1.45 were not selected. 

The BBOA criterion scores (correlation coefficients between time 
series of BCWB and BBOA) displayed high values for the cold period, 
while the correlations appear to be poor for summer (Fig. 1f). This 
source is expected to be significantly reduced in this period as there is no 
domestic heating and no wildfire event recorded with the ACSM. Even if 
the correlation is high for some summer events (i.e. from 6 to August 17, 
2017), the related runs are not selected as their time period was shorter 
than the time window length and won’t be properly modelled by PMF. 
During the transition periods (i.e. April and October 2017), the scores 
had intermediate values, and applying restrictive criteria to these scores 
leads to higher residuals in the final solution. Since the three periods 
should be treated separately, the criteria thresholds are resolved 
differently than for HOA and COA. To assess the boundary between all 
BBOA scores Fisher transformed correlation coefficients Z’ were 
calculated: 

Z’= 0.5 × ln
(

1 + R
1 − R

)

= arctan(R) (6)  

where R is the Pearson correlation coefficient between BBOA and BCWB. 
The calculation was performed through 3 time classes: the period from 
end of spring to begin of autumn 2017 noted as “bad values”, the April 
and October 2017 months for “transitional values” and the rest of the 
study period referred as “good values”. The results are displayed in 
Figure A8. A Gaussian shape peak fitting can be performed on each Z’ 
data which are normally distributed. The fitted Z′ data of “significant 
BBOA” (green) and “transitional BBOA” (yellow) are converted to 
standard normal distribution (see Figure A9 and details in SI text). 
Following the HOA and COA criteria threshold determination the 10th 
percentile results are used as lower boundaries for BBOA criteria. A P0.1 
= 1.24 for the “significant BBOA” and P0.1 = 0.51 for the “transitional 
BBOA” were found. The Z’ values were then transformed back to R 
Pearson as follow: 

R=
e2Z’ − 1
e2Z’ + 1

(7) 

We determined runs with scores below R = 0.845 for “significant 
BBOA” and R = 0.47 for “transitional BBOA” were not selected. The 
factor was also inspected using the explained variation of m/z 60 by 
BBOA (Figure A10). The runs with an explained variation significantly 
lower than those of other factors were not considered, which didn’t 
improve the previous selection. 

At the end the criteria list discarded 19.6% of runs with HOA crite-
rion, 39.1% with COA criterion and 55.6% with BBOA criterion. All the 
runs fulfilling the entire criteria list are selected and averaged into one 
unique solution with time-dependent factor profiles. 

4. Results and discussions 

PMF results displayed abnormal high concentrations from 2 to 
February 13, 2018 in contrast with the measured concentrations. 
Therefore the corresponding runs were removed from the definitive 
solution. In total 20.6% of the PMF runs were retained after the criteria 
selection and the resulting solution includes a minimum amount of non- 
modelled time-points representing 2.4% of the total number of 
measurements. 
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4.1. Residuals and factors uncertainties 

The residuals distribution was examined in order to detect some 
systematic under or overestimation of the data points. Figure A11 dis-
plays the scaled residuals over the m/z (a) and the time (b). Scaled re-
siduals scattering in the − 3 to +3 range for the whole solution attest to 
the validity of the PMF results (Canonaco et al., 2021; Paatero and 
Hopke, 2003). Only 1.8% of the residuals were out of range, highlighting 
the good quality of the solutions. Some brief periods with high residuals 
are identified and correspond mostly to two cases. First, scaled residuals 
can increase for the periods before and after technical problems on 
ACSM instrument (e.g. unstable air beam signal after the reset of ACSM 
in 20–21 July 2017). Several interruptions led to probable instability in 

the organic signal which can’t be explained by the PMF results. Second, 
scaled residuals were higher for specific episodes of fast environmental 
changes (e.g. wind shifting loading polluted air mass). This feature 
happened especially during the cold period (25 October; 27–29 
November; 24–26 December; 12 January) when nocturnal breezes 
advected instantly intense OA concentrations, mostly from biomass 
burning origin. These events of high residuals were short in time (less 
than 1–2 days) and a 14 days PMF window could be insufficient to 
capture the OA composition during these episodes (Canonaco et al., 
2021). Overall, the residuals pattern indicated a good PMF solution and 
provides a Gaussian-shaped distribution presented in Figure A11c. In 
this figure the scaled residuals were approximately normally distributed 
around 0 with a reduced spread. 

Fig. 2. PMF error estimation for the 6 factors (a). The standard deviations divided by the mean concentrations of each PMF time points are represented as log- 
probability density functions. X0 values are the centres of the lognormal fits. The graph below represents the correlation matrix of R Pearson between the spread 
(standard deviation) of PMF factors time points (b). A hierarchical clustering is performed over the matrix and is represented as dendrogram. 
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PMF uncertainty for each factor was assessed from the variability of 
time-point repeats obtained by the selected rolling runs. It has to be 
noticed that this PMF error accounts for the variability from bootstrap 
resampling and repeats provided by the different a-value combinations. 
Fig. 2a represents the probability density function (pdf) of the standard 
deviation divided by the mean concentrations for each PMF time points. 
Similarly to Canonaco et al. (2021) and Tobler et al. (2021), error values 
for PMF factors are expressed as the center of the lognormal fit (x0) from 
each log-distribution. The average error was ±21.1%, ±24.2%, 
±26.7%, ±34.1%, ±15.2% and ±31.1% for HOA, COA, Sh-IndOA, 
LOOA, MOOA and BBOA, respectively. 

The Pearson correlation between the respective factors standard 
deviations of PMF time points is assessed in Fig. 2b. A hierarchical 
clustering was performed on the resulting correlation matrix to evaluate 
uncertainties of the factors splitting or mixing. A high correlation be-
tween the standard deviations might indicate instability in the factors 
separation. This analysis was also performed for each season 
(Figure A12). Two clusters are assessed, including LOOA and MOOA in 
the first one and BBOA, COA and HOA in the second one. Sh-IndOA is 
excluded from the two patterns as the factor is constrained with a spe-
cific marker. LOOA and MOOA are gathered in a same cluster for all 
season. This dependence was also tested by calculating the cosine sim-
ilarities between standard deviations of factors time points (Figure A13). 
The strong collinearity observed between LOOA and MOOA might 
indicate that a clear separation remains uncertain. 

4.2. Rolling vs seasonal PMF results 

An inter-comparison with seasonal PMF method was achieved over 
the study period to inspect the validity of the rolling PMF analyses. The 
description of PMF methodology applied to every season is presented in 
the supplementary. The comparison between seasonal and rolling PMF 
time series for each factor is shown in Figure A14. A good agreement was 
found for the 3 constrained factors with significant correlation coeffi-
cient R2 (0.88 for HOA, 0.75 for COA and 0.72 for Sh-IndOA) and slopes 
(determined from orthogonal distance fits) close to 1 (0.90 for HOA, 
0.98 for COA and 1.09 for Sh-IndOA). For MOOA, results were also 
satisfactory (R2 = 0.83; slope = 0.83), but data points are more 
dispersed especially for the winter period. BBOA showed moderate 
correlations (R2 = 0.52) and slope of 1.15. This value is mainly increased 
due to a steeper slope for winter data points, suggesting an underesti-
mation of the seasonal PMF. LOOA comparison revealed an inverse 
trend for winter with an overestimation of the seasonal PMF. Overall, for 

LOOA, results are different between the seasonal and the rolling PMF 
(R2 = 0.23). The LOOA profiles were very different between seasons, 
indicating that the seasonal PMF cannot capture the continuous evolu-
tion in the oxygenated fraction. 

A comparison between the scaled residuals from seasonal and rolling 
PMF is presented in Figure A15. For each season the scaled residuals 
were normally distributed around 0 with both methods. However the 
rolling PMF showed lower scaled residuals compared to conventional 
seasonal PMF, as settled by the narrower width of the Gaussian fits (2.40 
vs 2.54, 2.37 vs 2.65, 3.28 vs 3.31, 3.25 vs 4.04 for spring, summer, 
autumn and winter, respectively) (Table A2). 

4.3. Interpretation of PMF factors 

In this section the averaged source apportionment solution is 
investigated with factor profiles presented in Fig. 3, their R2 correlation 
with literature references (Figure A16) and the R2 correlation between 
the factors time series (Table A3). Figure A17 shows the factors time 
series, while the monthly mass concentrations of the factors and their 
seasonal relative fractions are displayed in Fig. 4. The factors relative 
diurnal cycles and their respective relation with external proxies are 
shown in Fig. 5. Finally Table 1 summarizes the correlation coefficient 
(R2) between the factors and external markers measured over the study 
time period. 

HOA. The factor profile constrained based on Ng et al. (2011a) ex-
hibits high contributions from hydrocarbon fragments, including m/z 29 
(C2H4

+), 41 (C3H5
+), 43 (C3H7

+, C2H3O+), 55 (C4H7
+), 57 (C4H9

+), 69 
(C5H9

+) and 71 (C5H11
+ ). For the heavy fragments we denote a meaningful 

contribution (40% of the total fragment) of the PAH m/z 202 known to 
derivate from the pyrene (Dzepina et al., 2007). The averaged a-value 
for this factor was 0.3 and varying between P10 = 0.2 and P90 = 0.5 
(Figure A18). HOA contribution is constant through the seasons with 
values in the range of 9.2–12.1% and concentrations between 0.46 and 
0.7 μg m− 3. This contribution appears to be lower than previous Mar-
seille OA source apportionment studies in summer 2008 (19.4%; El 
Haddad et al., 2013) and in the 2011–2012 period (17%; Bozzetti et al., 
2017a). While this difference can be attributed to cleaner exhaust 
emissions, it is worth noting that the analysis from El Haddad et al. 
(2013) was performed over a shorter period (2 weeks) and a COA factor 
couldn’t be resolved from HOA leading to higher HOA contribution. The 
factor diurnal profile shows a bimodal pattern of traffic emissions with a 
morning peak maximum at 6–7h UTC and an evening peak maximum at 
18h UTC (Fig. 5). BCFF and NOx concentrations display similar diurnal 

Fig. 3. Average mass spectra profiles for the 6 factors solution. Error bars indicate the standard deviation of each profile through the study period. Grey dots show 
the factor contribution to every organic fragment. 
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features and their time series are well correlated with HOA (RHOA vs BCFF
2 

= 0.45 and RHOA vs NOx
2 = 0.5; Table 1). The average ratio of HOA to BCFF 

determined with the slope from orthogonal distance regression 
(Figure A19) is 0.47 (and intercept = − 0.09), which was consistent with 
values for the same station (0.4; El Haddad et al., 2013) and for Paris 
(France) stations (0.37 and 0.61; Crippa et al., 2013). This ratio can also 
be compared to values found for tunnel measurements at very low OA 
concentrations (Chirico et al., 2011).The average ratio of HOA to NOx is 
0.012 (intercept = 0.09) which is in agreement with (Bozzetti et al., 
2017a) for the same station (0.023) and with (Favez et al., 2010) for 
Grenoble (France) station (0.02). The slope was higher for summer data 
(0.019) due to the reduced lifetime of NOx linked to higher hydroxyl 
radical (OH) concentrations occurring in this season (van der A et al., 
2008). According to correlation analysis in Table 1, HOA concentrations 
seem to be associated with ultrafine particles with a predominance in 
the 70–100 nm range. 

COA. COA profile kept the same features than its constraint from 
Crippa et al. (2013) and the major fragments are similar from those of 
HOA profile although m/z 41 to 43 and m/z 55 to 57 ratio appeared 
higher. An averaged a-value of 0.09 was used for the constraint. As no 
markers are available in this study the COA signature was inspected 
through the diurnal cycle which showed an apparent lunch peak at 11h 
UTC and a dinner peak at 19h UTC (Fig. 5). COA contributions of 
~11.5% were constant throughout the seasons (0.47–0.69 μg m− 3). It is 
in a similar range than other urban sites in Europe like in London (8%; 
Reyes-Villegas et al., 2016), Athens (10%; Stavroulas et al., 2019) or 
Barcelona (16% in early Spring; Mohr et al., 2012). In Marseille Bozzetti 
et al. (2017a) resolved much lower contributions for COA (4%), which 
could be explained by the weak time resolution of offline AMS (one day) 
as it did not enable the COA separation based on the diurnal cycle. 

Another major issue was the low solubility of COA for the offline AMS 
analysis, causing high uncertainties for this factor (Daellenbach et al., 
2016). COA concentrations were associated to size distribution between 
70 and 200 nm (Table 1). 

Sh-IndOA. This factor accounts for the organic fraction related to 
industrial and shipping activity that are prominent in the Marseille re-
gion. The average a-value was 0.1 with a very shallow distribution 
(Figure A18). Previously El Haddad et al. (2013) and Bozzetti et al. 
(2017a) resolved a similar factor at the MRS-LCP station attributed to 
the industrial emissions from the Fos-sur-mer petrochemical area 
(North-West). During these studies the factor was correlated to heavy 
metals and PAHs advected on site by sea breezes in the late morning. 
Here for the Sh-IndOA factor we consider an additional influence of 
shipping emissions from the Marseille harbour. The resulting plumes are 
strongly associated with SO2 and UFPs concentrations as described by 
Chazeau et al. (2021). As the factor time series were constrained with 
the SO2 concentrations, Sh-IndOA displayed a similar diurnal pattern to 
SO2 with an increase at 7–8h UTC followed by a slow decrease through 
the day (Fig. 5). The average ratio of Sh-IndOA to SO2 from the slope in 
Figure A19 was 0.10 and was very stable through the seasons. Sh-IndOA 
profile resembles a highly oxygenated organic aerosol, with dominance 
of m/z 44 (CO2

+) and m/z 28 (CO+) (Fig. 3). As mentioned by El Haddad 
et al. (2013) this factor might include secondary organic aerosols frac-
tion due to the photochemical aging during the plumes transport to-
wards the station. The seasonal contribution is estimated to 3.7–6.1% 
(0.15–0.28 μg m− 3) with higher concentrations in summer because of 
higher photochemical activity and favourable air mass circulation (El 
Haddad et al., 2011b). Similar contributions were found with AMS 
measurements for 2 weeks in summer 2008 (6.2%; El Haddad et al., 
2013). However, Bozzetti et al. (2017a) resolved with offline AMS a 

Fig. 4. Seasonal pie chart contributions (a) and monthly factors concentrations (b) for the full period. The pie chart contributions are indicated in percent and the 
mean concentrations in μg m− 3. 
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higher fraction of 17% for industrial factor, which was mainly driven by 
a strong event in February 2012. The low contribution to organic aerosol 
for this source is expected as the plumes are mostly attributed to UFPs 
and thus influence particle mass concentrations only to a minor extent 
(Chazeau et al., 2021). 

BBOA. BBOA was identified from mass spectral fingerprints with 
high contribution to m/z 60 (C2H4O2

+) and m/z 73 (C3H5O2
+) fragments 

which are originated from anhydrous sugar fragmentation (Alfarra 
et al., 2007). BBOA profile in this solution is comparable with those from 
literature (Crippa et al., 2014; Ng et al., 2011a). This factor shows ex-
pected features like high correlations with BCWB and is one of the most 
important sources in winter with a contribution of 18% (1.1 μg m− 3). 
BBOA is missing in summer and contributions ranged between 10.8 and 
13.5% (0.52–0.8 μg m− 3) for the rest of the year (Spring and Autumn). 
These values are comparable to other Mediterranean urban sites (10% in 
winter at Athens; Stavroulas et al., 2019), 11% in spring at Barcelona; 
Mohr et al. (2012). Still Bozzetti et al. (2017a) found much higher 
contribution for this site in winter (43%) attributed to elevated open 
burning emissions occurring at night during this period. BBOA was 
characterized by an intense peak in the night advected with N-E land 
breezes combined with the decrease of boundary layer height (Chazeau 
et al., 2021). During these periods the low background concentrations 
for BBOA switched to spiking episodes which were 10–15 times higher. 
BBOA can be associated to well-known markers as levoglucosan 
(including the derived species galactosan and mannosan) displaying an 
excellent correlation with R2 = 0.80 (Figure A20). Moreover, the po-
tassium (K+) fraction which is not related to sea salt is often associated 
to biomass combustion sources in the cold period. Non-sea-salt K+

(Nss-K+) concentrations were calculated according to Sciare et al. 
(2005) and using the Na+/K+ ratio of marine-related source determined 
by Salameh et al. (2018) for PM in Marseille. Nss-K+ from filters were 
correlated well with the BBOA factor contribution (R2 = 0.55; 
Figure A20). The BBOA to BCWB ratio from the literature showed a large 
variability depending on the burning conditions. Here a value of 2.06 
(intercept = 0.02) was found with low seasonal variations (Figure A19) 
and is consistent to values reported for field studies (Reid et al., 2005). 
Finally, comparable to COA concentrations BBOA was correlated to size 
distribution between 70 and 200 nm, a range often attributed to wood 
burning emissions (Coudray et al., 2009). 

Oxygenated OA. The secondary fraction of OA (SOA) was split into 
the LOOA and MOOA factors. The main difference between the two 
factors is the higher fraction of m/z 44 to the organic mass for MOOA 
compared to m/z 43 for LOOA. LOOA profile exhibits strong correlation 
with SVOOA (Semi-Volatile Oxygenated Organic Aerosol) mass spectra 
from the literature (Figure A16) whereas MOOA profile resembles more 
to LVOOA (Low Volatiliy Oxygenated Organic Aerosol). Fractional 
contribution of m/z 44 (f44) is considered as proportional to the 
elemental O:C ratio and the later can be assessed following the calcu-
lation from Canagaratna et al. (2015). The determined O:C ratios for 
LOOA and MOOA were 0.43 and 0.93, respectively, which are close to 
the ratio obtained by El Haddad et al. (2013) (0.33 for SVOOA and 0.84 
for LVOOA). For every season MOOA was the largest OA source with 
36.8–42.6% (1.5–2.25 μg m− 3) followed by LOOA with 18.8–27.2% 
(0.77–1.23 μg m− 3). On a yearly basis, MOOA seems to be more related 
to ammonium (R2 = 0.44 from Table 1 and diurnal profile in Fig. 5). 
Even if MOOA is expected to be related to aged background aerosol, the 
correlation with sulfate concentrations is less clear for every season 
(Table A4). This is probably due to some contribution from Sh-IndOA 
assigned to direct sulfate emissions. Furthermore, the MOOA diurnal 
profile was mostly flat suggesting the long-range transport origin for this 
factor, except for winter profile which shows, as for all OA factors, 
increased concentrations at night under a shallow boundary layer 
(Figure A21). In overall LOOA does not show significant correlation with 
semi volatile species such as particulate nitrate. The fact that LOOA 
variability is not driven by its volatility prevents here to use the SVOOA 
denomination like other studies (Jimenez et al., 2009; Lanz et al., 2007). 

Fig. 5. Median diurnal cycles for the 6 factors (solid lines). The shaded areas 
show the 25th – 75th percentiles range. Dashed lines represent some external 
tracers: BCFF (grey), NOx (blue), SO2 (violet), NH4 (yellow) and BCWB (light 
brown). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 1 
R2 correlation coefficients with a 95% confidence interval between solution 
factors and external data recorded at MRS-LCP. Numbers in bold represent 
significant correlations.  

R2 Pearson HOA COA Sh-IndOA LOOA MOOA BBOA 

Cl− 0.1 0.08 0 0.08 0.13 0.12 
NH4

+ 0.05 0.06 0.03 0.11 0.44 0.05 
SO4

2- 0.01 0.01 0.1 0.03 0.21 0 
NO3

− 0.1 0.1 0 0.15 0.43 0.11 
NO3,org 0.13 0.14 0 0.23 0.44 0.17 
NO3,inorg 0.08 0.08 0 0.11 0.39 0.08 
BCWB 0.28 0.35 0 0.31 0.29 0.76 
BCFF 0.45 0.19 0.05 0.31 0.17 0.16 
m/z 43 0.47 0.54 0.04 0.61 0.58 0.53 
m/z 44 0.24 0.37 0.06 0.56 0.83 0.58 
m/z 55 0.65 0.67 0.04 0.57 0.46 0.68 
m/z 57 0.73 0.53 0.03 0.48 0.32 0.59 
m/z 60 0.33 0.46 0 0.36 0.39 0.88 
NO2 0.49 0.26 0.06 0.35 0.17 0.27 
NO 0.35 0.08 0.02 0.2 0.07 0.16 
NOx 0.5 0.18 0.05 0.32 0.13 0.24 
O3 0.23 0.13 0 0.24 0.07 0.26 
SO2 0.03 0.01 0.82 0.01 0.01 0 
CO2 0.25 0.17 0 0.29 0.2 0.42 
CH4 0.18 0.14 0 0.21 0.21 0.31 
N (20–30 nm) 0.22 0.11 0.05 0.11 0.02 0.1 
N (30–50 nm) 0.35 0.22 0.08 0.23 0.07 0.22 
N (50–70 nm) 0.47 0.34 0.09 0.39 0.18 0.42 
N (70–100 nm) 0.5 0.41 0.07 0.48 0.31 0.6 
N (100–200 nm) 0.46 0.41 0.05 0.53 0.46 0.7 
N (200–1000 nm) 0.34 0.34 0.04 0.48 0.61 0.53  
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MOOA displayed a stronger correlation with nitrate (R2 = 0.43) than 
LOOA (R2 = 0.15). It has to be noted that organic nitrate concentrations 
(NO3,Org) of this dataset were previously estimated for the nitrate 
functionality only following Farmer et al. (2010) and Kiendler-Scharr 
et al. (2016) recommendations. Correlations were more pronounced for 
NO3,Org than for NO3,Inorg which is exclusively attributed to ammonium 
nitrate. The summer period exhibited a different trend and only the 
correlation between LOOA and NO3,Org was evident with R2 = 0.53 
(Table A4). Several studies highlighted the reaction of biogenic VOCs 
with nitrate radicals at night-time as an important source of particulate 
organic nitrates and by inference of OA (Fry et al., 2013; Kiendler-Scharr 
et al., 2016; Xu et al., 2015). This is supported by the summer diurnal 
profile which displayed maximum at 3–4h UTC in the night (Figure A21) 
and the enhanced biogenic emissions in the region in summer (El Had-
dad et al., 2013; Parra et al., 2004). A complete description of the whole 
secondary inorganic aerosols and the NO3,Org fraction during the study 
period can be found in Chazeau et al. (2021). LOOA concentrations were 
affiliated to a large size range between 100 and 1000 nm, while MOOA 
considered as more oxidized is linked to particles up to 200 nm. 

4.4. Insights into the BBOA and SOA origins 

Unlike known anthropogenic factors which were directly attributed 
to a single source (i.e. HOA, COA and Sh-IndOA), BBOA and SOA (LOOA 
and MOOA) may exhibit different origins depending on the time period. 
Bozzetti et al. (2017a) proposed that BBOA originates from 
multi-sources of biomass burning. The authors revealed an evolution in 
BBOA composition, with combustion of cellulose-rich materials attrib-
uted to agricultural waste burning during spring and late autumn and a 
domestic heating origin over winter period. Salameh et al. (2018) also 
described this separation from a PMF analysis of organic and inorganic 
markers. Moreover, Bozzetti et al. (2017a) mentioned secondary 
biomass burning compounds such as nitrocatechols attributed to the 
BBOA factor. In the present study the averaged mass spectra showed a 
significant contribution of m/z 44 to BBOA (Fig. 3) supporting the 
assumption of secondary compounds included in primary BBOA factor. 
We explore the f44 vs f60 space for the BBOA profile to investigate the 
aging of BBOA during the different seasons (Fig. 6). While the main 
points scatter in the fresh biomass burning space (f60 ≈ 0.2–0.35 and 
f44 < 0.06) and are associated with low temperatures, two trends 
showed negative slopes associated with increasing temperatures and 
corresponded to mid-spring and late autumn periods. These slopes 

reflect the increasingly oxygenated nature of BBOA probably with aging 
as the biomass burning plumes show a trend toward higher f44 and 
lower f60 values with age. This may be linked to levoglucosan oxidation 
exposed to hydroxyl radicals (OH) at increasing temperature or the 
condensation of secondary formed in BBOA plumes (Cubison et al., 
2011; Hennigan et al., 2010). These aged BBOA components could also 
be related to the regional transport of agricultural and domestic green 
waste burning from the surroundings, as expected in this area during 
spring and autumn (Chazeau et al., 2021; Fountoukis et al., 2014). 

The f44 vs f43 space is a common diagnostic tool used to distinguish 
the secondary factors variability according to their atmospheric aging 
(Ng et al., 2010). Here, contributions from other sources (i.e. HOA, COA, 
Sh-IndOA and BBOA) are subtracted from the space to fully capture the 
SOA variability (Canonaco et al., 2015). The seasonal f44/f43 for SOA 
measured points and the f44/f43 for the modelled factor profiles (LOOA 
and MOOA) are shown in Fig. 7. SOA points scatter in the form of lines 
instead of clouds and extend beyond the modelled LOOA and MOOA 
points, except for the December period which showed a distinct cloud 
(Figure A22). An underestimation of the m/z 43 signal was recorded 
after an unknown technical issue with the ACSM for this one-month 
period (see SI text). These data points were excluded from the f44/f43 
analysis. The data points in Fig. 7 lie in different location in f44/f43 
space depending on the seasons similarly to other studies (Canonaco 
et al., 2015; Crippa et al., 2014; Freney et al., 2011; Reyes-Villegas et al., 
2016). Furthermore, the points from the modelled factor profiles display 
high variability in space mostly for LOOA. This implies that a yearly or 
seasonal PMF solution, unless going to higher number of factors, would 
fail to capture the entire variability of SOA, unlike rolling PMF solution, 
which provides continuous observations of physico-chemical processes 
leading to LOOA and MOOA formation. The triangle plot determined by 
Ng et al. (2010) is also represented in Fig. 7. As expected the more aged 
MOOA components moved towards the highest point during the aging 
process while LOOA components were concentrated in the lower half of 
the triangle. During all seasons the f44 for MOOA and LOOA factors 
ranges from 0.13 to 0.25 and 0.003 to 0.19, respectively, similarly to 
values reported by Ng et al. (2010) (0.10–0.25 for LVOOA and 0–0.13 
for SVOOA) and Crippa et al. (2014) (0.10–0.26 for LVOOA and 
0.05–0.16 for SVOOA). 

OA concentrations measured during summer are likely to involve 
high biogenic activity. El Haddad et al. (2011a) and El Haddad et al. 
(2013) provide a complete chemical description of SOA and found that 
non-fossil fraction contributes up to 80% of the total secondary com-
ponents. SOA data fully lied on the right side of the triangle space and 
are associated with higher temperature in summer, which is expected for 
biogenic SOA precursors (Alfarra et al., 2012; Ng et al., 2010; Pfaffen-
berger et al., 2013). This is in agreement with the study of El Haddad 
et al. (2013) which estimated a very high contribution of monoterpenes 
(between 40 and 60%) in the formation of non-fossil SOA. Several 
processes involving LOOA formation are underlined in this study. Some 
enhanced concentrations are observed under high oxidant level (Ox; 
corresponding to the sum of NO2 and O3 in ppb; Clapp, 2001) and high 
temperature conditions (Figure A23). The strong relation between Ox 
and temperature highlights the active photochemistry linked to the 
VOCs conversion in LOOA. Yet, the summer diurnal profile in 
Figure A21 let suppose a contribution from nigh-time chemistry. As 
mentioned in section 4.3, the oxidation of biogenic VOCs by NO3 radi-
cals may be a significant pathway for LOOA formation as illustrated by 
the correlation with NO3,org concentrations. Also, the study of Lanz et al. 
(2007) showed that condensation of fresh oxygenated organic aerosols 
was enhanced during the night/early morning following the hot summer 
days. While MOOA might be transformed from LOOA via OH chemistry 
during the mid-day (Figure A21), its concentrations also increased at 
elevated temperature and Ox concentrations (Figure A23), supporting 
the potential direct conversion of VOCs to MOOA (Canonaco et al., 
2015). It has to be noted that the September month displayed the same 
features described previously (Fig. 7) as its meteorological conditions 

Fig. 6. f44 vs f60 ratio for BBOA factor profiles (color-coded according to the 
temperature). The solid triangles with error bars are for BBOA factor profiles 
with a monthly resolution and are color-coded according to the time. The dark 
grey circles and light grey squares represent the ratio of MOOA and LOOA 
factor profiles, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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were comparable to the summer period. 
Data for winter, spring and autumn scattered within the f44 vs f43 

triangle space and were expected to arise from anthropogenic sources. 
Laboratory studies on SOA formation from biomass burning emissions 
tend to be located on the left side of the triangle (Ahern et al., 2019; 
Hennigan et al., 2011; Heringa et al., 2011) whereas those from vehic-
ular exhaust are focused in the lower center part (Canonaco et al., 2015; 
Tkacik et al., 2014). The temporal variation of LOOA fragments profiles 
(m/z 60 and m/z 57) was inspected in Figure A24. Some episodes of 
increasing m/z 60 contributions occurred in winter and spring, corre-
sponding to enhanced R2 correlation between LOOA and BCWB. The 
highest episodes were in December with the maximum m/z 60 contri-
bution coinciding with the Christmas event, a polluted period mostly 
linked to biomass burning from domestic heating (Chazeau et al., 2021). 
It corresponded to a reduced m/z 43 in LOOA factor and data tended to 
the left part of the f44/f43 triangle (Figure A22). However, as stated 
earlier, the ACSM issue on m/z 43 from December could distort this 
analysis. Added to that, m/z 57 from LOOA showed strong seasonal 
variations with high values in autumn, winter and spring, supported by 
the R2 correlation with BCFF and highlighted the traffic origin for LOOA 
(Figure A24b). Added to that, the diurnal profiles during these seasons 
(Figure A21) exhibited a peak as the same time as morning traffic rush 
hour, suggesting a contribution from fast oxidation of freshly emitted 
primary OA. For MOOA, the concentrations slightly increased at night as 
they were driven by meteorological features such as boundary layer 

height, wind circulation, temperature and humidity (Figure A25) during 
winter and spring period. The high degree of aging for the oxygenated 
MOOA presumes some distant sources of OA emission advected through 
long-range transport. Daellenbach et al. (2017) already mentioned the 
regional origin of SOA concentrations in winter which were correlated at 
several sites on the Swiss plateau. 

Fig. 8a presents the seasonal wind rose occurrences for each season. 
The seasonal wind analysis of HOA, COA, Sh-IndOA, BBOA and LOOA 
were further described in the SI (Figure A26). In summary, the wind 
analysis for HOA and COA displayed pattern with high concentrations 
due to local emissions related to comparably low wind speeds. During 
winter and autumn highest concentrations were mostly observed from 
the North-East when land breeze prevails. These air masses developed at 
night and brought the OA concentrations, emitted during the day, back 
to the city. In the same time land breeze advected BBOA concentrations 
(Figure A26) from surrounding suburban residential areas of Marseille 
(Chazeau et al., 2021). As expected, the Sh-IndOA dynamic was driven 
by the south-westerly sea breeze at each season which brought the 
mixed industrial and shipping plumes from Fos-sur-mer area and the 
harbour to the city. LOOA factor appears to have the same local origin as 
the summed primary factors (i.e. HOA, COA and BBOA) for spring, 
autumn and winter. In summer, when the concentration assumed to 
stem from biogenic activity at night, LOOA displayed a North to East 
origin from inside the lands. MOOA displayed very contrasted situations 
and the related seasonal NWR analysis plots are represented in Fig. 8a. 

Fig. 7. SOA f44 vs f43 space for each season. The data points are determined by subtracting the f44 and f43 contributed from the other factors and are color-coded 
according to the OA mass concentrations. The modelled ratio for LOOA (diamonds) and MOOA (circles) points are color-coded based on the temperatures and the size 
of markers is proportional to the factor contributions. The grey dashed lines are the triangle boundaries set by Ng et al. (2010). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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The concentrations were associated with higher wind speeds than pri-
mary OA and LOOA PMF factors. While the north-east land breeze 
advected aged air masses back to the sampling site, enhanced concen-
trations were associated with southerly winds from the Mediterranean 
Sea (summer and autumn) and with the North sector with strong Mistral 
(spring). 

Since wind components measured at MRS-LCP site are not necessary 
representative of the initial origin of air masses, MOOA concentrations 
were coupled with backtrajectories analysis. CWT calculations were 
performed (Fig. 8b) as they have already proved their ability to trace the 
geographical origin of long-range aerosol species (Petit et al., 2017a, 
2019). To prevent for the local influence of wind recirculation (e.g. 
sea/land breezes cycle) data points linked to low speed conditions (<1 

m s− 1) were filtered out. Based on these data, the spring CWT only 
accounted for 2018 period (March–April). Thus some high MOOA con-
tributions were not represented here such as one of the main polluted 
episode from 14th to march 17, 2017 (Figure A17) which showed high 
concentrations of OA and ammonium nitrate attributed to the Rhône 
Valley region (Chazeau et al., 2021). For every season CWT analysis 
revealed eastern Mediterranean origin between the southern coast of 
France and the surroundings of Corsica Island. These hotspots can be 
assigned to natural as well as anthropogenic sources. Indeed highly 
oxidized OA measured during the PEACETIME oceanographic campaign 
accounted for up to 50% of organic fraction in sea spray aerosol in the 
west Mediterranean Sea (Freney et al., 2021), underlining the impor-
tance of OOA type aerosol in primary particles. In addition, the source 

Fig. 8. (a) Seasonal wind roses (displayed as joint probability representing the wind frequency) and NWR plots for MOOA factor (in μg m− 3). Radial and tangential 
axes show respectively the wind speed (m.s− 1) and the wind direction (◦). (b) Air masses occurrence for 72h-backtrajectories generated each 6 h and CWT maps for 
MOOA concentrations. The black dot endpoint represents the location of the MRS-LCP site. 
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areas around Corsica might be associated to long-range and 
medium-lived anthropogenic VOCs highlighting potential sources such 
as shipping activity (Michoud et al., 2017). Unlike the oxygenated 
profile found for Sh-IndOA, the factor was determined from measured 
SO2 concentrations and thus only prevailed for local ship emissions from 
Marseille harbour. MOOA could therefore involve an additional ship-
ping contribution. In summer, MOOA concentrations are spread over the 
surrounding region (named “region Sud”). The focused trajectory den-
sity in the area may suggest warm and stagnant conditions which fav-
oured local biogenic emissions from the vegetation and their low 
dispersion. In winter, CWT showed hotspots along the Rhône Valley. In 
this region, polluted air masses may be connected to known anthropo-
genic activities such as dense road traffic and industrial emissions from 
the “Chemical Valley”. It has to be noted that some potential hotspot, 
such as the one located in central France in spring, might be falsely 
attributed to the related region due to the corridor effect (Michoud et al., 
2017). 

5. Summary and conclusion 

The study presented the PMF source apportionment of OA measured 
with a ToF-ACSM from February 2017 to April 2018 (14 months) at the 
MRS-LCP site in Marseille. A novel approach was performed by applying 
PMF on a rolling window of 14 days using the new designed SoFi Pro. 
This method provided the decomposition of time dependant factor 
profiles which were more able to capture the OA sources variability 
through seasons compared to batch PMF analysis for the full dataset. 
However, it remained complex to model the OA composition with the 
rolling method during fast environmental changes. Some improvements 
are needed to deeply investigate these periods not well captured with a 
14-days window and could require additional factors. 

The a-value space for the applied PMF constraints was fully explored 
to determine the best OA sources separation. The PMF runs selection for 
the averaged solution was also improved based on a criteria selection, 
which consists in comparison with source external tracers or diurnal 
profile inspection. The final solution allowed to identify 5 to 6 factors 
throughout the year: 3 primary sources (HOA, COA and BBOA), 2 sec-
ondary sources (LOOA and MOOA), and a new oxygenated Sh-IndOA 
factor corresponding to the mixing industrial and shipping emissions. 
On average, the secondary OA fraction was predominant with 39.6% for 
MOOA and 21.5% for LOOA, followed by BBOA (11.7%), COA (11.5%), 
HOA (11.2%) and Sh-IndOA (4.5%). PMF uncertainty was assessed for 
each factor with satisfactory results of ±21%, ±24%, ±27%, ±34%, 
±15% and ±31% for HOA, COA, Sh-IndOA, LOOA, MOOA and BBOA, 
respectively. Unlike the proximity of an extended industrial area and a 
large harbour expected to impact the city air pollution, Sh-IndOA source 
contribution to total OA remains low and seems to be more affiliated to 
UFPs and sulfate emissions. However, additional aged emissions from 
MOOA factor might account for the shipping activity over the Medi-
terranean Sea. While HOA and COA primary factor profiles were stable 
with constant contributions through the study period, BBOA was only 
present in winter, spring and half of autumn. This last factor accounted 
for different sources according to the seasons. First, a mass spectra 
profile assimilated to those of reference studies was attributed to do-
mestic heating during the winter period. Then, a more aged profile 
showing decreasing f60 and increasing f44 due to oxygenated processes 
was accounted for the spring and autumn period and was linked to the 
surrounding land and agricultural waste burning. The secondary frac-
tion represented 70% of the total OA in summer and was mainly 
attributed to biogenic activity from the enclosing vegetation. In winter, 
spring and autumn SOA concentrations may arise from oxidized com-
bustion sources such as biomass burning or road traffic. Additionally, 
the more oxygenated SOA (MOOA) was partly driven by long-range 
transport with potential anthropogenic emissions from the Rhône val-
ley (mostly in winter) and a strong origin from the west Mediterranean 
Sea (for every season). 

This study emphasized the importance of dynamic factor profiles to 
assess the variability of long-term dataset, notably for the secondary 
origin. It would be necessary to apply the rolling method to more year- 
long ACSM datasets to corroborate its improved performances compared 
to the conventional seasonal PMF. Within the framework of these con-
clusions, the rolling approach constitutes a first step for automated 
analysis of continuous growing ACSM dataset. 
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review & editing, reviewed and all the authors commented on the paper. 
Henri Wortham: Writing – review & editing, reviewed and all the au-
thors commented on the paper. Nicolas Marchand: Writing – review & 
editing, reviewed and all the authors commented on the paper, designed 
the research. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work is supported by AtmoSud, ANRT, the PACA Region and the 
French ministry of Environment. BC would also like to acknowledge the 
COST Action COLOSSAL (Chemical On-Line cOmpoSition and Source 
Apportionment of fine aerosol – CA16109). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aeaoa.2022.100176. 

References 

Ahern, A.T., Robinson, E.S., Tkacik, D.S., Saleh, R., Hatch, L.E., Barsanti, K.C., 
Stockwell, C.E., Yokelson, R.J., Presto, A.A., Robinson, A.L., Sullivan, R.C., 
Donahue, N.M., 2019. Production of secondary organic aerosol during aging of 
biomass burning smoke from fresh fuels and its relationship to VOC precursors. 
J. Geophys. Res. Atmos. 124, 3583–3606. https://doi.org/10.1029/2018JD029068. 

Alfarra, M.R., Hamilton, J.F., Wyche, K.P., Good, N., Ward, M.W., Carr, T., Barley, M.H., 
Monks, P.S., Jenkin, M.E., Lewis, A.C., McFiggans, G.B., 2012. The effect of 
photochemical ageing and initial precursor concentration on the composition and 
hygroscopic properties of β-caryophyllene secondary organic aerosol. Atmos. Chem. 
Phys. 12, 6417–6436. https://doi.org/10.5194/acp-12-6417-2012. 

Alfarra, M.R., Prevot, A.S.H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V.A., 
Schreiber, D., Mohr, M., Baltensperger, U., 2007. Identification of the mass spectral 
signature of organic aerosols from wood burning emissions. Environ. Sci. Technol. 
41, 5770–5777. https://doi.org/10.1021/es062289b. 

B. Chazeau et al.                                                                                                                                                                                                                                

mailto:Benjamin.chazeau@univ-amu.fr
https://doi.org/10.1016/j.aeaoa.2022.100176
https://doi.org/10.1016/j.aeaoa.2022.100176
https://doi.org/10.1029/2018JD029068
https://doi.org/10.5194/acp-12-6417-2012
https://doi.org/10.1021/es062289b


Atmospheric Environment: X 14 (2022) 100176

14

Allan, J.D., Delia, A.E., Coe, H., Bower, K.N., Alfarra, M.R., Jimenez, J.L., 
Middlebrook, A.M., Drewnick, F., Onasch, T.B., Canagaratna, M.R., Jayne, J.T., 
Worsnop, D.R., 2004. A generalised method for the extraction of chemically resolved 
mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 35, 
909–922. https://doi.org/10.1016/j.jaerosci.2004.02.007. 

Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of 
sulfur concentrations at grand Canyon National Park. Atmos. Environ. 19, 
1263–1270. https://doi.org/10.1016/0004-6981(85)90256-2, 1967.  

Bozzetti, C., El Haddad, I., Salameh, D., Daellenbach, K.R., Fermo, P., Gonzalez, R., 
Minguillón, M.C., Iinuma, Y., Poulain, L., Elser, M., Müller, E., Slowik, J.G., 
Jaffrezo, J.-L., Baltensperger, U., Marchand, N., Prévôt, A.S.H., 2017a. Organic 
aerosol source apportionment by offline-AMS over a full year in Marseille. Atmos. 
Chem. Phys. 17, 8247–8268. https://doi.org/10.5194/acp-17-8247-2017. 

Bozzetti, C., Sosedova, Y., Xiao, M., Daellenbach, K.R., Ulevicius, V., Dudoitis, V., 
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Daellenbach, K.R., Bozzetti, C., Hueglin, C., Graf, P., Baltensperger, U., Slowik, J.G., 
El Haddad, I., Prévôt, A.S.H., 2021. Time-dependent source apportionment of 
submicron organic aerosol for a rural site in an alpine valley using a rolling positive 
matrix factorisation (PMF) window. Atmos. Chem. Phys. 21, 15081–15101. https:// 
doi.org/10.5194/acp-21-15081-2021. 

Chirico, R., Prevot, A.S.H., DeCarlo, P.F., Heringa, M.F., Richter, R., Weingartner, E., 
Baltensperger, U., 2011. Aerosol and trace gas vehicle emission factors measured in a 
tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation. 
Atmos. Environ. 45, 2182–2192. https://doi.org/10.1016/j.atmosenv.2011.01.069. 

Clapp, L., 2001. Analysis of the relationship between ambient levels of O3, NO2 and NO 
as a function of NOx in the UK. Atmos. Environ. 35, 6391–6405. https://doi.org/ 
10.1016/S1352-2310(01)00378-8. 

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., 
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., 
Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., 
Pope, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van 
Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H., 2017. Estimates and 25- 
year trends of the global burden of disease attributable to ambient air pollution: an 
analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 
1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6. 

Coudray, N., Dieterlen, A., Roth, E., Trouvé, G., 2009. Density measurement of fine 
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