Image and volume conditioning for respiratory motion synthesis using GANs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Image and volume conditioning for respiratory motion synthesis using GANs

Résumé

Four-dimensional computed tomography (4DCT) acquisitions are used routinely in lung cancer radiotherapy treatment planning to identify target volumes and safety margins. However, they expose the patient to higher radiation dose compared to static 3DCT acquisitions. In this work, we demonstrate the possibility of generating synthetic 4DCT acquisitions from a 3DCT image following the actual patient's respiratory amplitude. To this end, we propose a new image-to-image generative adversarial network (GAN) architecture. More specifically, we propose a new scalar injection mechanism based on Adaptive Instance Normalization to condition the generator on the breathing amplitude. Such information can be obtained in practice using external respiratory tracking devices. We show preliminary results on a series of 4DCT images where we compare our synthesized 4DCT to real respiratory phase-gated acquisitions, paving the way for 4DCT-free treatment planning.
Fichier principal
Vignette du fichier
MIC_dynagan.pdf (1.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03658055 , version 1 (03-05-2022)

Identifiants

  • HAL Id : hal-03658055 , version 1

Citer

Yi-Heng Cao, Vincent Jaouen, Vincent Bourbonne, Nicolas Boussion, Ulrike Schick, et al.. Image and volume conditioning for respiratory motion synthesis using GANs. NSS/MIC 2021: IEEE Nuclear science symposium and medical imaging conference, Oct 2021, Virtual, Japan. ⟨hal-03658055⟩
76 Consultations
53 Téléchargements

Partager

More